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Determination of skin friction on a rotating sphere in
magnetic levitation
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A simple and inexpensive experimental procedure is proposed to investigate the skin friction caused by air in
a rotating sphere. A device using a magnetic field keeps the sphere levitating. The sphere is briefly boosted and
begins to rotate, but the air resistance acts in opposition to the motion and consequently the period of rotation
increases. The experimental data demonstrate that the rotation period of the sphere increases exponentially with
time. To account for this behavior, a physical model was developed, which provides an accurate description of the
data. A coefficient, similar to the drag coefficient in the Drag Equation, was used to measure the air resistance on
the rotating sphere. It is denominated as skin friction coefficient, its value was determined and it is remarkable
that such a simple experiment provided a result so close to similar parameter value found in the literature.
Keywords: Skin friction coefficient, drag force coefficient, sphere drag torque.

1. Introduction

The skin friction of a fluid is defined as the part of the
drag force that causes shear forces on the surface of
the object moving through the fluid. Skin friction acts
parallel to all the small pieces on the surface, causing a
braking effect (torque against rotation movement). It is
influenced by the smoothness of the surface of the object,
fluid viscosity and the velocity of the object relative
to the fluid. Another part of drag force is the pressure
drag, which is caused by collision of fluid molecules with
object’s surface. It depends on the size and shape of the
object, the properties of the fluid and the velocity of
the object relative to the fluid. In summary, the drag
force is a sum of skin friction and pressure drag, and the
resultant effect is to slow the object motion.

Even today, it is usually necessary to use sophisticated
and expensive devices to do experimental and theoretical
investigations about the aerodynamic drag force acting
on different objects. For instance, some studies have
focused on an airfoil [1] while others have concentrated
on a sphere [2]. A conventional experimental technique
involves utilizing a wind tunnel with additional appa-
ratus to suspend or pin down the objects [3]. Such
methods have limitations: the presence of attachments
can affect the accuracy of experimental measurements,
and differentiating skin friction from the total air drag
force is challenging.

Therefore, finding new experimental procedures that
allow improving the results already obtained is impor-
tant. This paper presents a new method for studying air
friction on a rotating sphere. Sawatzki et al., in 1970,
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investigated this phenomenon using a sphere mechan-
ically attached to a support that kept it rotating at
constant speed [4]. Using electronic devices, he studied
the flow of air near the surface of the sphere. Our article
proposes a new approach for studying the skin friction
on a sphere caused by air resistance. A simple magnetic
apparatus is used to levitate a slim spherical shell in
the air, and the time of revolution at different times is
easily recorded. The effect of air resistance is to increase
the period of rotation T of the sphere over time t. The
magnetic levitation of a rotating sphere is a simple and
inexpensive procedure that can yield results similar to
those obtained by Sawatzki. Furthermore, this method
can be further refined for future studies.

The mathematical description used here is based on
the translational motion of the sphere and is much
simpler than that used by Dennis et al. in 1980 [5].
We propose that air resistance to rotation is either
(i) proportional to the velocity of the rotation, or
(ii) proportional to the square of the velocity of rotation.
Since the rotational motion of the sphere has no pressure
drag, the air resistance is solely due to skin friction. By
analyzing the experimental data and using physical mod-
els, a value for the skin friction coefficient is obtained.
The result is surprisingly accurate, as indicated by the
comparison of this value with literature’s values of air
drag force coefficients.

2. Experimental Apparatus and
Procedure

Nowadays, levitating spheres have become a common
tool in various experiments [6]. The levitation of the
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Figure 1: Experimental apparatus – rotary floating sphere in the
air. (a) Picture of apparatus. (b) Schematic representation (not
to scale). The resistance air force is only caused by skin friction,
there is no contribution of pressure drag as in the translation
motion.

sphere eliminates any friction resulting from physical
contact between solid parts. In Ref. [7] there is a detailed
description of a simple experimental setup used in this
article. Figure 1 shows the equipment used, which is a
commercial product: C SHAPE FLOATING GLOBE.
It has a small plastic spherical shell with a magnet inside.
The spherical shell has mass of M = 38.10−3 kg, radius
of R = 44.10−3 m and it has a smooth surface without
roughness. Henceforth, for simplicity, we will refer to
the spherical shell as sphere. The small magnet inside
it has the shape of a cylinder, a mass of m = 20.10−3 kg
and radius of r = 80.10−4 m (the experimental values
were obtained with an accuracy of two significant digits).
The support stand is equipped with an electromagnet, a
sensor, and an electronic device that generates a pulsed
magnetic force, causing the spherical shell to levitate in
the air.

To facilitate experimental measurement, an observa-
tion point is marked on the surface of the sphere and a
small jet of air is used to set it into rotation. The air jet
is stopped, and we wait until the rotational motion of
the sphere becomes stable. The period of rotation T is
recorded at different times t. To minimize experimental
error, the period of rotation T was obtained as the
average value over a time interval of ∆t corresponding
to 5 complete rotation cycles (while it is possible to
use a method like Tracker Video analysis, theoretical
analysis indicates that the method employed in this
article is sufficient). Eventually, after about 60 minutes,
the sphere stops spinning. As the spherical shell is made
of plastic, the magnet is small and as we collect data
at low speed, we disregard the effect of induced eddy
currents.

Figure 2 shows the graph from experimental data,
which were fitted to an exponential growth function:
T (t) = 4.5 exp(10.10−4t); R2 = 0.995. It is worth noting
that, for small values of t, the experimental data can be
approximated by a linear function, as shown in the inset
and explained in the text.

Figure 2: The graph shows the experimental data (circles) and
two fitted curves (line) for the relationship between the period
of rotation T of the levitating sphere and the elapsed time t. In
general, points obey T ∝ exp(at) behavior, where a > 0 is a
constant. The inset illustrates that the linear function, T ∝ t,
is a special case as t → 0.

3. Theoretical Analysis

An innovative mathematical analysis was used to con-
struct the function T (t) to describe these experimental
data. Since the experiment involves the rotation of a
sphere in the air, it must be described using spherical
coordinates and physical quantities of rotation. Instead
of force, we will use torque to represent the resultant
effect of air resistance on the sphere’s rotational motion.
And instead of the relative velocity between the sphere
and air, we will use the rotation velocity. To describe
the rotation of the sphere under the influence of air
resistance, two physical models are proposed, similar to
the models used to describe the translational motion of a
sphere in the air. One of the models yields an exponential
relationship between T and t, while the other results in
a linear relationship between these two variables.

3.1. Exponential relationship

In the case of translational motion, for low speeds, the
drag force can be described by the simple equation
F = −c1υrel, where c1 is a constant and υrel represents
the relative velocity between the object and the fluid.
Similarly, for rotational sphere motion, air skin friction
can also be described by the simple relationship between
the torque and the rotational (angular) velocity:

τ = −a1ω. (1)

The torque τ represents the skin friction acting on
the entire surface of the sphere, a1 > 0 is a constant of
proportionality that depends on the surface smoothness
of the sphere, the viscosity of the air and ω is the
rotational velocity. The negative signal indicates the
torque decreases the rotational velocity. Newton’s second
law for rotation is τ = Iα: I is the total moment of

Revista Brasileira de Ensino de Física, vol. 46, e20230351, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0351



Cena et al. e20230351-3

inertia of the spherical shell and small cylindrical magnet
inside it, α = dω/dt is the angular acceleration.

I
dω

dt
= −a1ω → dω

dt
= −a1

I
ω. (2)

Solving for ω(t):∫ ω(t)

ω0

dω̃

ω̃
=

∫ t

t0

−a1

I
dt → ω(t) = ω0 exp

[
−a1

I
(t − t0)

]
,

(3)
where ω0 is the rotational velocity in t0. It is known
that ω(t) = 2π/T , where T is the period of rotation
at t instant. Similarly ω0 = 2π/T0 and, without loss of
generality, assuming t0 = 0, the Eq. (3) results in the
following expression:

2π

T
= 2π

T0
exp

[
−a1

I
(t − 0)

]
→ T

T0
= exp

[
+a1

I
t

]
. (4)

Therefore the proposed model τ ∝ ω, for low speeds,
yields exponential behavior T ∝ exp(at), where the
constant a > 0 incorporates the physical properties of
the sphere and air.

3.2. Linear relationship

Also in the translational motion, for high speeds, the
drag force can be described by a quadratic dependence
between force and velocity. It is given by F = −c2υ2

rel,
where c2 is a new constant. Also, the skin friction in the
rotation can be described in the same new way:

τ = −a2ω2. (5)

The physical quantities τ and ω have the same defi-
nitions as in Eq. (1) but with different constant a2 > 0.
Following the same procedure as described earlier, we
obtain:

I
dω

dt
= −a2ω2 → dω

dt
= −a2

I
ω2. (6)

Again, the negative signal indicates the torque
decreases the rotational velocity. Solving for ω(t)∫ ω(t)

ω0

dω̃

ω̃2 =
∫ t

t0

−a2

I
dt →

(
1

ω0
− 1

ω

)
= −a2

I
(t − t0).

(7)
Using the same procedure as as described previously,

ω = 2π/T , ω0 = 2π/T0 and t0 = 0:[
T0

2π
− T

2π

]
= −a2

I
t → T = T0 + 2πa2

I
t. (8)

Thus the proposed model τ ∝ ω2, for high speeds,
yields linear behavior T ∝ ãt, where the constant ã > 0
incorporates physical properties of the sphere and air.

4. Discussion

4.1. Similarities and differences between
translational and rotational motion

The effect of air resistance on a pure sphere’s rotational
motion can be analyzed using a perspective similar
to that of pure translational motion. In the case of
pure translation, the relative velocity υrel between the
sphere’s center of mass and the air is the speed param-
eter. In pure rotational motion, the speed parameter is
the rotational velocity ω. For a sphere of radius R, the
velocity in its surface is υ = ωR. The speed parameters
of both translational and rotational motion are related
because, for a small piece of sphere surface, is impossible
to distinguish a rotational from a translational motion.
Thus, for this small piece of surface, a layer of air is
scraping the surface with a velocity υrel = υ. This
relationship between ω and υrel will be utilized below.

The graph in Fig. 2 indicates that the period of
rotation T increases exponentially as t increases. As a
result, as t approaches infinity, T also approaches infin-
ity, leading to ω approaching zero. The exponential
function T ∝ exp(at) obtained from the τ ∝ ω model, is
valid for ω → 0, this is the expected behavior at low
speeds. This corresponds to the translational motion,
when used F ∝ υrel because υrel → 0. It is interesting
to note that when υrel ≫ 0, the literature affirms that
the model F ∝ υ2

rel is the most appropriate to describe
the translational motion in the air. So, what happens
when ω ≫ 0 in the rotational sphere motion? The answer
can be obtained by doing Taylor series expansion, with
t → 0, in the Eq. (4). Note that this equation comes
from τ ∝ ω.

T

T0
= exp

[a1

I
t
]

→ T

T0
∼ 1 + a1

I
t. (9)

The Eq. (9) expression is similar to Eq. (8), obtained
for τ ∝ ω2. So, when ω ≫ 0 the behavior τ ∝ ω2 can
be used in rotational motion, and this is the expected
behavior at high speeds. The similarity between the
translational and rotational motion can be understood
in this context. Initially, the sphere rotates with high
speed. However, as time progresses, the air-skin friction
reduces the sphere’s rotation velocity, causing ω to
decrease and T to increase. The high rotational velocity,
where ω ≫ 0, is present during the initial moments.
It is within this range that the relationship T ∝ t
is accurate, as demonstrated in the inset of Figure 2.
Table 1 summarizes the presented conclusions.

According to [8], the model F ∝ υ2
rel for drag force in

translational motion is applicable if the relative velocity
is υrel > 24m/s, wherein the total drag force is mainly
caused by the pressure component. From data fitting in
the inset of Fig. 2, the model τ ∝ ω2 for air resistance in
rotational motion is applicable if the period is T < 8.0 s
(ω > 0.79 rad/s), which corresponds to rotation velocity
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Table 1: The best mathematical description of drag force in an
object’s motion in air depends on the speed range. υrel is the
relative velocity between the sphere’s center of mass and the
air. ω is the rotational velocity for a sphere of radius R.

Translational Rotational
motion motion

Low speed F = −c1υrel τ = −a1ω → T = T0 exp
[

a1
I

t
]

High speed F = −c2υ2
rel τ = −a2ω2 → T = T0 + 2πa2

I
t

υ > 3.5.10−2 m/s. This velocity threshold is obtained
using the expression υ = 2πR/T for the rotating sphere.

4.2. Estimating the air skin friction coefficient
for a sphere in rotational motion

The data obtained from Fig. 2 enables us to determine
the Reynolds number Re and the air skin friction coeffi-
cient cskin for a rotating sphere (both are dimensionless
parameters). According to fluid dynamics theory [9], the
Reynolds number Re on a sphere in a translation motion
can be determined as Re = ρυrelD/µ, where D = 2R is
the diameter of the sphere, ρ (µ) is the density (dynamic
viscosity) of air and υrel is the relative velocity between
the sphere’s center of mass and the air. An identical
expression can be applied in the rotational motion, as
long as υrel is regarded as the rotational speed of the
sphere’s surface (υrel = υ = 2πR/T ). Using the local
parameters for air properties (20◦ 28′ 53′′ S, 54◦ 36′

58′′ W), ρ = 1.1 kg/m3, µ = 1.8 kg/ms, the range
of period values 4.5 s ≤ T ≤ 35 s corresponds to
300 ≥ Re ≥ 40 values for Reynolds number. Therefore
we consider the experimental data from Fig. 2 as no
turbulent air motion (see section 2.2 of [4]). Numerical
calculus was done by Dennis in 1980 to study the steady
flow due to a rotating sphere at low and moderate
Reynolds numbers [5]. Here we proposed a easier math-
ematical procedure.

In the general case of an object moving through a
fluid, the total drag force f acts to stop it and has
two components: (i) the skin friction fskin and (ii) the
pressure drag force fpress. The former acts as shear force
on the surface of the object, while the latter is caused
by the pressure difference between the front and back of
the object.

As reported in the literature [9], the total drag force
f on a sphere moving through the air can be expressed
using the dimensionless drag coefficient cW and the
Drag Equation: f ≡ cW ρAυ2

rel/2. Here A is the cross-
sectional area of the sphere, given by A = πR2. The
value of cW represents the combined effect of the two
drag components, skin friction and pressure drag. In
pure rotational motion, fpress = 0, therefore, the total
drag force acting on the sphere must be solely due to
fskin.

Consider a sphere with radius R rotating in the air
at an angular velocity of ω. The resulting air resistance

force can be obtained from the total resistance torque τ
acting on the sphere: fskin = |τ |/R. If ω ≫ 0 then τ ∝
ω2 and Eq. (5) is valid. Thus fskin = a2ω2/R and using
ω = υ/R it becomes

fskin = a2

R3 υ2. (10)

An similar expression to Drag Equation can be used to
describe only the skin friction fskin in the total sphere’s
surface:

fskin = 1
2cskinρAT υ2

rel, (11)

where AT is the total sphere superficial surface, AT =
4πR2 = 4A. The coefficient cskin is distinct from the
drag coefficient cW and it is introduced to represent the
air force resistance on the rotating sphere solely due to
skin friction. As discussed earlier, for a small section
of the sphere’s surface the velocities υ and υrel are the
same.

Therefore, for the air layer immediately above the
surface of the sphere, it is quite reasonable to assume
that υ ≡ υrel. Using this equivalence and combining
Eq. (10) with Eq. (11), a mathematical expression is
obtained for the parameter a2: a2 = 2cskinρAR3.

Alternatively, a second expression for the parameter
a2 can be obtained by equalizing Eq. (8) and Eq. (9),
resulting in a2 = T0a1/2π. Then, these two expressions
are used to determine the cskin value:

cskin = T0a1

4π2R5ρ
(12)

All parameter values on the right side of Eq. (12)
are known. From data fitting of the exponential curve
in Fig. 2 the initial revolution period is T0 = 4.5 s
and a1/I = 1.0.10−3, where I is the total inertia
moment of sphere shell and cylinder magnet inside it:
I = 2MR2/3 + mr2/2. Therefore, the skin friction
coefficient estimated for the smooth spherical shell in
pure rotational motion, in the range 300 ≥ Re ≥ 40, is

cskin = 0.031. (13)

The cskin value in Eq. (13) represents the effect of
fskin on the entire surface of the sphere in pure rota-
tional motion. While cW coefficient is used to represent
the total drag force, which is the sum of pressure drag
and skin friction, cskin represents only skin friction. The
value of cW can be obtained experimentally: a smooth
sphere has cW = 0.47 (Re ≥ 103) [10]. This confirms that
the main contribution to the drag force is the pressure
drag component.

It is worth mentioning that the value cskin = 0.031
in Eq. (13) is very close to the drag coefficient of a
streamlined body: cw = 0.04 (Re > 104). This is logical
since in this object, the pressure component is assumed
to be quite small.
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5. Conclusions

This article propose a simple and inexpensive experi-
mental procedure to analyze the skin friction caused
by air in a rotating sphere. Using this procedure, a
mathematical description of the air resistance force act-
ing on a levitating sphere in rotational motion is done.
Experimental data of the period of rotation of the sphere
as function of time reveal an exponentially increasing
behavior. Two physical models were considered. The first
model assumes that the resistance torque is proportional
to the rotation velocity, τ ∝ ω, while the second model
assumes that the resistance torque is proportional to
the quadratic rotation velocity, τ ∝ ω2. The first model
yields a period of rotation that increases exponentially
with time, T ∝ exp(at), and provides a good fit to the
experimental data. The second model yields a period
of rotation that increases linearly with time, T ∝ ât,
and can be seen as a special case of the first model.
The coefficients a and ã are related and were determined
based on physical parameters. It is assumed that the air
resistance in the rotational motion of the sphere is solely
due to skin friction, with no contribution from pressure
drag. Based on this assumption, the parameter called
cskin is studied. It is equivalent to the coefficient for the
total drag force cW of the Drag Equation, but cskin is
due only the tangential friction of the fluid on the surface
of the sphere. The experiment described in this article
yielded a value of cskin = 0.031 for the rotational motion
of the sphere in the air. It is worth mentioning that this
value is very close to the drag coefficient of a streamlined
body.

Therefore, the experiment described in this article is
simple and efficient for studying the exclusive contribu-
tion of the air drag force on the sphere surface without
the contribution from the pressure drag force.
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