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❚❚ ABSTRACT
Objective: To develop and validate predictive models to estimate the number of COVID-19 patients 
hospitalized in the intensive care units and general wards of a private not-for-profit hospital in São 
Paulo, Brazil. Methods: Two main models were developed. The first model calculated hospital 
occupation as the difference between predicted COVID-19 patient admissions, transfers between 
departments, and discharges, estimating admissions based on their weekly moving averages, 
segmented by general wards and intensive care units. Patient discharge predictions were based 
on a length of stay predictive model, assessing the clinical characteristics of patients hospitalized 
with COVID-19, including age group and usage of mechanical ventilation devices. The second 
model estimated hospital occupation based on the correlation with the number of telemedicine 
visits by patients diagnosed with COVID-19, utilizing correlational analysis to define the lag that 
maximized the correlation between the studied series. Both models were monitored for 365 
days, from May 20th, 2021, to May 20th, 2022. Results: The first model predicted the number 
of hospitalized patients by department within an interval of up to 14 days. The second model 
estimated the total number of hospitalized patients for the following 8 days, considering calls 
attended by Hospital Israelita Albert Einstein’s telemedicine department. Considering the average 
daily predicted values for the intensive care unit and general ward across a forecast horizon of 8 
days, as limited by the second model, the first and second models obtained R² values of 0.900 
and 0.996, respectively and mean absolute errors of 8.885 and 2.524 beds, respectively. The 
performances of both models were monitored using the mean error, mean absolute error, and root 
mean squared error as a function of the forecast horizon in days. Conclusion: The model based 
on telemedicine use was the most accurate in the current analysis and was used to estimate 
COVID-19 hospital occupancy 8 days in advance, validating predictions of this nature in similar 
clinical contexts. The results encourage the expansion of this method to other pathologies, aiming 
to guarantee the standards of hospital care and conscious consumption of resources.

Keywords: COVID-19; Coronavirus infections; Pandemics; Forecasting; Telemedicine; Resource 
allocation; Decision support systems, clinical; Big Data

❚❚ INTRODUCTION
COVID-19 transmission rates in Brazil sustain a scenario that can be classified 
as a pandemic state, and the country faces waves of variable demands for 
physical and human resources to treat patients with COVID-19.(1,2) Meanwhile, 
the priority of health service managers and the government(3) has been to 
provide proper sizing of its resources to guarantee the access of the population 
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to appropriate care. It is necessary to ensure that 
patients, at all severity levels, who seek assistance 
during the pandemic have access to supplies, medicines, 
equipment, beds, and medical staff appropriate to 
their needs;(4) aiming to improve their outcomes and 
minimize the negative impacts of the pandemic.

In this context, initiatives to support the decision-
making process regarding demand predictability and 
resource sizing have become more relevant as Brazil 
emerged as the epicenter of the COVID-19 pandemic.(5) 
Planning a volume-based resource allocation is an 
optimization alternative,(6) considering that the demand 
for experienced intensive care unit professionals, 
ventilation and monitoring devices, drugs used for 
tracheal intubation protocols, and hospital beds has 
varied significantly since the beginning of the pandemic, 
competing with other demands for hospital care.

An increasing application of machine learning 
techniques has been observed in datasets containing 
patients’ clinical variables to predict the degradation of 
clinical conditions, mortality, and length of stay (LOS),(7-9) 
as well as an approach utilizing time-series analysis 
to estimate hospitalizations and admissions in health 
institutions using the number of telemedicine visits(10) 
or interest in terms related to pathology symptoms in 
web search engines (e.g., Google Trends).(11) 

This context highlights the opportunity to develop 
statistical models to predict the number of patients 
hospitalized due to COVID-19 and help hospital 
managers plan for beds, human resources, and other 
input sizing and availabilities. 

❚❚ OBJECTIVE
To develop, implement, and monitor a predictive model 
to estimate the number of patients hospitalized due 
to COVID-19, segmenting patients by department-
intensive care units and general wards-whenever 
possible.

❚❚METHODS
This retrospective study was conducted at Hospital 
Israelita Albert Einstein (HIAE), a private not-for-profit 
624-bed hospital in São Paulo, Brazil, which earmarked 
300 beds for COVID-19 patients in March 2021, at the 
peak of the pandemic.

Two separate models were developed to achieve the 
study objectives:

Model 1: Hospital occupancy was estimated by 
projecting the hospital admissions and discharges of 
COVID-19 patients separately. 

Hospital admissions were estimated separately 
for the general ward and intensive care unit (ICU), 
including semi-intensive care beds, and analyzed using 
a time-series approach, including the evaluation of 
seasonality, trends, and residues. 

To capture the internal transfer behavior that 
relocated patients between the general ward and the 
ICU, an estimation was also proposed considering  
the rate of patients transferred from the general ward to 
the ICU as a function of LOS, considering data from the 
previous 30 days.

Discharges for the 14 subsequent days were 
estimated using an individual LOS predictive model. 
To build this model, the first stage consisted of a 
retrospective investigation of the existing correlations 
between clinical variables and patients’ LOS. Data were 
extracted from the medical charts of 4,741 patients 
admitted to the hospital with COVID-19 between 
March 2020 and July 2021. 

Patients with a total LOS >45 days were excluded 
from the analysis because of the low representativeness 
of the group (<5% of the study population), and the 
possibility of reallocating those patients to non-COVID 
beds during their hospitalization, considering the 
clinical assessment, testing, and criteria established by 
global health institutions. 

Additionally, for the estimation of LOS, patients 
who died during hospitalization, those who were 
transferred to another hospital, or whose discharge 
was requested by the patient were excluded from the 
analysis to isolate a pattern of behavior from observed 
hospitalizations and eliminate confounding factors. 
Firstly, feeding the model with patients who died, 
opted for home-care treatment, or transferred to 
another hospital may distort the expected impact for 
severity indicators such as the ventilation device use 
or ICU bed occupancy, resulting in an increase in the 
expected LOS in cases of regular discharge. Secondly, 
death, home care, and transfers to other hospitals 
represented >5% of the total number of COVID-19 
hospitalizations in HIAE.

The clinical variables considered and analyzed 
for the LOS model included age group, sex, use of 
an extracorporeal membrane oxygenation (ECMO) 
device during the stay, use of non-invasive and invasive 
ventilation devices in the last 24 hours, occupancy of 
ICU or semi-ICU in the previous 24 hours, prescription 
of vasoactive drugs, and prescription of hemodialysis, 
with the considered criteria for inclusion detailed in the 
results section. 

To facilitate data comprehension, an initial exploratory 
univariate analysis was performed, calculating the median 
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and mean LOS of discharged patients., Comparisons 
between groups were carried out using the Mann-
Whitney U test(12) and the Kruskal-Wallis test.(13) 
Additionally, as a multivariate approach, the impact of 
daily changes registered in the selected set of variables 
was evaluated using a random forest algorithm to 
dynamically predict the LOS for each individual, where 
the most important features were ranked and selected 
using the Gini importance index.(14)

Model 2: The correlation between the number of 
telemedicine visits related to COVID-19 symptoms, 
the volume of web searches for terms associated with 
COVID-19 originating in São Paulo, Brazil, and the 
number of patients hospitalized with COVID-19 at 
HIAE were evaluated. 

The data used to build the second model were 
collected from three sources: i) the daily volume of 
searches in Google for the term “sintomas COVID-19” 
in São Paulo, Brazil, extracted from Google Trends-a 
public database containing a normalized interest score 
calculated based on the search volume for a given 
search term and location over a selected period; ii) 
A dataset containing the daily number of visits to the 
telemedicine department of HIAE, considering three 
distinct groupings: Group 1, patients assigned diagnosis 
codes related to COVID-19 (ICD-10-CM from chapter 
X: J00-J99, Diseases of the respiratory system; chapter 
XXI: Z00-Z99, Factors influencing health status and 
contact with health services; COVID-19’ specific ICD-
10-CM code U07.1; and ICD-10-CM codes related to its 
symptoms: R05, R06, R07.0 and R50); Group 2: patients 
exclusively assigned the COVID-19-specific ICD-10-
CM code U07.1; and, Group 3: the daily number of 
visits to the telemedicine department, without filtering 
ICD-10-CM codes; iii) A dataset containing the target 
variables: daily number of admissions and patients 
hospitalized due to COVID-19 at HIAE, considering 
only the coronavirus specific ICD-10-CM code B34.2.

At the time of data collection, the telemedicine 
department still did not assign the COVID-19 specific 
ICD-10 CM code B34.2 to identify confirmed cases of 
COVID-19 in its calls; therefore, this specific code was 
not considered in the development of the model.

The Pearson Correlation between telemedicine 
attendance volumes, Google Trends interest scores, 
and the daily normalized weekly moving averages of 
hospitalized patients was calculated to investigate the 
lag that maximized the correlation function between 
the number of hospitalized patients and the given 
series, using a regression model.(15)

Performance metrics: performance monitoring of 
the proposed models employed accuracy metrics of 
point forecasts-mean error (ME), mean absolute error 

(MAE), and root mean squared error (RMSE) as a 
function of the forecast horizon in days. Considering the 
average daily predicted values for the ICU and general 
ward across a forecast horizon, R² was also calculated  
to demonstrate the adherence of the projected values to 
the observed values.(16)

Confidentiality and ethical approval
This study was approved by the Ethics Committee 
of Hospital Israelita Albert Einstein (HIAE), CAAE: 
51937121.6.0000.0071; # 5.136.309. Patient confidentiality 
was preserved by anonymizing the medical records.  
The requirement for informed consent was waived by 
the institutional review board prior to data collection 
and analysis. 

❚❚ RESULTS
Model 1: between March 2020 and July 2021, 5,414 
patients were admitted to HIAE due to COVID-19, 
considering all types of discharges (home care, external 
transfers, and deaths, which were excluded from LOS 
modeling) and patients who were hospitalized for more 
than 45 days.

Admissions: by analyzing the behavior of the overall 
number of new hospitalizations during the specified 
period, segmentation of the number of new admissions 
by department (general ward and ICU) was proposed 
to minimize the error of the expected flow for each 
projected day, attempting to extract seasonal factors 
and decrease the order of magnitude of the residues. 

During the analyzed period, the average (± standard 
deviation) number of daily patient admissions in the general 
ward was 7.74 (± 4.66), while new hospitalizations in 
the ICU was 2.85 (± 2.08).

Based on the decomposition of the time series of 
admissions, a seasonal component was identified for 
admissions in the general ward by day of the week, 
registering lower volumes during weekends (Table 1) 
and, considering the presenting characteristics, the 

Table 1. Seasonal factors calculated after analyzing the behavior of admissions to 
general wards per day of the week

Day of the week Seasonality factor calculated for 
general ward admissions

Monday 1.10

Tuesday 1.02

Wednesday 1.00

Thursday 1.04

Friday 1.05

Saturday 0.89

Sunday 0.90
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naïve estimation of the number of admissions in the 
general ward included the seasonal components and the 
moving average of hospitalizations in the seven previous 
days. No seasonal patterns were identified for ICU 
admissions; attaching this fact to the low magnitude of 
average daily hospitalizations, the study modeled the 
daily ICU hospitalizations exclusively with its weekly 
moving average. 

Transfers: transfers between departments were 
estimated using a population model, considering the 
rate of patients transferred by the day of hospitalization 
since admission, calculated for 30 days prior to the 
projection date. 

Discharges: between March 2020 and July 2021, 
4,741 COVID-19 patients were discharged from HIAE 
after applying the exclusion criteria detailed in the 
Methods section to reduce the confounding factors. 
The selected group presented an average LOS of 8.59 
days with a standard deviation of 5.78 days. A Shapiro-
Wilk normality test showed with 95% confidence that 

the data were not normally distributed, directing the 
modeling of the phenomenon of interest to nonlinear 
strategies.

Variables that could impact LOS were discussed 
with ICU physicians, and their impact was evaluated 
by calculating the average LOS segmented by 
epidemiological characteristics (sex and age ranges) and 
severity, proxied by the use of supportive ventilation, 
prescription of ECMO, hemodialysis, vasoactive drugs, 
and ICU occupancy. For the ICU analysis, the separate 
impact of hospitalization in an ICU or semi-ICU on the 
previous day was evaluated.

The significance of the difference in LOS between the 
groups was tested using the Mann-Whitney U test with a 
95% confidence interval. For age group stratification, the 
Kruskal-Wallis test was applied, followed by the Dunn test, 
which compared the groups individually. The proposed 
univariate approximation estimated the predictive 
potential of the subsequent inclusion of variables in the 
model. The results are summarized in table 2.

Table 2. Descriptive analysis of COVID-19 patients’ length of stay segmented by epidemiological characteristics, resource use, and predictors of severity 

Length of stay Kruskal-Wallis Test

Frequency (%) Mean Standard 
Deviation Median Interquartile 

range χ² p value

Age group, years
≤39 833 17.57 6.46 4.60 5 5 446.52 <0.05
40-59 2055 43.35 8.23 5.31 7 6
60-79 1378 29.07 10.77 6.63 9 8
≥80 475 10.02 12.11 7.18 11 10

Mann-Whitney U Test 
Sex W p value

Female 1707 36.01 8.85 6.30 7 8 2743049 <0.05
Male 3034 63.99 9.15 5.97 7 7

ICU bed occupancy 
No 3700 78.04 7.36 4.60 6 5 644273 <0.05
Yes 1041 21.96 15.04 6.91 14 10

Semi-ICU bed occupancy
No 3203 67.56 7.01 4.62 6 5 956309 <0.05
Yes 1538 32.44 13.29 6.59 12 9

Usage of invasive mechanical ventilation device
No 4233 89.28 7.93 5.00 7 6 222472 <0.05
Yes 508 10.72 18.31 6.51 18 10

Usage of non-invasive mechanical ventilation device
No 2700 56.95 6.25 4.02 5 4 909496 <0.05
Yes 2041 43.05 12.75 6.39 11 8

Prescription of vasoactive drugs 
No 4525 95.44 8.93 5.89 7 6 461625 0.16
Yes 216 4.56 11.54 9.09 10 8

Usage of ECMO therapy 
No 4725 99.66 9.01 6.06 7 7 11450 <0.05
Yes 16 0.34 18.88 7.82 19.5 16

Prescription of hemodialysis
No 4621 97.47 8.80 5.85 7 7 83452 <0.05
Yes 120 2.53 18.63 7.39 18 12

ICU: intensive care unit; ECMO: extracorporeal membrane oxygenation.
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Age, sex, use of ICU and semi-ICU, and use of non-
invasive and invasive ventilation, including ECMO, 
were statistically correlated with patients’ LOS.

The prescription of ECMO was discarded while 
training the model because, although it indicated 
hospitalizations of greater complexity and severity, 
it was a rare intervention, observed in only 0.34% of 
the sample, and the group of patients with an ECMO 
prescription showed the highest variability among the 
analyzed groups, represented by its interquartile range.

A multivariate approach was proposed with a 
random forest regression algorithm intended to 
dynamically estimate the LOS for each patient on a 
daily basis, evaluating the impact of the class of bed 
occupied (ICU, semi-ICU, or general ward), adopted 
treatments, and specific medication prescription 
(mechanical ventilation devices, among others) in the 
last 24 hours alongside the personal characteristics of 
each patient, such as sex and age group. 

The final step regarding the selection of available 
variables was performed alongside the model training 
routine, setting a cutoff for the Gini Importance Index, 
also known as the Mean Decrease in Impurity, to evaluate 
the feature relevance in a multivariate context. The 
variables included in the LOS predictive model had Gini 
importance indices >0.001, as presented in Table 3.

The Random Forest Model, which was proposed 
to estimate the total daily LOS for all hospitalized 
patients, including the detailed criteria above, achieved 
the following metrics: R² = 0.69, MAE = 2.93 days, and 
RMSE = 4.09 days.

To deliver outputs that the hospital managers 
could directly interpret, the results of the estimators 
were combined so that their composition established a 
predictive model capable of estimating the number of 
patients hospitalized in the ICU and general ward per 
day for the subsequent 14 days, with daily updates and 
performance monitoring.

Model 2: in the second model, the historical series 
explored in the analysis were pre-processed following 
two main operations-the calculation of weekly 
moving averages to smooth their daily variations, and 
standardization of the model using the z-score to favor 
visualization and allow the intuition of an optimal 
correlation value for pairs of series. 

The three time series were plotted: i) Telemedicine: 
number of callers diagnosed with COVID-19 specific 
coding (ICD-10-CM U07.1); number of callers with 
COVID-19-related ICD-10-CM codes (specific coding, 
symptoms and chapters related to respiratory diseases); 
and ii) Google Trends: daily interest scores for the 
search term “sintomas COVID-19” in São Paulo. The 

Table 3. List of variables tested in the development of the random forest algorithm, along with their respective Gini importance indices

Gini Index Feature

0.6862433 Length of stay (Total time spent in ICU and Emergency departments at the moment of prediction, in days)

0.1572006 Occupied an ICU bed in the last 24 hours

0.0691286 Occupied a semi-ICU bed in the last 24 hours

0.0274035 Use of a mechanical ventilation device in the last 24 hours

0.0177144 Age group, 60-79 years

0.0129082 Age group, ≥80 years

0.0101150 Maximum axillary temperature ≥38.5 ºC in the last 24 hours

0.0062037 Use of a mechanical ventilation device or registered oxygen saturation below 93% in the last 24 hours

0.0035883 Age group, 40-59 years

0.0032147 Maximum respiratory rate higher than 24 irpm in the last 24 hours

0.0012283 Days after the removal of a non-invasive mechanical ventilation device

0.0011445 Use of a non-invasive mechanical ventilation device in the last 24 hours 

0.0011158 Length of stay in ICU beds (days)

0.0006577 Age group, 1 to ≥40 years

0.0001957 Length of stay in semi-ICU beds (days)

0.0000010 Days after the removal of invasive mechanical ventilation device

0.0000000 Heart rate above 125 bpm in the last 24 hours

0.0000000 Registered oxygen saturation below 93% in the last 24 hours

0.0000000 Prescription of vasoactive drugs in the last 24 hours

0.0000000 Hemodialysis patient

0.0000000 Prescription of vasoactive drugs or heart rate above 125 bpm in the last 24 hours
ICU: intensive care unit.
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time series of hospitalized patients lagged by 1–14 
days, and for each combination of series, the Pearson 
Correlation Index was calculated iteratively. The results 
are presented in figure 1.

residuals tend to be observed as we move away from the 
projection date.

A comparison between the averages of the predicted 
and observed values by department is illustrated in 
figures 2, 3, and 4.

Figure 2.  Comparison between the daily number of hospitalized patients and the 
mean values predicted by the described models 

Figure 3. Comparison between the daily number of hospitalized patients in the 
general ward and the mean values predicted by Model 1 

Figure 4.  Comparison between the daily number of hospitalized patients in the 
intensive care unit and the mean values predicted by Model 1

Figure 1. Pearson Correlation Index calculated between all available time series 
and the lagged series of daily hospitalized patients

The number of telemedicine visits by patients 
coded with a COVID-19 diagnosis (ICD-10-CM U07.1) 
was highlighted as the best predictor of hospitalized 
patients. Once peak values differed by >0.001 for 
delays of seven and eight days, the delay that had the 
greatest anticipation power for the proposed model  
(8 days) was chosen.

In a scenario in which telemedicine data were 
unavailable, Google Trends interest scores for the terms 
related to symptoms appeared as a predictor, resulting in 
a Pearson Correlation Index of 0.895 when lagging the 
hospitalized patients’ series by 9 days. The final model 
consisted of a time series linear regression comprising 
the predictors to estimate the number of hospitalized 
patients based on the telemedicine series.(17) 

Performance monitoring
The results of the two models were followed for 365 
days (between May 20, 2021, and May 20, 2022), 
considering that the first model has predictions for 
hospitalized patients segmented by department 
(general ward and ICU) over a 14-day interval 
and that the second model using the number of 
telemedicine visits predicts the overall number of 
hospitalized patients over an 8-day interval. 

When comparing models, the evaluation of their 
performance indicators is limited by the lowest forecast 
horizon of 8 days. Computing the average error values, 
including different time windows, could benefit the 
model with the smallest forecast horizon, as larger 
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The adherence of the values predicted by the 
proposed models to the numbers observed during these 
365 days can be reinforced by the performance indicators 
detailed in the Methods section, which also allowed the 
identification of the strengths and opportunities in both 
models. Figures 5, 6, and 7 present the ME, MAE, and 
RMSE values as the forecast horizon increases (the 
illustrated indicators are accessible in table 1S form in 
Supplementary Material).

The ME statistic allows the identification of possible 
biases in the proposed models. A positive value indicates 
that the predictions obtained using the referred model are 
consistently higher than the observed value; in this case, 
the number of hospitalized patients is overestimated. 
All predictions have a positive bias, and the model that 
processes clinical data overestimates the number of 
hospitalized patients the most, mainly because of error 
propagation involving the prediction of patient occupancy 
in the ICU.

The MAE accuracy measure, which is a measure 
minimized by the median, allows the identification of 
the models that can most accurately estimate the daily 
number of hospitalized patients. Despite the ME values 
tending to zero for the predictions of hospitalizations in 
the general ward for the first model in 10-day forecast 
horizons, rejecting the presence of bias in the set of 
estimations, the result is obtained through predictions 
with greater residues. As a complementary approach, 
the RMSE highlights the model that provides the best 
estimates for the average number of cases in a given 
period.

The analysis of all three statistics showed that the 
model built with telemedicine data outperformed the 
first model when considering the predictions made 
for the total number of hospitalized patients, also 
highlighting its capability of maintaining errors below 
10 beds for the integrity of its forecast horizon, as 
evidenced by the MAE. 

The first model shows significant deterioration over 
a period >3 days; however, its ability to distinguish 
between the classifications of occupied beds sets a gain 
for resource planning, even though higher reliability 
indices are limited to short-term predictions.

❚❚ DISCUSSION
The developed models resulted in reliable estimations 
of the expected number of COVID-19 hospitalizations 
at HIAE, which were updated daily and used by HIAE 
managers to define the allocation of beds to COVID-19 
and non-COVID-19 patients, mainly by adjusting the 
volume of elective surgeries that the hospital would be 
able to perform in the subsequent 7 days, the hiring of 
qualified professionals to meet the expected demand, 
and the proper sizing of its supplies. 

Daily capacity adjustments were performed at 
HIAE during the worst days of the pandemic based 
on the proposed telemedicine model and were also 
used by the hospital to prepare for the Delta and 
Omicron phases of increase in the observed number of 
hospitalized patients.

Figure 5. Prediction performance monitoring. Calculated mean error for the 
proposed models by forecast horizon (days)

Figure 6. Prediction performance monitoring. Calculated mean absolute error for 
the proposed models by forecast horizon (days)

Figure 7. Prediction performance monitoring. Calculated root mean squared error 
for the proposed models by forecast horizon (days)
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The development and implementation of a data-
driven tool to support the decision-making process in 
a hospital management environment showed that at an 
atypical moment of great concern with the evolution of 
the COVID-19 pandemic, maturity in data management, 
quality, security, and analysis allows a health institution 
to benefit from the information generated during day-
to-day operations. 

The detailed approach assessed the inclusion of 
clinical variables and hospital data aimed at delivering 
estimations that accurately capture the nuances of 
demand behavior, trends of increases and decreases in 
new cases and hospitalizations, and the epidemiological 
profile of hospitalized patients.(18) As an alternative to 
population models, which became popular throughout 
the COVID-19 pandemic, and aiming for estimates that 
comprise geographic regions in their entirety, models 
can be developed by applying algorithms oriented to 
the projection of time series, such as ARIMA(19) and 
Convolutional Neural Networks. 

The isolation of the hospital context and its 
variables implies a trade-off, given that the variables 
that can explain the remaining variance of the studied 
phenomenon may be unavailable as the pandemic 
context evolves dynamically. Among these caveats are 
the emergence of new variants, vaccines and vaccine 
coverage, effective medications, mask usage, isolation 
rates, and the guidelines adopted in care.

The validation of predictions of this nature encourages 
the creation of new models for other pathologies, 
exploring correlations of events before hospitalizations, 
and studying patterns of care involving a diagnosed 
patient and their clinical evolution. It also highlights the 
importance of joining forces, between different areas of 
the same institution and between various institutions, 
sharing complementary data, and improving the use of 
data for decision-making.

❚❚ CONCLUSION
The model that estimates the number of COVID-19 
hospitalizations in a private not-for-profit hospital 
based on telemedicine could accurately anticipate 
the increase and decrease in the volume of patients 
with a lag of 8 days, demonstrating its usefulness 
for the effectivemanagement of beds and general 
resources for caring for patients with COVID-19. The 
readiness to provide data regarding the volume of care, 
hospitalizations, patient characteristics, and clinical 
interventions can help identify patterns to understand 
the pathology better and provide more accurate 
decisions regarding the allocation of resources.
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Table 1S. Performance metrics as a function of the forecast horizon

Mean Error Mean absolute error Root mean squared error

Forecast 
horizon 
(in days)

Model 1: 
General 

ward 
prediction

Model 1: 
 Intensive 
care unit 
prediction

Model 1: 
Overall 

prediction

Model 2: 
Overall 

prediction

Model 1: 
General 
ward 

prediction

Model 1:
Intensive 
care unit 
prediction

Model 1:
Overall 

prediction

Model 2:
Overall 

prediction

Model 1:
General 

ward 
prediction

Model 1:
Intensive 
care unit 
prediction

Model 1:
 Overall 

prediction

Model 2:
Overall 

prediction

1 0,719 0,865 1,584 -0,343 3,758 2,792 4,961 3,808 1,939 1,671 2,227 1,951

2 2,078 1,906 3,984 0,117 5,605 4,052 7,288 4,725 2,368 2,013 2,700 2,174

3 2,384 3,361 5,745 0,587 7,642 5,730 9,387 5,792 2,764 2,394 3,064 2,407

4 2,039 4,992 7,031 0,979 9,519 7,356 11,286 6,694 3,085 2,712 3,359 2,587

5 0,771 6,878 7,649 1,397 11,384 9,226 12,787 7,236 3,374 3,037 3,576 2,690

6 -0,652 8,564 7,912 1,777 12,969 10,927 14,125 8,026 3,601 3,306 3,758 2,833

7 -1,426 10,356 8,930 2,182 14,787 12,938 15,901 8,566 3,845 3,597 3,988 2,927

8 0,060 9,639 9,699 2,566 16,491 13,125 17,984 9,673 4,061 3,623 4,241 3,110

9 1,060 9,616 10,675 18,587 13,683 20,130 4,311 3,699 4,487

10 2,088 9,088 11,177 20,265 13,847 21,951 4,502 3,721 4,685

11 3,083 7,899 10,982 21,758 13,561 23,771 4,665 3,683 4,876

12 3,969 6,608 10,577 23,117 13,668 25,496 4,808 3,697 5,049

13 4,657 5,273 9,930 24,418 13,891 27,296 4,941 3,727 5,225

14 5,177 4,062 9,239 25,769 14,109 29,410 5,076 3,756 5,423
The results are expressed as the mean error, mean absolute error, and root mean squared error calculated for the predictions.


