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Abstract
Fusarium oxysporum is an entomopathogenic fungus, and it has anti-biological activity against arthropods. Ticks 
are blood sucking arthropods which are responsible for transmitting different diseases in humans and animals. 
The use of chemical insecticides against ticks is not eco-friendly option and results in the development of acaricide 
resistance. Previously, we had cultured a local isolate of Fusarium oxysporum from soil samples which were 
identified through microscopy and confirmed through molecular technique. In our previous experiments, we 
have prepared Silver nanoparticles (AgNP) at pH 7 and they had been characterized through X-Ray Diffraction 
(XRD), UV-visible and zeta-potential. In our current study, the AgNP were prepared at different pH conditions 
and characterized through Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). 
The protein molecules of F. oxysporum were charged with Ag ions. F. oxysporum NP were observed to enhance 
anti-biological activity by killing Rhipicephalus microplus and they caused 100% mortality at pH 4 and pH 5 in 24 h 
in anti-tick biological assay. Our study is the first report to do biological assay against Rhipicehalus ticks by using 
Fusarium AgNP at acidic pH. Biological control using entomopathogenic fungi can be the best alternative of the 
chemical method to control the tick population.

Keywords: Fusarium oxysporum, entomopathogenic fungus, silver nanoparticles, fungal nano-particles, Rhipicephalus 
microplus.

Resumo
Fusarium oxysporum é um fungo entomopatogênico com atividade antibiológica contra artrópodes. Os carrapatos são 
artrópodes sugadores de sangue responsáveis pela transmissão de diversas doenças em humanos e animais. O uso 
de inseticidas químicos contra carrapatos não é uma opção ecologicamente correta e resulta no desenvolvimento 
de resistência acaricida. Anteriormente, havíamos cultivado um isolado local de Fusarium oxysporum a partir 
de amostras de solo que foram identificadas por microscopia e confirmadas por técnica molecular. Em nossos 
experimentos anteriores, preparamos nanopartículas de Prata (AgNP) em pH 7 e elas foram caracterizadas por 
Difração de Raios X (XRD), UV-visível e potencial zeta. No presente estudo, os AgNP foram preparados em diferentes 
condições de pH e caracterizados através de Microscopia Eletrônica de Varredura (MEV) e Microscopia Eletrônica 
de Transmissão (TEM). As moléculas de proteína de F. oxysporum foram carregadas com íons Ag. Assim, observou-
se que F. oxysporum NP aumenta a atividade antibiológica matando Rhipicephalus microplus e causando 100% de 
mortalidade em pH 4 e pH 5 em 24h no ensaio biológico anticarrapato. Este estudo é o primeiro relato de caso a 
realizar um ensaio biológico contra carrapatos Rhipicehalus usando Fusarium AgNP em pH ácido. Nesse sentido, é 
possível concluir que o controle biológico utilizando fungos entomopatogênicos pode ser a melhor alternativa do 
método químico para controlar a população de carrapatos.

Palavras-chave: Fusarium oxysporum, fungo entomopatogênico, nanopartículas de prata, nanopartículas fúngicas, 
Rhipicephalus microplus.
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production, better dissemination of NP (Abdel-Aziz et al., 
2017). The amount of protein expressed by the fungi is 
much higher than that of a bacterial system (Dyal et al., 
2006). The filtration of fungi is conveniently done by using 
the simple filtration technique without using any standard 
equipment which minimizes the investment and energy 
consumption. (Devi And Joshi, 2015). pH is one of the key 
factors playing a crucial role in NP synthesis. For silver 
NP production by Guignardia mangiferae, pH 3 to 10 were 
set to see the development of color (Balakumaran et al., 
2015). While, Qian et al. (2013) have shown that alkaline 
pH favored the AgNP synthesis when 1 mM silver nitrate 
was challenged with the cell free filtrate of Epicoccum 
nigrum. Among the different concentrations of silver 
nitrate tested, 1 mM concentration very much facilitated 
the AgNP synthesis with good monodispersity (Qian et al., 
2013). Ticks are a group of arthropods that are notorious for 
transmitting a wide range of viral and parasitic organisms 
(Mbanzulu et al., 2020). Rhipicephalus (Boophilus) microplus 
is a common cattle tick which is one of the important 
specie of ticks responsible for spreading diseases in the 
cattle globally (Jonsson, 2006) and likewise in Pakistan 
(Farooqi et al., 2017). It is responsible for blood loss due to 
its hematophagous behavior and one engorged female tick 
can engulf 0.5 ml of blood from the host (Urquhart et al., 
1996) and it also plays a vital role in transmitting protozoal, 
bacterial and viral diseases (Teglas et al., 2005). The control 
of cattle ticks chiefly depends upon pour-on applications of 
acaricides and systemic inoculation of chemotherapeutic 
drugs like Ivermectin (Li et al., 2007) but the drug resistance 
has been developed due to repeated and/or irrational 
use of these drugs (Klafke  et  al., 2012; Miller  et  al., 
2007; Olivares-Pérez  et  al., 2011). The development of 
resistance and presence of chemical residues in meat, milk 
and the environment has prompted interest in finding 
new, less toxic substances to control ticks (Zaman et al., 
2012). It also causes bioaccumulation, unbalancing the 
ecology as inducing bio-magnification in organisms of 
higher tropic levels in the food chain that affects the 
non-target animals and mammals (Dalkvist et al., 2009; 
Schauber et al., 1997; Yadav, 2010). The contamination of 
the water bodies such as ponds and the environment can 
indirectly affect human beings through its indirect source 
(George et al., 2004; Harris et al., 2010; Polson et al., 2011). 
The biological control of ticks through entomopathogenic 
fungi is an alternative control strategy using Beauveria 
(Perinotto  et  al., 2012) and Metarhizium (Gindin  et  al., 
2002) against Rhipicephalus microplus (Angelo  et  al., 
2010). Keeping in view the development of insecticidal 
resistance in ticks, the current study has been designed 
to isolate indigenous Fusarium oxysporum fungus for the 
preparation of NP and to investigate its anti-biological 
efficacy for the control of ticks.

2. Materials and Methods

2.1. Fungal and tick cultures

We have previously isolated and cultured Fusarium 
oxysporum (Sumera et al., 2021). Briefly, the soil samples 

1. Introduction

Nanoparticles (NP) generally contain 20-15000 atoms 
and are considered fundamental molecular building blocks 
for nanotechnology (Zhao et al., 2014). NP synthesis and 
its potential exploration are of great interest for the use in 
various applications in optics, electronics, and biomedical 
sciences (Becker, 1999; Colvin et al., 1994; Crabtree et al., 
2003). NP possess the unique properties of optical, chemical, 
magnetic as well as mechanical nature (Khan et al., 2019). 
Compared to the large particles, these particles have a 
relatively high fraction of atoms and a wide surface area 
to volume ratio (Tang and Zheng, 2018). The NP serves as a 
link or bridge between the bulk materials and the molecular 
and atomic structures (Chakraborty and Pradeep, 2017). 
The nano-technology overlaps different disciplines, so it 
is easy to rebuild the novel experimental protocols in the 
synthesis of NP which are safe, reliable, and eco-friendly 
(Ray, 2010). NP are majorly categorized into two main 
types, namely organic and inorganic. Organic NP include 
carbon NP, while, inorganic NP comprise noble metal NP 
(e.g., Au and Ag), semi-conductor NP (TiO2 and ZnO2), 
and magnetic NP (Komada, 1975; Nagajyothi et al., 2020; 
Teixeira et al., 2018; Wahid et al., 2020). Because of their 
adherent functional versatility and material superiority, 
inorganic NP are widely used in biological sciences (Giner-
Casares et al., 2016). The silver nanoparticles (AgNP) are 
the most promising as they show good antibacterial and 
antimicrobial properties (Kostadinova et al., 2009; Zhao 
and Stevens Junior, 1998). During the last two decades, 
metal NP synthesis and its application emerged as a prime 
research topic in the modern material sciences (Roco, 
2003). These nano-crystals have been employed in sensitive 
bio-molecular detection, therapy, diagnostic techniques, 
anti-microbial, and catalysis processes (Colvin  et  al., 
1994; George  et  al., 2004; Govindarajan  et  al., 2005; 
Samish et al., 2001; Wang and Herron, 1991). Because of 
the anti-microbial properties of silver nanoparticles, they 
are widely used in the medical industry (Crabtree et al., 
2003). Silver-impregnated polymers and AgNP are 
widely used to prevent bacterial infection in open and 
burn wounds (Jiang et al., 2004; Rai et al., 2009). Silver 
embedded fabrics are also used as supporting material 
in the textile industry (Durán  et  al., 2007). The earlier 
synthesis methods involved in the NP were based on 
physical and chemical processes. These methods have 
some shortcomings, such as high-temperature requirement 
causing more expenditure of energy, need for radiations, 
employment of toxic chemicals that usually result in the 
liberation of hazardous by-products and (Dolgaev et al., 
2002; Evanoff and Chumanov, 2004; Jiang et al., 2004; 
Kabashin and Meunier, 2003; Komada, 1975). These 
methods also required specialized apparatus. While, 
working with biological systems like fungi is simple and the 
fungi can synthesize NP extracellularly and intracellularly 
(Zhang et al., 2020). The biological systems used include 
microorganisms, including bacteria, fungi and plants 
(Bar et al., 2009; Mishra et al., 2003). In comparison to 
the bacterially synthesized NP, myco-synthesized AgNP 
have several merits. These include tolerance for high metal 
concentration in the medium, reliable and easy large-scale 
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were passed through a fine sieve of up to 200µm capacity. 
Then, the aliquot of the sieved sample was spread over 
potato dextrose agar (PDA) and broth (PDB) at 27 °C for 
seven days in a shaker incubator (Komada, 1975). After 
the incubation, the fungal biomass was sieved through a 
sterilized cheese-cloth and washed twice using sterile DW 
to remove the excess medium components. 10 g of fungal 
biomass (wet weight) was mixed in 100 ml sterile double 
DW in an Erlenmeyer flask and incubated in a shaker 
incubator for 48 h at 120 rpm and 28 °C. The aqueous 
solution components were again filtered with Whatman® 
filter paper no.1 to get the mycelium-free filtrate. This 
mycelium-free filtrate was placed in a conical flask and 
mixed with 1 mM AgNO3 (0.017g/100 ml) as the final 
concentration for reducing AgNP. The mixer was again 
incubated in the shaker incubator under light at 28 °C and 
120 rpm. The mycelium-free filtrate without AgNO3 was 
considered to serve as a control and kept under the same 

conditions (28 °C and 120 rpm). After 24 h, the change 
in color of the reaction mixture treated with AgNO3 was 
observed, which was treated with AgNO3. After 120 h of 
incubation, the AgNP turned into a brownish yellow color 
solution. The AgNP solution was stored in vials at 4 °C until 
further characterizations. The above protocol is shown in 
a flow diagram in Figure 1.

The ticks were collected from the experimental calves 
reared in the department of Parasitology, UVAS, Lahore. 
The ticks were identified as Rhipicephalus microplus under 
stereomicroscope by using the key (Foreyt, 2013) as shown 
in Figure 2. The ticks were cultured in BOD incubator at 28 °C 
and 80% humidity (Monteiro et al., 2020) as shown in Figure 3.

2.2. SEM analysis

The biosynthesized AgNP were investigated using SEM 
(Scanning electron microscopy). The morphology and 

Figure 1. Flow Diagram of Entomopathogenic Fungus (Fusarium oxysporum) culture.

Figure 2. Morphology of ticks (Foreyt, 2013).
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nanostructure of AgNP were analyzed with Nova Nano 
SEM 650 at 10 KV. The SEM micrographs were taken at 
80,000x magnification. For SEM imaging, a thin film of 
AgNP was prepared by drop coating of purified AgNP from 
prepared solution onto carbon-coated copper SEM grid. 
The grid was allowed to evaporate for 5 min. The surplus 
sample was removed using a blotting paper.

2.3. TEM analysis

TEM measurements were taken to determine the 
shape and morphology of AgNP. TEM was performed on 
Hitachi HT7800 instrument with an accelerating voltage of 
120 kV. After the synthesis of AgNP, a drop of the sample 
containing AgNP was placed on a carbon-coated copper 
grid and was kept under Infrared lamp for 6 minutes to dry 
the sample. Extra solution was removed using a blotting 
paper before holding the grid onto the specimen holder. 
Then the grid was scanned at different magnifications for 
the observation of AgNP.

2.4. Anti-tick Assay

A total of 9 groups were formed. There were 3 control 
groups and 6 experimental groups of pH: 04 to pH: 09. There 
were 2 replicates in each experimental group containing 
6 ticks per group/subgroup with fungal culture alone or 
in combination with NP as shown in Figure 4.

3. Results

3.1. Culture and myco-synthesis of Fusarium NP

Crystal white growth of F. oxysporum was observed 
on the broth of the medium. The filtered fungal residues 
were apparent (without NP and dark brown (with NP) 
after incubation at 28 °C for 48 h.

After incubation of 72 hours, the Nano-particles were 
used to check the lethal effect on the ticks. Optical density 
values were taken after every 24 h for 96 h at different pH 
as shown in Figure 5.

3.2. SEM analysis

The SEM micrographs of biosynthesized AgNP 
synthesized at different pH reaction conditions show 
well defined spherical nanoparticles which are smooth, 
isotropic (i.e with low aspect ratio) and monodispersed. It is 
observed from the micrographs that pH of filtrate effects 
the size of AgNP. The observed size of AgNP decreases with 
increasing initial pH of fungal filtrate. More uniformity 
was observed in size and shape of nanoparticles with 
increasing pH. The micrographs show no agglomeration 
of nanoparticles but the particles are well dispersed in the 
solution showed intense stabilization of AgNP. The average 
particle size and its size ranges obtained at different pH 

Figure 3. Culture of Rhipicephalus ticks. Adult tick with its ventral view (A), Adult tick with its dorsal view (B), Eggs of the tick (C), 
Larvae of the ticks (D).
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reaction conditions were calculated by SEM micrographs 
with the help of Image J software. At pH 4, 5, 6 and 7, the 
average sizes of the AgNP were 88 nm, 52 nm, 38 nm and 
13 nm, respectively. The particle size histogram of AgNP 
is shown in Figure 6.

3.3. TEM analysis

TEM micrographs of synthesized AgNP by using 1 mM 
AgNO3 with different initial pH conditions has been shown 
in Figure 7. The AgNP formed were spherical in shape.

3.4. Anti-tick biological activity

The results of biological activity of Fusarium NP are 
shown in Table 1 and Figure 8. All the ticks were dead in 
the groups treated with AgNP prepared in acidic media 

and the control positive group treated with cypermethrin. 
Dead ticks were also found to have fungal growth on them.

4. Discussion

Myco-synthesis of the intercellular or extracellular 
synthesis of silver nanoparticles is represented by trapping 
of Ag+ ions on the surface of entomopathogenic fungal cells 
and subsequent reduction of silver ions by the enzymes 
present in the fungal biomass (Mukherjee et al., 2001b) of 
Fusarium oxysporum (Kumar et al., 2015; Mohanpuria et al., 
2008). Organic molecules such as enzymes and acids are 
responsible for the formation of spherical crystalline AgNP 
(Balaji et al., 2009) that enhanced biological activity of the 
fungus against ectoparasites like ticks.

Previously, Fusarium oxysporum derived AgNP have 
enhanced entomopathogenic activity against Culex 
mosquito larvae. We have isolated a fungus from the soil 
in Lahore, Pakistan through PCR, which has phylogenetic 
similarity with the strain of Fusarium oxysporum isolated 
from the body of Aedes aegypti. Moreover, we have 
characterized our NP through UV-Vis, SEM, DLS, ZP and 
FTIR. We have observed 100% mortality of Aedes mosquitoes 
larvae at 17 h and 24 h with AgNP and without AgNP by 
using 1 ppm concentration, respectively (Sumera et al., 
2021).

In anti-tick biological assay with Fusarium AgNP, we 
achieved 100% mortality with conditions of pH 4 and 
pH 5 in 24 h in comparison with control positive but we 
did not achieve any mortality of ticks with the fungal 
derived AgNP prepared in pH 7 even though the size of 
the nanoparticles were smaller at pH 6 and 7 than at 
pH 4 and 5. The size of the nanoparticles were found 
<100 nm at pH 4, 5, 6 and 7. The acidic pH (4 and 5) was 
found significant in killing ticks in our experiments in 
24 h duration. All ticks were dead in the experimental 
groups except control negative after 3 days with or 
without Fusarium AgNP. So, AgNP enhanced the killing of 
Rhipicephalus ticks in our experiments. Most of researchers 
prepared Fusarium AgNP from pH range 6 to 9 or above 
(Birla  et  al., 2013; Husseiny  et  al., 2015). Birla  et  al., Figure 4. Set-up of anti-tick assay.

Figure 5. Values of optical density at 410 nm at different pH. OD value after every 24 h up to 96 h (A), Average OD value (B).
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Table 1. Results of anti-biological activity of Fusarium NP at different pH against ticks.

Control Group pH: 4 pH: 5 pH: 6

Distilled 

Water
Cipermethrin Ticks only

Negative 

(only filtrate)
Myco-AgNPs

Negative 

(only filtrate)
Myco-AgNPs

Negative 

(only filtrate)
Myco-AgNPs

All alive. No 

change in 

movement

All dead 

within a few 

minutes

All alive. No 

change in 

movement

The fungal 

filtrate added/

sprayed had 

no effect 

alone on the 

ticks.

The nano-

particle 

containing 

filtrate had 

lethal effect. 

The ticks died 

within a few 

minutes.

The fungal 

filtrate added/

sprayed had 

no effect 

alone on the 

ticks.

The nano-

particle 

containing 

filtrate had 

lethal effect. 

The ticks died 

within a few 

minutes.

The fungal 

filtrate added/

sprayed had 

no effect 

alone on the 

ticks.

The sprayed 

solution had 

some effect 

killing some 

ticks.

6/6 ticks were 

alive.

6/6 ticks were 

dead.

6/6 ticks were 

alive.

6/6 ticks were 

alive.

6/6 ticks were 

dead.

6/6 ticks were 

alive.

6/6 ticks were 

dead.

6/6 ticks were 

alive.

2/5 ticks were 

dead.

Control Group pH: 7 pH: 8 pH: 9

Distilled 

Water
Cipermethrin Ticks only

Negative 

(only filtrate)
Myco-AgNPs

Negative 

(only filtrate)
Myco-AgNPs

Negative 

(only filtrate)
Myco-AgNPs

All alive. No 

change in 

movement

All dead 

within a few 

minutes

All alive. No 

change in 

movement

The fungal 

filtrate added/

sprayed had 

no effect 

alone on the 

ticks.

The nano-

particle 

containing 

filtrate had no 

lethal effect. 

The ticks 

were alive.

The fungal 

filtrate added/

sprayed had 

no effect 

alone on the 

ticks.

The nano-

particle 

containing 

filtrate had no 

lethal effect. 

The ticks 

were alive.

The fungal 

filtrate added/

sprayed had 

no effect 

alone on the 

ticks.

The nano-

particle 

containing 

filtrate had no 

lethal effect. 

The ticks 

were alive.

6/6 ticks were 

alive.

6/6 ticks were 

dead.

6/6 ticks were 

alive.

6/6 ticks were 

alive.

6/6 ticks were 

alive.

6/6 ticks were 

alive.

6/6 ticks were 

alive.

6/6 ticks were 

alive.

6/6 ticks were 

alive.

Figure 6. SEM Analyses and size of AgNP at pH 4 (A) with the area selected for particle estimation (A1) and size of particles (A2), pH 5 
(B) with the area selected for particle estimation (B1) and size of particles (B2), pH 6 (C) with the area selected for particle estimation 
(C1) and size of particles (C2) and pH 7 (D) with the area selected for particle estimation (D1) and size of particles (D2), Size of Fusarium 
AgNP (E). ** indicates moderate significance and *** indicates highly significance.
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(2013) synthesized AgNP derived from F. oxysporum 
on malt glucose yeast extract peptone medium at pH 
9–11. They found maximum synthesis of nanoparticles 
while, in acidic pH 3 and pH 5 aggregates were observed. 
At pH 7, there was less synthesis of SNPs as compared 
to alkaline pH (Birla et al., 2013). Husseiny et al., (2015) 
prepared F. oxysporum in Erlenmeyer flasks containing 
100 ml PDA broth medium in incubator at 28 °C. After 
5 days of incubation, the biomass was separated from 
the medium by filtration through Whatman filter paper 
no.1 and washed three times in sterile DW. They found pH 
to be an important parameter affecting AgNP synthesis 
in F. oxysporum. It was also proved that smallest size 
occurred at pH 6 and very less synthesis at alkaline pH 
(Husseiny et al., 2015). But our study is unique to report the 
activity at pH 4 and 5. The plausible explanation might be 
due to increase of the protonation in acidic condition that 

may influence the H-bonding (Pal et al., 2013; Yeh et al., 
2020) or biomass of fungus synthesizes NP intracellularly 
on exposure of AgNO3 (Mukherjee et al., 2001a).

Fernandes et al. (2012) reviewed the biological activity 
and the mode of actions of entomopathogenic fungi 
such as Metarhizium anisopliae and Beauveria bassiana 
(Fernandes et al., 2012). The ability of entomopathogenic 
fungi to penetrate the cuticle of arthropods, make them 
good candidates as biocontrol agents but they are slow in 
killing their host, they need high humidity to germinate 
and sporulate (Gindin et al., 2001). Thus, the fungi can take 
several days to kill ticks. For instance, M. anisopliae takes up 
to a week time to kill Rhipicephalus annulatus, Hyalomma 
excavatum and Rhipicephalus sanguineus (Gindin  et  al., 
2002). The nanoparticles formulated at acidic pH might 
speed up the killing process of Rhipicephalus microplus 
ticks by Fusarium oxysporum.

Figure 7. TEM results of Fusarium AgNP at pH 4 (A), at pH 5 (B), at pH 6 (C), at pH 7 (D) and without NP at pH 7 (E).
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5. Conclusion

It is concluded that Fusarium oxysporum NP cause 
100% mortality with conditions of pH 4 and pH 5 in 24 h 
in anti-tick biological assay. Our study is the first report 
to do biological assay against Rhipicehalus ticks by using 
Fusarium AgNP at acidic pH.
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