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ABSTRACT – Nutrient prediction models applied to tree species from Brazilian Caatinga can be a crucial tool 
in understanding this biome. The study aimed to fi t a mixed model to predict nitrogen (N), phosphorus (P), and 
potassium (K) content in tree species native to the Caatinga biome located in Floresta municipality, Pernambuco 
State – PE, Brazil. The following species were considered the area’s most important and evaluated in the present 
study: Poincianella bracteosa (Tul.) L.P.Queiroz, Mimosa ophtalmocentra Mart. ex Benth, Aspidosperma 
pyrifolium Mart, Cnidoscolus quercifolius (Mull. Arg.) Pax. & Hoff m, and Anadenanthera colubrina var. cebil 
(Griseb.) Altschul. Four trees, representing the average circumference in each diameter class, were harvested 
for NPK quantifi cation. The Spurr model was evaluated for NPK prediction, and species inclusion as a random 
eff ect was signifi cant (p < 0.05) in all models. The Spurr model with fi xed and random eff ects presented better 
statistics than fi xed-eff ect models in all parameters for all nutrients. Generated NPK predicting equations can 
be a handy tool to understand the impact of wood extraction over Caatinga’s biogeochemical cycles and guide 
forest management strategies in semi-arid regions of the world.

Keywords: Caatinga Biome; NPK; Fixed and Random Eff ects.

MODELOS MISTOS PARA PREDIÇÃO DE NUTRIENTES EM ESPÉCIES DO 
BIOMA CAATINGA, BRASIL 

RESUMO – Modelos de predição de nutrientes aplicados a espécies arbóreas da Caatinga brasileira podem 
ser uma ferramenta crucial para a compreensão do bioma. O estudo teve como objetivo ajustar um modelo 
misto para prever os teores de nitrogênio (N), fósforo (P) e potássio (K) em espécies arbóreas nativas do bioma 
Caatinga localizadas no município de Floresta, Pernambuco – PE, Brasil. As seguintes espécies foram as 
mais importantes da área e avaliadas no presente estudo: Poincianella bracteosa (Tul.) L.P.Queiroz, Mimosa 
ophtalmocentra Mart. ex Benth, Aspidosperma pyrifolium Mart, Cnidoscolus quercifolius (Mull. Arg.) Pax. & 
Hoff m e Anadenanthera colubrina var. cebil (Griseb.) Altschul. Quatro árvores, representando a circunferência 
média em cada classe de diâmetro, foram colhidas para quantifi cação de NPK. O modelo Spurr foi avaliado 
para predição de NPK e a inclusão de espécies como efeito aleatório foi signifi cativa (p < 0,05) em todos os 
modelos. O modelo de Spurr com efeitos fi xos e aleatórios apresentou estatísticas melhores que os modelos de 
efeito fi xo em todos os parâmetros para todos os nutrientes. As equações de previsão de NPK geradas podem 

http://dx.doi.org/10.1590/1806-908820230000012

Scientifi c Article

https://orcid.org/0000-0001-9273-7533
https://orcid.org/0000-0003-0675-3524
https://orcid.org/0000-0001-7349-6041
https://orcid.org/0000-0001-6686-1936
https://orcid.org/0000-0001-5226-0638
https://orcid.org/0000-0002-5462-1406
https://orcid.org/0000-0002-4187-2740
https://orcid.org/0000-0001-6779-2661
https://orcid.org/0000-0001-6510-4511
https://orcid.org/0000-0002-5310-5442
https://orcid.org/0000-0002-7342-6163


Abreu JC et al.

Revista Árvore 2023;47:e4712

2

1. INTRODUCTION

Brazilian forest conservation is a priority due 
to its diversity (Soares-Filho et al., 2014), with 
the remaining 60% of forests covering the country 
and harboring much of the world forest species in 
diff erent biomes (Oliveira et al., 2018). Brazilian 
Caatinga vegetation is one of the largest tropical dry 
forests remaining areas in the world (Miles et al., 
2006) and a complex ecosystem characterized by high 
environmental variability (Moura et al., 2016). 

In recent years, the population density increase 
has put pressure on the biome’s natural resources and 
caused changes in land cover, mainly native vegetation; 
accurate information on land-use change in Caatinga 
is limited, but in 2009, the biome had 53.4% of the 
original vegetation cover remaining (Beuchle et al., 
2015), being one of the most threatened ecosystems in 
the country (Arnan et al., 2018). Firewood extraction, 
pasture, and agricultural fi eld settlements are the main 
human activities that aff ect its vegetation (Aguiar et 
al., 2014; Althoff  et al., 2018). 

Forest biomass is one of the main energy sources 
in the region, with 10 million m3 of wood harvested in 
the year (Gariglio et al., 2010). In order to supply this 
energy demand, wood extraction intensifi es impacts 
on the carbon cycle and nutrients (Moura et al., 2016; 
Althoff  et al., 2018). Large nutrient amounts removal 
can lead to soil depletion and severe adverse eff ects 
over long-term productivity (Aquino et al., 2017; 
Gómez-García et al., 2016; Macedo et al., 2023; Yan et 
al., 2017). Understanding better the nutrient dynamics 
in these ecosystems, mainly nitrogen, phosphorus, and 
potassium, can help in wood harvesting management 
and provide greenhouse gas emissions and removals 
better estimates in the region (Althoff  et al., 2018).

Nutrients predicting models are a crucial tool 
in understanding wood extraction impact over 
biogeochemical cycles in the Caatinga Biome, in 
addition to forest management strategies guiding (He 
et al., 2018). Studies with traditional models were 
developed in Brazil (Barbeiro et al., 2009; Abreu et 
al., 2016; Oliveira et al., 2018). However, the majority 

of the datasets utilized for biomass and nutrient 
modeling in tropical forests have heterogeneous 
structures, meaning samples in diff erent sites with 
high species diversity (Miguel et al., 2013; Grau et 
al., 2017). These factors make traditional regression 
models present high error of estimates due to the 
forests’ heterogeneity.

Mixed models can be a promising alternative to 
modeling heterogeneous environments. These models 
are often utilized to analyze data across a broad area 
spectrum (Groom et al., 2012; Hu et al., 2018; Poudel 
et al., 2018; Özkale and Kuran, 2018). Thus, this study 
aimed to fi t a mixed model to predict nitrogen (N), 
phosphorous (P), and potassium (K) in native species 
from the Caatinga Biome.  

2. MATERIAL AND METHODS

2.1. Study Area 

The study was carried out in a 50 ha area (8°30´37” 
S and 37°59´07” W) with Caatinga vegetation, which 
is part of the 6,000 ha Itapemirim Farm, located in São 
Francisco, a mesoregion of Pernambuco State, Brazil.

The Floresta municipality is part of the 
Pajeú River watershed. According to the Köppen 
classifi cation, the region’s climate is classifi ed as BSh 
(Hot semi-arid (steppe) climate). The average rainfall 
for the site is 503 mm, a rainy period from January 
to April, with an average annual temperature of 26.1 
ºC. The municipality area is 3,643.97 km², and the 
altitude average is 323 m (Araújo Filho et al., 2001).

2.2. Dataset 

Forest inventory was carried out by sampling, 
with 40 plots of 20 × 20 m (400 m2) spaced 80 m apart, 
with 50 m of the border and a 6 cm circumference 
inclusion level at 1.30 m (CBH).

The following fi ve species were selected as the 
most important ones, according to the Importance Value 
Index (IVI), based on information from prior forest 
inventory (Alves et al. 2017): Poincianella bracteosa 
(Tul.) L.P.Queiroz, Mimosa ophtalmocentra Mart. ex 

ser uma ferramenta útil para entender o impacto da extração de madeira sobre os ciclos biogeoquímicos da 
Caatinga e orientar estratégias de manejo fl orestal em regiões semiáridas do mundo.

Palavras-Chave: Bioma Caatinga; NPK; Efeitos Fixos e Aleatórios.
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Benth, Aspidosperma pyrifolium Mart, Cnidoscolus 
quercifolius (Mull. Arg.) Pax. & Hoff m, and 
Anadenanthera colubrina var. cebil (Griseb.) Altschul. 
Ten individuals per species were sampled for analysis. 

2.3. Nutrient Quantifi cation 

Nutrient quantifi cation analysis (NPK) in the 
aerial part was based on the diametric structure found in 
a new forest inventory. The fi ve most important species 
were divided into fi ve circumference classes with 3 
cm amplitude, starting from a circumference at breast 
height (CBH) of 6 cm. Four trees representative of the 
average circumference at each class were harvested for 
aerial part nutrients analysis. Thus, 10 individuals per 
species were harvested, totaling 50 trees.

In order to cover diameter classes, individuals were 
chosen randomly, avoiding, though, partially harvested, 
burned, or fallen trees. The next step was to measure 
the chosen trees’ CBH. Then, each CBH was converted 
in diameter at breast height (DBH). Then, total (Ht) 
and commercial (Hc) trunk heights were measured. 
Subsequent to dendrometric variable measurements, 
trunk, branches, and leaves were separated, and their 
samples were sent to laboratory analysis.

Total weight and wet weight samples obtained in 
the fi eld were used to calculate dry biomass for each 
aerial component of the 50 sampled trees, using the 
expression below.     

               Eq.1

Where: 

Bs = total dry biomass (Kg); 

Pu(c) = total wet weight in the fi eld (Kg); 

Ps(a) = dry sample weight (Kg); 

Pu(a) = wet sample weight (Kg).

The dry matter extracts for P and K analyses 
were obtained through wet digestion using HNO

3
: 

HCl in proportion (2:1), while N was obtained 
through sulfuric digestion. Phosphorus (P) levels 
were analyzed by colorimetry with visible ultraviolet 
at 420 nm. Potassium (K) was determined by fl ame 
emission photometry technique.

The samples were divided among the three 
laboratories due to limitations in resources and 
equipment during the research. The nitrogen analyses 

were performed at the Plant Biochemistry laboratories 
of Universidade Federal Rural de Pernambuco, 
while the phosphorus and potassium analyses were 
conducted at the Laboratory of Organic Chemistry of 
the Department of Agronomy at Universidade Federal 
do Piauí in Bom Jesus-PI campus and Universidade 
Estadual de Londrina, respectively. Nutrient content 
was determined in g kg-1, while the sampled trees’ 
total nutrient amount was determined by multiplying 
concentration in g kg-1 by the dry biomass total.

2.4. Fitting Equations

The Spurr model (1952), in linear form, was fi tted 
with green biomass, diameter, and total height data:

LnNPK= β
0
+β

1
 Ln(DBH2×Ht)±ε                  Eq.2

Where: 

Ln = neperian logarithmic; 

NPK = nutrients (nitrogen, phosphorous, and 
potassium) in kg; 

DBH = diameter at breast height, in cm; 

Ht = total height, in m; 

β
0
 and β

1
 = model parameters; 

ε ~ N (0, σ2) = random error.

The previous equation was fi tted by the Maximum 
Likelihood Method, using the R programming 
language (R Core Team, 2014), specifi cally with the 
glm2 package. The fi t evaluation was done by Akaike 
Information Criteria (AIC), correlation coeffi  cient (r

yŷ 
) 

between observed and predicted biomass, root mean 
square error (RMSE%), bias, and residual graphical 
analysis (Binoti et al., 2015).

Equations based on the Spurr model were adjusted 
considering the structure of mixed linear models, 
including intercepts and random slope coeffi  cients, 
with species as a random eff ect. Mixed models, 
also known as mixed-eff ects models or hierarchical 
models, are a type of statistical model that incorporate 
both fi xed and random eff ects in the analysis. In 
these models, fi xed eff ects are used to explain the 
relationships between independent variables and the 
dependent variable, while random eff ects account for 
variation that is not explained by the fi xed eff ects.

Equations regarding mixed models were fi tted 
by Restricted Maximum Likelihood Method (REML) 
using the R programming language (R Core Team, 
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2014), specifi cally with the nlme package. The same 
selection criteria used for fi xed models was applied 
to mixed ones. Random eff ect inclusion result 
on intercept and slope was verifi ed by maximum 
likelihood ratio test (Resende et al., 2014), where 
the signifi cance of diff erences (D) among deviations 
[-2log(L)] for models with and without random 

eff ect, was done comparing calculated and tabulated 
values, by χ2 at 5% signifi cance level. After mixed 
linear modeling, the resulting mixed model can be 
complete, partially complete, meaning random eff ects 
associated with only some parameters of the original 
model, or even a fi xed-eff ect model, referring to non-
signifi cance of random eff ects.

Table 1 – Estimates of fi xed-eff ects parameters for the Spurr model to predict native species NPK content regarding trees located in 
Floresta municipality, Pernambuco State, Brazil.     

Tabela 1 – Estimativas dos parâmetros de efeitos fi xos do modelo Spurr para predizer o teor de NPK de espécies nativas, para árvores 
localizadas no município de Floresta, Pernambuco.

Where: Ln = neperian logarithmic; N = nitrogen, in kg; P = phosphorous, in kg; K = potassium, in kg; DBH = diameter at breast height, in cm; Ht = individual total 
height, in m; β0 to β2 = model fi xed parameters; a

i
 = random intercept for i-th species; b

1i
   = random slope coeffi  cient for i-th specie; ε

i
 ~ N (0, σ2) = random error. 

Onde: Ln = logaritmo neperiano; N = nitrogênio, em kg; P = fósforo, em kg; K = potássio, em kg; DAP = diâmetro à altura do peito, em cm; Alt = altura total 
individual, em m; β0 até β2 = parâmetros fi xos do modelo; a

i
 = intercepto para a i-ésima espécie; b

1i
 = coefi ciente de inclinação para a i-ésima espécie; ε

i
 ~ N(0, σ2) 

= erro aleatório.

Model Nutrient Model Eff ect β
0
 β

1
 p-valor

1  Nitrogen LnN=β
0
+β

1
×Ln(dbh2×Ht)+ ε

i
 Fixed 2.85399 0.35005 <0.0001

2  Phosphorous LnP=β
0
+β

1
×Ln(dbh2×Ht)+ ε

i
 Fixed 0.88364 0.31707 <0.0001

3  Potassium LnK=β
0
+β

1
×Ln(dbh2×Ht)+ ε

i
 Fixed 2.08847 0.23923 <0.0001

4  Nitrogen LnN=(β
0
+a

i
 )+(β

1
+b

1i
 )×Ln(dbh2×Ht)+ ε

i
 Mixed 2.88710 0.34353 <0.0001

5  Nitrogen LnN=(β
0
+a

i
 )+β

1
×Ln(dbh2×Ht)+ ε

i
 Mixed 2.87613 0.34589 <0.0001

6  Nitrogen LnN=β
0
+(β

1
+b

1i
 )×Ln(dbh2×Ht)+ ε

i
 Mixed 2.88710 0.34353 <0.0001

7  Phosphorous LnP=(β
0
+a

i
 )+(β

1
+b

1i
 )×Ln(dbh2×Ht)+ ε

i
 Mixed 1.08482 0.27727 <0.0001

8  Phosphorous LnP=(β
0
+a

i
 )+β

1
×Ln(dbh2×Ht)+ ε

i
 Mixed 1.07884 0.28038 <0.0001

9  Phosphorous LnP=β
0
+(β

1
+b

1i
 )×Ln(dbh2×Ht)+ ε

i
 Mixed 1.08482 0.27727 <0.0001

10 Potassium LnK=(β
0
+a

i
 )+(β

1
+b

1i
 )×Ln(dbh2×Ht)+ ε

i
 Mixed 1.86127 0.28221 <0.0001

11 Potassium LnK=(β
0
+a

i
 )+β

1
×Ln(dbh2×Ht)+ ε

i
 Mixed 1.88175 0.27809 <0.0001

12 Potassium LnK=β
0
+(β

1
+b

1i
 )×Ln(dbh2×Ht)+ ε

i
 Mixed 1.89594 0.27718 <0.0001

^ ^

Table 2 – Random eff ects estimates regarding the Spurr equation to predict NPK content in native species located in Floresta municipality, 
Pernambuco State, Brazil. 

Tabela 2 – Estimativas de efeitos aleatórios da equação de Spurr para prever o teor de NPK em espécies nativas localizadas no município 
de Floresta, Pernambuco, Brasil.

Where: 1 = Poincianella bracteosa (Tul.) L.P.Queiroz ; 2 =Mimosa ophtalmocentra Mart. ex Benth; 3= Aspidosperma pyrifolium Mart; 4= Cnidoscolus quercifolius 
(Mull. Arg.) Pax. & Hoff m; 5= Anadenanthera colubrina var. cebil (Griseb.) Altschul.
Onde: 1 = Poincianella bracteosa (Tul.) L.P.Queiroz; 2 = Mimosa ophtalmocentra Mart. ex Benth; 3 = Aspidosperma pyrifolium Mart; 4 = Cnidoscolus quercifolius 
(Mull. Arg.) Pax. & Hoff m; 5 = Anadenanthera colubrina var. cebil (Griseb.) Altschul.

Species   Parameters

  β0 β1 β0 β1 β0                β1

                                        Model 4                                              Model 5                            Model 6

1   1.12×10-09  4.82×10-02  2.35×10-02 - -   4.83×10-02

2  -7.05×10-10  1.96×10-03 -1.56×10-02 - -   1.96×10-03

3  -1.19×10-10 -2.05×10-02 -8.52×10-02 - -  -2.06×10-02

4  -2.86×10-10 -2.00×10-02 -8.89×10-02 - -  -2.00×10-02

5   3.69×10-12 -9.65×10-03 -4.49×10-02 - -  -9.65×10-03

                                        Model 7                                  Model 8                         Model 9

1   3.35×10-02  9.46×10-02  5.31×10-01 - -   1.00×10-01

2  -2.59×10-02  3.64×10-02  1.36×10-01 - -   3.20×10-02

3   8.39×10-03 -9.44×10-02 -4.52×10-01 - -  -9.29×10-02

4  -2.71×10-02 -5.11×10-02 -3.02×10-01 - -  -5.57×10-02

5   1.11×10-02  1.44×10-02  8.63×10-02 - -   1.64×10-02

                                        Model 10                               Model 11                           Model 12

1   1.66×10-01  4.84×10-02  4.20×10-01 - -   7.62×10-02

2  -3.58×10-01  4.62×10-02 -1.14×10-01 - -  -1.72×10-02

3   8.54×10-02 -6.15×10-02 -2.17×10-01 - -  -4.81×10-02

4   3.62×10-01  1.90×10-02  4.57×10-01 - -   8.36×10-02

5  -2.55×10-01 -5.21×10-02 -5.45×10-01 - -  -9.45×10-02
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3. RESULTS

Mixed models allow for the incorporation of both 
fi xed and random eff ects, which can help to explain 
the sources of variability in the data and improve the 
accuracy of the results obtained. In their fi xed or mixed 
forms, the Spurr model equations showed signifi cant 
estimates for fi xed eff ects parameters (Table 1).

Random coeffi  cients considering the Spurr model 
structure were generated for each species to predict 
the NPK content in the region evaluated (Table 2). 

Residuals showed adequate distribution along a 
straight line, with a mean around zero and constant 

variance. The hypothesis of homogeneity is not 
rejected concerning equations with random eff ects on 
DBH and Ht (Figure 1). 

Species inclusion as a random eff ect was 
signifi cant (p < 0.05) in all models according to the 
maximum likelihood ratio test. Thus, the fi nal model 
showed fi xed and random eff ects. (Table 3).

The AIC value for Model 10, which includes a 
random eff ect only in the slope of the height variable, 
was the lowest among all models tested (Table 4). 
This indicates that Model 10 is the best model for 
potassium analysis, Model 6 is the best model for 

Figure 1 – Observed and predicted values for equations in mixed forms in Floresta municipality, Pernambuco State, Brazil.
Figura 1 – Valores observados e previstos para equações em formas mistas no Município de Floresta, Pernambuco.
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nitrogen analysis, and Model 9 is the best model for 
phosphorus analysis.

4. DISCUSSION

Mixed-eff ects models off er a fl exible and 
powerful tool for analyzing pooled data while 
estimating both fi xed and random model parameters. 
The fi xed eff ects are average values of the population 
similar to parameters obtained by ordinary least 
squares regression. Random eff ects can be estimated 
for each hierarchical level in a data set and various 
parameters in a model (Ou et al., 2016). These models 
are essential tools used in the forestry sector as they 
provide an adequate framework for assessing the 
growth and forests condition. Mixed models allow 
calibrations for a given location or tree and can 

Table 3 – Maximum likelihood ratio test for equations that predict NPK in native species in Floresta municipality, Pernambuco State, 
Brazil.  

Tabela 3 – Teste de razão de máxima verossimilhança para equações de NPK em espécies nativas no Município de Floresta, Pernambuco.

Where: MLE: Maximum-Likelihood Estimation. The Spurr model with fi xed and random eff ects showed the best statistics than fi xed models for all parameters and 
nutrients. 
Onde: MLE: Estimador de Máxima Verossimilhança. O modelo Spurr com efeitos fi xos e aleatórios apresentou as melhores estatísticas em comparação com os 
modelos fi xos para todos os parâmetros e nutrientes.

Model Eff ect MLE Test Ratio MLE

4  Mixed -4.55232 1 vs 4   7.88577
5  Mixed -5.81343 1 vs 5   5.36355
6  Mixed -4.55232 1 vs 6   7.88577
1  Fixed -8.49521    
7  Mixed -6.28711 2 vs 7 45.55119
8  Mixed -9.93831 2 vs 8 38.24879
9  Mixed -6.28711 2 vs 9 45.55119
2  Fixed -29.06271    
10  Mixed -2.20533 3 vs 10 56.29369
11  Mixed -3.68907 3 vs 11 53.32622
12  Mixed -3.53774 3 vs 12 53.62888
3  Fixed -30.35218  

Table 4 – Precision statistics of the Spurr model in its fi xed and mixed forms in Floresta municipality, Pernambuco State, Brazil. 
Tabela 4 – Estatísticas de precisão do modelo Spurr em suas formas fi xa e mista no Município de Floresta, Pernambuco.

Where: AIC= Akaike information criterion; BIC= Bayesian information criterion; r
yy

 = correlation coeffi  cient; RSME% = root mean square error.
Onde: AIC = Critério de Informação de Akaike; BIC = Critério de Informação Bayesiano; ryy = coefi ciente de correlação; RSME% = erro quadrático médio percen-
tual.

Model AIC BIC r
yy

 RSME%

1  22.99 28.72 0.8614 42.64
4  19.1 28.66 0.8982 30.96
5  19.62 27.27 0.8973 33.61
6  17.1 24.75 0.8982 30.96
2  64.12 69.86 0.6688   7.07
7  22.57 32.13 0.9126   3.01
8  27.87 35.52 0.9115   3.29
9  20.57 28.22 0.9126   3.01
3  66.7 72.44 0.5412 16.13
10  14.41 23.97 0.9379   6.81
11  15.37 23.07 0.9311   7.19
12  15.07 22.72 0.9319   7.28

^

^

provide individual and species-specifi c predictions 
(Miguel et al. 2013; Huff  et al. 2018).

 The all fi xed eff ects parameters signifi cance 
confi rms the DBH and Ht  inserting importance as 
model-predictive variables (Calegario et al., 2015). 
In a mixed model, if response variable information is 
available for a new species, random coeffi  cients are 
estimated considering each species-specifi c response 
instead the population mean response. In the average 
population, the random coeffi  cients vector of for a new 
individual has expected value equal to zero (Burkhart 
and Tomé, 2012).

The species-included signifi cance as a random 
eff ect in all models indicates that this variable can be 
inserted as another tree NPK predictor (Garber and 



Mixed models for nutrients prediction in species...

Revista Árvore 2023;47:e4712

7

Maguire 2003; Huff  et al. 2018) in order to improve 
estimates precision. Statistics from mixed eff ect 
models were superior to fi xed-eff ect models when 
predicting NPK in native species, which highlights 
the improvement due to random eff ect inclusion 
(Adame et al., 2008; Crecente-Campo et al., 2010; 
Ruslandi et al., 2017).

The residual distribution was considered 
adequate. Data outside the range were insignifi cant, 
since it is a small amount in relation to the sample 
size, not actively interfering with the model estimates 
(Gouveia et al., 2015). When a sample is available to 
estimate random eff ects, the performance of a mixed 
model is better than a fi xed model (Temesgen et al., 
2008). This statement is proved by residues of all 
equations with random eff ects that have a smaller 
amplitude than the equation in its fi xed form.

These results are important because they 
suggest that the models used in the study are reliable 
and provide accurate estimates of the eff ects of the 
variables being analyzed. In particular, the fact that 
the residuals follow a straight line with a mean value 
close to zero suggests that the models are unbiased 
and that the random eff ects included in the equations 
eff ectively account for the variability in the data. 
Furthermore, the constant variance observed in the 
residuals indicates that the models are valid across the 
range of values of the predictor variables, suggesting 
that the relationships between the variables being 
studied are consistent throughout the dataset. This is 
important because it indicates that the results obtained 
from the models are likely to be robust and applicable 
to other similar datasets (Bates et al., 2015).

In the present study, improvement in NPK 
predictions due to random eff ect inclusion corroborates 
with the affi  rmation of Huff  et al. (2018), in which the 
authors stated that species included as a random eff ect 
improve the estimates of mixed models compared to 
fi xed ones. It is worth mentioning that other variables 
can be inserted as a random eff ect, such as forest 
type, region or site quality classes, precipitation, soil, 
elevation, among other geographical characteristics 
(Meng et al., 2007; Boubeta et al., 2015; Ou et al., 
2016; Özçelik et al. 2018).

Morphological changes that occur between 
species, together with intraspecifi c diff erences caused 
by climatic and other environmental factors, require 

that individual equations are used to predict biomass 
in varied regions (Huff  et al., 2018). Thus, the mixed 
model approach for species macronutrients modeling 
in the Caatinga biome is an alternative to obtain 
accurate predictions.

It is worth mentioning that new studies with 
environmental variables can be carried out and can 
improve the estimates. Mixed linear models provide 
a more fl exible approach to analyze non-normal data 
when random eff ects are present. Finally, generated 
equations can support decision-making and guide 
politics towards better conservation practices in the 
Caatinga Biome.  

5. CONCLUSION

Species inclusion as a random eff ect promoted 
an RMSE reduction of at least 4% in mixed models 
compared to fi xed models. Thus, the proposed 
equations capture each species’ eff ect and can be 
applied to better estimate NPK in trees from the 
Caatinga Biome.

The generated equations can be a handy tool 
to understand the impact of wood extraction over 
biogeochemical cycles of the Caatinga Biome and 
support forest management strategies in semi-arid 
regions of the world. 

Overall, the use of mixed models in the study 
of tree nutrition in the Caatinga ecosystems can help 
provide a more comprehensive understanding of the 
complex relationships between nutrient availability, 
tree physiology, and ecosystem dynamics, ultimately 
contributing to the development of more eff ective and 
sustainable management strategies for these valuable 
and threatened ecosystems.
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