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This is the third article in a series dedicated to examining the use of the delta function in the physics literature.
Here we discuss the appearance of a delta function in the second derivative of the wave function if its derivative
is discontinuous. When this happens it is often claimed in the literature that the proposed wave function must
be eigenfunction of an operator that contains a delta function and, in some cases, it is rejected. We study in this
paper what we believe are alternatives ways to deal with this situation.
Keywords: Dirac delta function, time independent Schrodinger equation.

Este é o terceiro artigo de uma série dedicada a examinar o uso da função delta na literatura física. Aqui
discutimos o aparecimento de uma função delta na segunda derivada da função de onda se a sua derivada for
descontínua. Quando isto acontece, é frequentemente afirmado na literatura que a função de onda proposta deve
ser uma função própria de um operador que contém uma função delta e, em alguns casos, é rejeitada. Neste artigo
estudamos o que consideramos serem formas alternativas de lidar com esta situação.
Palavras-chave: Função delta de Dirac, equação de Schrodinger independente do tempo.

1. Introduction

The use of the Dirac delta function in an intuitive way
is found very often in the literature, more often in the
literature dedicated to the teaching of Physics. But the
intuitive use of the Dirac delta function may lead to
some wrong statements as we have been discussing in
this series of papers [1, 2]. In this paper we present yet
another interesting problem that can lead to errors.

There are two ways to view the time independent
Schrodinger (TISE). Take for example the TISE for a
particle moving on the line under the influence of some
potential V (x)

Hψ = Eψ (1)

or more explicitly[
− ℏ2

2m
d2

dx2 + V (x)
]
ψ(x) = Eψ(x). (2)

The most common point of view found in the literature
is to consider that the TISE is a differential equation that
must be solved satisfying some mysterious boundary
conditions and finding out the values of E for which the
solution satisfy these boundary conditions.

Another one is to consider the
[
− ℏ2

2m
d2

dx2 + V (x)
]

as an
operator acting on functions that belong to some class
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of functions that is the domain of the operator. From
this point of view the boundary conditions are included
automatically in the definition of the operator domain
and so the boundary conditions are not arbitrary. As
we shall see the domain of the operator must be such
that makes it self- adjoint. We shall expand on this on
section 4 of this paper.

Suppose someone, following the first point of view,
solves the time independent Schrodinger (TISE) equa-
tion and finds a solution that has, for example, the first
derivative discontinuous. Then one can hear (awfully
frequently) that since “as is well known the second
derivative will have a delta function at the point of
discontinuity and so the TISE equation is not satisfied”.

There is an immediate problem with this statement.
As we will see, if the potential in the TISE has an infinite
discontinuity, then the derivative of the solution of the
TISE equation may have a discontinuity. But potentials
with discontinuities are very common in the examples
presented to students. We shall see some examples in
this paper but to warm, from the top of our heads,
up we can say that the infinite square well potential
is an example (see below). In section 2 we present
an overview of the papers dealing with discontinuities
in the potential and its effect on the wave function.
Then in section 3 we present some examples where
the discontinuity of the first derivative is not obvious.
In section 4 we briefly review operator theory needed
to understand the arguments presented in section 5.
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We show that the sentence in the title of this paper
should be answered “Really, you got to be kidding. Not
so fast because maybe you are the one that is wrong.”

In fact, from the second point of view, as we shall see in
detail, the domain of the operator may include functions
or derivatives of functions with the discontinuity and
there is no need to talk about delta function.

The reader can easily work out the case of the infinite
square well potential defined

V (x) =

∞ for − ∞ < x < −L
0 for − L ≤ x ≤ L
∞ for L < x < ∞

. (3)

This potential has discontinuities at x = −L and
x = L and the first derivative of the wave function
has discontinuities at those points. So naïve use of the
Dirac function concludes that the usual solution, found
in almost every book on quantum mechanics, is not
a solution of the TISE because the second derivative
of the wave functions has delta functions at −L and
L. (If the reader is intrigued by this he/she can see a
solution, different from the considerations carried out in
this paper, in [2]).

Other more complicated case will be discussed later,
but first let’s discuss some other results found in the
literature about the wave function at discontinuities of
the potential.

2. Some Results Found in the Literature
About the Behavior of the Wave
Function and its Derivative at
Singular Points

The first result we want to discuss is given in a beautiful
paper by David Branson [3]. He discusses the continuity
of the wave function and of its derivative at points where
the potential is discontinuous and concludes the wave
functions must be continuous. His complete result is the
justification of the two results found in the literature:

a) If the discontinuity is finite then both the wave
function and its derivative are continuous

b) If the discontinuity is infinite the wave function
must vanish at this point

These results are discussed by M. Andrews [4] from
a more physical point view, but we consider Branson’s
paper [3] more general.

The second result is by D. Home and S. Sengupta [5].
They examine the discontinuity of the first derivative of
the wave function in a few cases by imposing that the
momentum operator must be self-adjoint. He exam-
ines the cases of the infinite square well potential, the
Dirac Delta function potential and the one-dimensional
Coulomb Potential.

These results however are not general enough and not
totally correct. The principles of quantum mechanics

require only that the operator H in its domain to be
self-adjoint.

The paper by T. Cheon and T. Shigehara [6] discuss
in simple language how to produce wave functions that
are discontinuous without violating self-adjointness.

3. Examples of Questionable Statements

3.1. The infinite spherical square well [7]

The radial part of the TISE for the infinite square well,
of radius a, in polar coordinates is

d2Rℓ(r)
d2r

+ 2
r

dRℓ(r)
dr

+
(
k2 − ℓ(ℓ+ 1)

r2

)
Rℓ(r) = 0, (4)

where k =
√

2mE
h , 0 < r < a, and its general solution

is [7]

Rℓ(r) = Ajℓ(kr) +Bnℓ(kr), (5)

where jℓ(kr) and nℓ(kr) are the spherical Bessel and
spherical Neumann functions of order ℓ. For ℓ ̸= 0
the Neumann solution is unacceptable because it is not
square integrable, but for ℓ = 0 the Neumann solution
is integrable.

In the literature there are innumerous arguments for
abandoning the ℓ = 0 Neumann solution. Most of these
arguments rest upon the claim that the ℓ = 0 Neumann
wave function produces a delta function in the origin.
We shall examine other arguments at the end of this
section.

The arguments involving the delta function were put
forward by Mohammad Khorrami [8], Antonio Prados
and Calos A. Plata [9] and by Jorge Munzenmayer
and Derek Frydel [10]. The argument is that when we
calculate the Laplacian of the Neumann function

− ∇2((n0(kr)) = −∇2
(

cos(kr)
kr

)
= −∇2(cos(kr))

kr
− 2(∇ cos(kr))

·
[
∇

(
1
kr

)
− cos(kr)∇2

(
1
kr

)]
= k cos(kr)

r
+ 4π

k
δ(r) = k2 n0(kr) + 4π

k
δ(r) (6)

and hence the appearance of the 4π
k δ(r) shows that

n0(kr) is not a solution of the Schrodinger equation.
In fact, equation (4) is the result of transforming to

spherical polar coordinates. Since this transformation is
singular at the origin, we can define the domain of the
operator to be functions on the open interval (0,∞)
that are square integrable in this interval. Note that
to include zero do not alter the value of the integral
that proves that this solution is square integrable, tech-
nically L2(0,∞) = L2 [0,∞). Taking the open interval
eliminates the delta function. If, however we include
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the zero for the functions that are the domain of the
operator then self-adjointness demands R(r = 0) = 0,
but if we exclude the origin other self-adjoint extensions
are possible. This is a rather technical and mysterious
point that will be discussed in the section 5 of this paper.

3.2. Singular behavior of the Laplace operator in
Polar spherical coordinates

In a series of papers [11–13], the authors claim that not
only the solutions of the TISE equation may have unno-
ticed delta functions, but the differential expressions of
the equation may have “unnoticed” delta functions.

They consider the transformation of the Laplacian
in cartesian coordinates to polar spherical coordinates
and conclude that unless you impose an extra-condition
to the radial part of the wave function you get a non-
solution. They notice that the solution to the TISE in
polar coordinates can be written in two forms, viz.

Ψ(r) = Rℓ(r)Υm
ℓ (θ, φ) (7)

or we can write

Ψ(r) = uℓ(r)
r

Υm
ℓ (θ, φ). (8)

In the above expressions Υm
ℓ (θ, φ) are spherical har-

monics. The problem, according to the authors appears
when you try to write an equation for uℓ(r). The
equation for Rℓ=0(r) = R(r) is

d2R

dr2 + 2
r

dR

dr
+ 2m

ℏ2 (E − V (r))R = 0. (9)

Making the substitution R(r) = uℓ=0(r)
r = u(r)

r , we get

1
r

(
d2

dr2 + 2
r

d

dr

)
u(r) + u(r)

(
d2

dr2 + 2
r

d

dr

)
1
r

+ 2du
dr

1
r

+ 2m
ℏ2 (E − V (r)) u

r
= 0. (10)

The first derivatives disappear, and we are left with

1
r

(
d2

dr2

)
u(r) + u(r)

(
d2

dr2 + 2
r

d

dr

)
1
r

+ 2m
ℏ2 (E − V (r)) u

r
= 0. (11)

The term(
d2

dr2 + 2
r

d

dr

)
1
r

= 1
r

d2

dr2

(
r

1
r

)
= 0. (12)

So that we get

d2u(r)
dr2 + 2m

ℏ2 (E − V (r))u(r) = 0. (13)

But the relation (12) is only valid for r ̸= 0. If we
include the point r = 0, that the authors claim to be

essential based on the fact that the equation in rectan-
gular coordinates do include this point, equation (12)
becomes (

d2

dr2 + 2
r

d

dr

)
1
r

= −4πδ3(r), (14)

because the operator
(
d2

dr2 + 2
r
d
dr

)
is the radial part of

the Laplacian and as is well known ∇2 ( 1
r

)
= −4πδ3(r).

Then equation (11) becomes

1
r

(
d2

dr2

)
u(r) − u(r)4πδ3(r) + 2m

ℏ2 (E − V (r))u
r

= 0.

(15)
Note that at this point we cannot multiply equa-

tion (15) by r to take advantage of the fact that
rδ3(r) = 0 cannot be used because we would get 0 = 0.
One is then forced, according to the authors, to conclude
that u(r = 0) = 0 to eliminate the spurious delta.

Again, the problem here is that the transformation to
polar coordinates is singular. As show in the section 4
of this paper, the use of polar coordinates essentially
excludes the origin and then we can or cannot put the
delta function and if we decide to put it, we eliminate it
by requiring the wave function vanishes at the origin. In
fact, we must require that limr→0 u(r) = 0.

3.3. The infinite spherical square well again

A paper by Jorge Munzenmayer and Derek Frydel [10]
also consider the Neumann solution of the TISE and find
equation (6) and conclude that the Neumann solution is
not a solution of the TISE. But then they ask themselves
what is the equation that has the Neumann function as
solution. To answer this, they manipulate equation (6)
as follows[

−∇2 − 4π
k

δ(r)
n0(kr = 0)

]
n0(kr) = k2n0(kr). (16)

Since as r approaches r = 0 the Neumann function
n0(kr) behaves as 1

kr they write equation (16) as[
−∇2 − 4πrδ(r)

]
n0(kr) = k2n0(kr). (17)

To conclude that the origin of the divergence in n0(kr)
as r approaches zero is that there is a hidden potential
for r = 0, which is

V (r) = −4πrδ(r). (18)

They argue that since rδ(r) = 0 this potential should
be considered invisible. But, since the matrix element of
this V (r) is infinite, viz.

⟨|V |⟩ =
∫ ∞

0
(−4πrδ(r)) (n0(kr))2

r2dr = −2πC lim
r→0

1
r
,

(19)
where C is a normalization constant, we can argue that
this matrix element diverges, and that this divergence
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exactly cancel the divergence of the kinetic energy, which
they consider a sign that the potential (18) should be
taken seriously. Nevertheless, they consider the (18)
potential as unphysical and therefore the Neumann solu-
tion should be rejected because, according to them, it is
this unphysical potential that produces its divergence.

As can be seen the argument in paper [10] is a hybrid
of the two arguments discussed above. It rejects the
Neumann solution because it diverges at the origin and
because it is produced by a potential that they discuss
and conclude is not physical.

A more sophisticated argument to eliminate the singu-
lar solution is to say as noted by [10] that the expectation
value of the kinetic energy with such a function (n0(kr))
is infinite. This is a very serious argument and can be
found early in the classical book by S. Flugge [14].
However, we can circumvent this argument by using
other self-adjoint extensions that are different from zero
at the origin. The physical significance of these self-
adjoint extensions is that we renormalize the kinetic
energy by adding a point interaction (also known as
zero range interaction, but not a delta function) to the
Hamiltonian [15]. But as show in the section 4 of this
paper this is equivalent to finding self-adjoint extensions
of the Laplacian when we exclude the origin, so that the
two solutions are acceptable.

The example of the biharmonic oscillator is laborious
and so it is presented later in the paper as a final
example. It is better to read this final example after
reading the two sections that follow.

4. Finding the Domain of the Operators
Associated with a Differential
Expression

In this section we quickly recapitulate some operator
theory that we need to explain in more detail the
second point of view regarding the time independent
Schrodinger equation presented in the introduction.

According to this point of view the TISE is just
a search for the eigenvalues and eigenfunctions of an
operator which is something that acts on function and
produces another function, as explained below.

An operator consists of an action (what it does
to function where it acts) and a domain that is the
specification of a set of function where it acts.

A differential expression of order two in one dimension
acting on a function ϕ(x) produces another function
ψ(x). It is an object like

O{ϕ(x)} =
[
a2(x) d

2

dx2 + a1(x) d
dx

+ a0(x)
]
ϕ(x) = ψ(x).

(20)
It is clearly linear, because O{aϕ1(x) + b ϕ2(x)} =
aO{ϕ1(x)} + bO{ϕ2(x)} where a and b are numbers.

A differential expression is the action of a differ-
ential operator, that is, what it does when acting on

function. But to be an operator we must specify the
domain, that is the set of function where it is allowed to
act. In quantum mechanics the space of functions of a
system is a Hilbert space.

Consider a set of complex valued functions ψ(x)
defined in an interval [a, b]. Later we are going to
consider cases where a or b can be ∞ or both a = −∞
and b = +∞. The “scalar product” of two such a
function in this set, φ(x) and ψ(x), is defined as

(φ,ψ) =
∫ b

a

φ∗(x)ψ(x)dx. (21)

The set of function for which (21) is finite (with some
others technical conditions not important for us now) is
called square integrable and is denoted L2(a, b).

Consider now the linear, second order, “differential
expression”, already mentioned in (20) and repeated
here.

a2(x) d
2

dx2 + a1(x) d
dx

+ a0(x). (22)

This “differential expression” when acting on a func-
tion, say f(x) produces another function, say g(x),
that is

L(f(x)) = a2(x)d
2f(x)
dx2 +a1(x)df(x)

dx
+a0(x)f(x) = g(x).

(23)
The “differential expression” (23) is the action of

an operator which is defined by this action and by a
set of functions, the domain of the operator so that
if f(x) belongs to the domain the set of functions
g(x) constitute the range of the operator. The domain
is usually given by boundary conditions that the
functions and its first derivatives satisfy at the end
points, x = a, and x = b, plus some continuity conditions
on f(x) and df(x)

dx .
The adjunct of this operator, annotated as L+(f1(x)),

is given by another “differential expression” that acts on
a function f1(x) as follows

L+(f1(x)) = d2

dx2 (a2(x)f1(x))

+ d

dx
(a1(x)f1(x)) + a0(x)f1(x) = g1(x)

(24)

and the set of functions f1(x) that constitute its domain.
This set of function is not arbitrary, as we show below.
In fact, we have that, given the scalar products

(L+u, v) =
(
L+u(x), v(x)

)
=

∫ b

a

(
L+u(x)

)∗
v(x)dx

(25)
and

(u, Lv) = (u(x), L(v(x))) =
∫ b

a

u∗(x)L(v(x))dx. (26)
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We have that Lagrange formula

(L+u, v) − (u, Lv) = J(u, v) (27)

where

J(u, v) = a2(x)du(x)
dx

− u(x)d(a2(x))
dx

+ a1(x)u(x)v(x)
(28)

is obeyed. This follows from integration by parts, so
we must restrict ourselves to functions u(x) so that
integration by parts can be carried out.

Now we insist that the domain of L+ are all the
functions u(x) that make

J(u(b), v(b)) − J(u(a), v(a)) = 0 (29)

for all the function v(x) of the domain of L. This is the
definition of the domain of L+. Note that the action
and the domain of L+ are usually different from the
action and the domain of L.

But the action of L+ and L can be the same. For
example, if we take a2(x) = − ℏ2

2m and a1(x) = a0(x) = 0
we have that both L+ and L have the same action,
namely − ℏ2

2m
d2

dx2 . But we must examine the domains. If
the domain of L+ is not the same domain of L (but by
definition obeys (29)) then the operator is called Her-
mitian by Physicists (symmetric by mathematicians).
If the domains are the same the operators are called
self-adjoint. By the same domain we mean that if we
change the functions of the domain of the operator, we
must make a different change on the functions in the
domain of the adjunct. Then the domains of L and L+

become different because the change is not the same. See
the examples below.

4.1. Examples

Consider two operators with the same action is − ℏ2

2m
d2

dx2

and whose domain are specified in the examples. We call
O1 and O2 the first and second operators respectively.

Example (1) The first operator O1 has as domain
functions ϕ1(x) that vanish together with its derivative
at x = a and x = b. This operator is symmetric but
not self-adjoint. In fact, let ϕ2(x) be the functions in
the domain of the adjunct. Then integration by parts
(Lagrange formula, see above) show that

(O+
1 ϕ2, ϕ1) − (ϕ2, O1ϕ1)

=
∫ b

a

(
− ℏ2

2m
d2ϕ2(x)
dx2

)∗

ϕ1(x)dx

−
∫ b

a

(ϕ2(x))∗
(

− ℏ2

2m
d2ϕ1(x)
dx2

)
dx

=
[
(ϕ2(a))∗ dϕ1(a)

dx
−

(
dϕ2(a)
dx

)∗

ϕ1(a)
]

−
[
(ϕ2(b))∗ dϕ1(b)

dx
−

(
dϕ2(b)
dx

)∗

ϕ1(b)
]

= 0 (30)

regardless of the values of ϕ2(x) at x = a and x = b.
So, the domain of the adjunct is larger than the domain
of the operator and hence O1 is not self-adjoint, that is
O1 ̸= O+

1 and the operator is just symmetric. Of course,
since we used integration by parts, we must impose some
conditions on both functions.

Example (2) The second operator has as domain
functions ϕ1(x) that vanish at a and b. This operator
is self-adjoint. In fact, let ϕ2(x) be the functions in
the domain of the adjunct. Then integration by parts
(Lagrange formula) show that

(O+
2 ϕ2, ϕ1) − (ϕ2, O2ϕ1)

=
∫ b

a

(
− ℏ2

2m
d2ϕ2(x)
dx2

)∗

ϕ1(x)dx

−
∫ b

a

(ϕ2(x))∗
(

− ℏ2

2m
d2ϕ1(x)
dx2

)
dx

=
[
(ϕ2(a))∗ dϕ1(a)

dx
−

(
dϕ2(a)
dx

)∗

ϕ1(a)
]

−
[
(ϕ2(b))∗ dϕ1(b)

dx
−

(
dϕ2(b)
dx

)∗

ϕ1(b)
]

= 0,

(31)

when ϕ2(x) vanishes at x = a and x = b regardless
of its derivative. So, both O+

2 and O2 has the same
action and the same domain, and hence O2 = O+

2 and
the operator is self-adjoint. To carry the integration by
parts and some other technicalities we must also demand
that the functions and the first derivatives are absolutely
continuous (see below) so that the second derivative
belong to L2(a, b).

Remark 1 Crudely, a function is absolutely continuous
in an interval (a, b) if we can write it as

f(x) = f(a) +
∫ x

a

df(x)
dx

dx. (32)

Technically df(x)
dx may exist only almost everywhere,

meaning that it may not exist in some points.

Example (3) Consider the operator whose action
is −iℏ d

dx . Impose that the domain are differentiable
functions ψ(x) defined in an interval [a, b] such that∫ b
a

|ψ(x)|2dx is finite, that is, the functions ψ(x) belongs
to L2(|a, b|). Now assume that in addition the domain
are functions with ψ(a) = ψ(b) = 0. In this domain the
operator is symmetric but not self-adjoint. To see this
calculate ∫ b

a

ψ∗
2(x)

(
−iℏ d

dx
ψ1(x)

)
dx

= ψ∗
2(b)ψ1(b) − ψ∗

2(a)ψ1(a)

+
∫ b

a

(
−iℏ d

dx
ψ∗

2(x)
)
ψ1(x)dx. (33)
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Now if ψ1(x) is in the imposed domain we have∫ b

a

ψ∗
2(x)

(
−iℏ d

dx
ψ1(x)

)
dx

=
∫ b

a

(
−iℏ d

dx
ψ∗

2(x)
)
ψ1(x)dx, (34)

regardless of the values of ψ2(x) at the points x = a
and x = b. Therefore, the operator is symmetric but not
self-adjoint. But, if we take the domain of the operator
to be functions such that ψ(a) = eiθψ(b) for arbitrary
real θ, 0 < θ < 2π, then it is easy to see that within
this domain, the operator whose action is −iℏ d

dx is self-
adjoint.

The examples show that we need some criteria to find
if an operator which is symmetric, is in fact self- adjoint
or, more importantly, if it can be modified so it becomes
self-adjoint. This is given by the following theorem due
to von Neumann.

Let H be a symmetric differential operator such that
its domain, D(H), are functions ϕ(x) and dϕ(x)

dx are such
the d2ϕ(x)

dx2 exists, that is ϕ(x) and dϕ(x)
dx are absolutely

continuous.
To see if H is self-adjoint in this domain we search

for the independent square integrable solutions of the
differential equation

H+ϕ+(x) = iκϕ+(x) (35)

and

H+ϕ−(x) = −iκϕ−(x), (36)

where H+ is the action of the adjoint of H, which for
simplicity we are assuming here are the have the same
action as H. The operator H is assumed to be symmetric
because the adjunct may have different domains. The
constant κ was introduced to maintain the dimension of
the equation.

Now let n+ and n− (called deficiency indexes) be
the number of linearly independent solutions of (35)
and (36), respectively. Then

1) If n+ = 0 and n− = 0 then the operator H in
its original domain is essentially self-adjoint. No
boundary conditions are needed.
Example: Take the operator −iℏ d

dx acting on func-
tions ϕ(x) defined in the interval [−∞,+∞] and
such that ϕ(−∞) = ϕ(+∞) = 0 and ϕ(x) is square
integrable. The equations −iℏ d

dxχ(x) = +iκχ(x)
and −iℏ d

dxχ(x) = −iκχ(x) have no solution in
L2(−∞,+∞) and so the operator is essentially
self-adjoint and no extra conditions are needed.

2) If n+ = n− ̸= 0 the operator is not self-adjoint
but we can construct self-adjoint operators with
it, usually by specifying the boundary conditions.
The resulting operator is called a self-adjunct
extension of the original symmetric operator.

Example: The operator with the same action,
−iℏ d

dx , operating on functions defined on the
interval [a, b] such that ϕ(a) = ϕ(b) = 0 have
deficiency indices (1, 1) and modification of original
boundary conditions, ϕ(a) = ϕ(b) = 0, are needed.
New boundary conditions, which we will see latter
how to obtain, are ϕ(a) = eiθϕ(b), they produce
an infinite number of operators one for each dif-
ferent values of θ. They are all different from the
original which had the domain fixed by boundary
conditions ϕ(a) = ϕ(b) = 0.

3) If n+ ̸= n− the operator cannot be made self-
adjoint.

4) Finally to get the boundary conditions we must
find a unitary transformation connecting the solu-
tions of equations (35) and (36). This procedure is
illustrated in the examples that follow.

This first example illustrate how we can use the
formalism of self-adjoint extension to interpret the quan-
tum mechanics of a particle moving in the real axis form
which the zero was singled out or removed. A few more
complicated examples can be found in [16].

Example (4) The delta function potential as a self-
adjoint extension.

Consider the operator − d2

dx2 in the following domain:
f(x) and df(x)

dx are continuous and d2f(x)
dx2 belongs to

L2(−∞,+∞) and f(0) = 0. This last condition is
essential to this example because the point x = 0 was
singled out. (In the next example we consider the case
where we create a hole in the line by saying that at x = 0
the value of the wave function is not specified, that is we
remove the point x = 0 from the real line.)

This above operator is symmetric. To calculate the
domain of its adjoint we integrate its action between a
function φ∗

2(x) of is adjoint and a function φ1(x) of its
domain. We have, integrating by parts∫ ∞

−∞

[
−d2φ∗

2(x)
dx2

]
φ1(x)dx−

∫ ∞

−∞
φ∗

2(x)
[
−d2φ1(x)

dx2

]
dx

= φ∗
2(0−)dφ1(0−)

dx
− φ∗

2(0+)dφ1(0+)
dx

− dφ∗
2(0−)
dx

φ1(0−) + dφ∗
2(0+)
dx

φ1(0+). (37)

Setting the second member equal to zero and remem-
bering that φ1(0−) = φ1(0+) = φ1(0) = 0 and that
dφ1(0−)
dx = dφ1(0+)

dx we have that the domain of the adjoint
is given by functions φ2(x) whose derivatives satisfies

dφ∗
2(0+)
dx

− dφ∗
2(0−)
dx

= δ, (38)

where δ is a real number and the functions themselves
satisfy

φ∗
2(0−) = φ∗

2(0+) = φ∗
2(0). (39)
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In words, the domain of the adjoint are functions that are
continuous at x = 0 but with derivatives discontinuous
at x = 0. The domain of the adjunct is different from the
domain of the original operator. Therefore, the original
operator is not self-adjoint. So let us use von Neumann
theory and see if it has extensions that are self-adjoint.

According to the above recipe we must ask if the
equations

−d2Ψ±(x)
dx2 = ±iχΨ±(x) (40)

has solution belonging to L2(−∞,∞), that is square
integrable.

Each equation has a solution each, viz

Ψ+(x) =


e

(
e−i π

4 χ
1
2 x

)
for − ∞ < x < 0

e
−

(
e−i π

4 χ
1
2 x

)
for 0 < x < +∞

(41)

and

Ψ−(x) =


e

(
ei π

4 χ
1
2 x

)
for − ∞ < x < 0

e
−

(
ei π

4 χ
1
2 x

)
for 0 < x < +∞

(42)

Since each equation has one solution, we have that
the deficiency indices are (1, 1). So, the original operator
has a one parameter, let’s call it α, family of self-adjoint
operators that are extension of it. To find this family
we use the following prescription: We begin by finding a
unitary transformation that connect the solutions with
iχ with the solutions with −iχ. Since we have just one
solution for each of the equations (4.13) the unitary
transformation connecting then is just a phase eiα.

Let φ(x) be a function on the domain we are seeking.
We impose∫ +∞

−∞

[
−d2(Ψ+(x) + eiαΨ−(x))∗

dx2

]
φ(x)dx

=
∫ +∞

−∞
(Ψ+(x) + eiαΨ−(x))∗

[
−d2φ(x)

dx2

]
dx

(43)

and using equation (37) with φ∗
2(x) replaced with(

Ψ+(x) + eiαΨ−(x)
)∗ and φ1(x) by φ(x) we have

(see [16, p. 208])

φ(0−) = φ(0+) = φ(0) (44)

and

dφ(0+)
dx

− dφ(0−)
dx

= −
2α 1

2 cos
(
π
4 + α

2
)

cos
(
α
2

) φ(0) = gφ(0),

(45)
where g is a real arbitrary number.

The boundary conditions (44) and (45) can be
obtained by adding to the operator a delta function,

namely − d2

dx2 + gδ(x), and by doing standard manip-
ulations.

This is our main result: The problem can be solved by
saying that we have an operator with an action and a
domain, or you can say, no, you have an action plus a
delta function. This second interpretation requires that
you promote the wave functions and everything else to
generalized functions if you want to be mathematically
rigorous (see [2]). Furthermore, in some cases it takes
a lot of work to identify the delta function interactions
that reproduces the boundary conditions, as we shall
see in the next example, and in more complicate case
the interaction to be added to the action is not a delta
function as we shall see further in this paper.

Example (5) A free particle in the real line with the
point x = 0 removed.

In this example we examine the operator whose action
is again − d2

dx2 whose domain are function uabcd(x) which
vanishes from −∞ to x = a < 0, are continuously and
infinitely differentiable between x = a and x = b with
uabcd(a) = uabcd(b) = 0, vanish between x = b < 0 and
x = c > 0 (containing the origin) and is continuously
differentiable from x = c to x = d with uabcd(c) =
uabcd(d) = 0 and finally vanished for x = d to x = ∞.
This domain in called by mathematicians C∞

0 (R/0). The
points x = b and x = c can be arbitrarily close to zero
so that these functions are zero in an arbitrarily small
interval [b, c]. The point x = 0 was thus removed from
the domain of the operator.

The operator is clearly symmetric because if φ1(x) is
in its domain then∫ ∞

−∞

[
−d2φ∗

2(x)
dx2

]
φ1(x)dx−

∫ ∞

−∞
φ∗

2(x)
[
−d2φ1(x)

dx2

]
dx

= φ∗
2(0−)dφ1(0−)

dx
− φ∗

2(0+)dφ1(0+)
dx

− dφ∗
2(0−)
dx

φ1(0−) + dφ∗
2(0+)
dx

φ1(0+) (46)

φ1(0−) = φ1(0+) = 0 (47)

and
dφ1(0−)
dx

= dφ1(0+)
dx

= 0 (48)

because φ1(x) is continuous and infinitely differentiable.
Therefore, the right-hand side of the above equation

vanishes independently of φ2(x) and so, the domain of
the adjunct is larger than the domain of the operator.
In fact, the domain of the adjunct are functions φ2(x)
that vanishes when x → ±∞, are not defined at x = 0,
are square integrable from −∞ to +∞ and have square
integrable second derivatives.

According to the von Neumann theory to see if this
operator has self-adjoint extensions we investigate the
number of solutions of the equations

−d2Ψ±(x)
dx2 = ±iχΨ±. (49)
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But now, because we excluded the point x = 0, there are
four solutions.

Ψ1
+(x) =


0 for − ∞ < x < 0

e
−

(
e−i π

4 χ
1
2 x

)
for 0 < x < +∞

(50)

Ψ2
+(x) =

e
−

(
e−i π

4 χ
1
2 x

)
for − ∞ < x < 0

0 for 0 < x < +∞
(51)

Ψ1
−(x) =


0 for − ∞ < x < 0

e
−

(
e+i π

4 χ
1
2 x

)
for 0 < x < +∞

(52)

Ψ2
−(x) =

e
−

(
e+i π

4 χ
1
2 x

)
for − ∞ < x < 0

0 for 0 < x < +∞
(53)

Therefore, the deficiency indices are (2, 2) and so there
is a four parameter self-adjoint extensions of the original
operator.

The unitary operator connecting the two solutions
is now a 4 × 4 unitary matrix Depending on four
parameters viz.

U =
{
u11 u12
u21 u22

}
=

[
cos bei(a+b) i sin bei(d−a)

i sin bei(d+a) cos bei(c−a)

]
.

(54)
The boundary conditions are obtained by enforcing

that if φ(x) is a function in the domain of the operator
we seek then

∫ ∞

−∞

[
−
d2 (

Ψ1
+(x) + u11Ψ1

−(x) + u12Ψ2
−(x)

)∗

dx2

]
φ(x)dx

=
∫ ∞

−∞
(Ψ1

+(x) + u11Ψ1
−(x) + u12Ψ2

−(x))∗
[
−d2φ(x)

dx2

]
dx

(55)

and

∫ ∞

−∞

[
−
d2 (

Ψ1
+(x) + u21Ψ1

−(x) + u22Ψ2
−(x)

)∗

dx2

]
φ(x)dx

=
∫ ∞

−∞
(Ψ1

+(x) + u21Ψ1
−(x) + u22Ψ2

−(x))∗
[
−d2φ(x)

dx2

]
dx

(56)

After some algebra (see [16]) we find finally that

[
dφ(0+)
dx

φ(0+)

]
= eiθ

∣∣∣∣α β
γ δ

∣∣∣∣
[
dφ(0−)
dx

φ(0−)

]
, (57)

where αγ − βδ = 1, and where the parameters in Greek
letters α, β, δ, γ and θ are related to the parameters in

Roman letters a, b, c, d and to the constant χ by

β =
√

2χ1/2

[
cos

(
a+ π

4
)

− cos b sin
(
c− π

4
)

sin b

]

α =
√

2χ1/2
(

sin a− cos b cos c
sin b

)
δ =

√
2 1
χ1/2

(
cos a+ cos b cos c

sin b

)

γ =
√

2 1
χ1/2

[
cos

(
a+ π

4
)

+ cos b sin
(
c+ π

4
)

sin b

]
θ = d.

The physics of the Hamiltonian defined by the action
− d2

dx2 whose domain are functions in the holed real
line with boundary conditions given by (57) was given
in [17, 18]. Note that until this point, we didn’t speak
of zero range interactions or more specifically, in this
case, of delta functions. But if the reader wishes he/she
can see interpret the above result as a Hamiltonian
with the action − d2

dx2 plus a contact interaction (or
zero range interactions) that includes not only the delta
function but also derivatives of the delta function. The
complete result can be found in a beautiful paper by S.
De Vincenzo and C. Sánchez [19] and will be reproduced
latter in this paper.

The above procedures are only prescriptions, that
are described in more detail in [16]. The reader can
find detailed treatments in the following reference in
ascending order of mathematical complexity: [20], [21]
and [22].

Now we can proceed and examine the problems raised
in the literature and described above in section 3 and in
section 6.

5. Alternative Solutions to the
Questionable Statements Presented
Before in Section 3

Now we are ready to decipher as promised the mystery
of how transforming the Laplacian operator, −∇2, from
cartesian coordinates to polar coordinates allow us to
modify the problem tremendously.

In cartesian coordinates the action of operator is

−∇2 = −
{
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

}
. (58)

Now, when we transform to spherical polar coordi-
nates (or to cylindrical polar coordinates) the point
(x = 0, y = 0, z = 0) becomes singular because the Jaco-
bian of the transformation tends to zero as we approach
the origin. Therefore, we must remove the point
(x = 0, y = 0, z = 0) and the plane becomes a holed
plane which is different from our original space. In fact,
translation invariance is lost.
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Therefore, we must first study the self-adjointness
of the operator (58) in the space of function ψ(r) =
ψ(x, y, z) defined by∫

ψ∗(r)ψ(r)d3r = finite, (59)

that is the space L2(R3), that has no holes in it.
We shall examine the operator in the space with a

hole in the point r = 0 after examining the action of
the Laplacian in polar coordinates. In spherical polar
coordinates we have

−∇2 = −
(
d2

dr2 + 2r d
dr

+ 1
r2 sin2 φ

d2

dθ2

+ 1
r2 sinφ

d

dφ

(
sinφ d

dφ

))
. (60)

After separation of variables, we recovered the opera-
tor given by equation (4) which is the radial part of the
action of the differential expression given by (60), viz.

d2Rℓ(r)
d2r

+ 2
r

dRℓ(r)
dr

+
(
k2 − ℓ(ℓ+ 1)

r2

)
Rℓ(r)(r). (61)

Then we must work with functions defined in the space
L2(R3\(0, 0, 0)) which means that the origin (0, 0, 0) was
removed.

We shall now show that the operator given by the
action (58) and domain (59) is essentially self-adjoint
whereas the operator given by the action (61) (for ℓ = 0)
in the domain L2(r2dr\0)) that is functions of r such
that ∫ ∞

0
R2

0(r)r2dr = finite (62)

is not. For ℓ ̸= 0 the operator is essentially self-adjoint
because one of the equations of the most general solution
is not square integrable.

Consider the following equations

− ℏ2

2m

{
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

}
ψ(x, y, z) = ∓iEψ(x, y, z).

(63)
This equation separates if we write ψ(x, y.z) as

ψ(x, y.z) = X(x)Y (y)Z(z) and gives

d2X(x)
dx2 = ±il2X(x)

d2Y (y)
dy2 = ±im2Y (y)

d2Z(z)
dz2 = ±i(k2 − l2 −m2)Z(z)

where k2 = 2mE
ℏ2 .

The equations have no square integrable solution, so
the deficiency indices are (0, 0) the operator given whose
action is given by (58) and the domain are function

that square integrable, that is L2(R3), is essentially self-
adjoint.

Now, when we remove the origin by going to spherical
coordinates, we must consider the equations

d2R0(r)
d2r

+ 2
r

dR0(r)
dr

∓ ik2R0(r) = 0. (64)

Each of the two above equations admits one linearly
independent solution and so, we have that the deficiency
indices are (1, 1), and hence the operator admits a one
parameter family of self-adjoint extensions, whose wave
functions are given by

Rℓ=0(r) = j0(kr) + αn0(kr), r > 0, (65)

each member of the family being characterized by a value
of the parameter α.

Now we see that the Neumann function appears
naturally. It is part of the eigenfunction of an extension
of the Laplacian characterized by the parameter α.

If we take α = 0 we have the eigenfunctions of the
usual operator Hamiltonian, used in the literature.

To find the eigenvalues and eigenfunction of the
extended operator it is easier to calculate the extension
of the operator obtained by making the transformation

R(r) = u(r)
r
, valid for r > 0 (66)

in equation (45), for ℓ = 0.
The resulting operator is

d2u(r)
dr2 ∓ ik2u(r) = 0, (67)

which again show us that the operator − d2

dr2 in the space
of function L2(0,∞), note that the origin was removed,
have deficiency indexes (1, 1) and so has a one parameter
family of self-adjoint extensions.

We have now three options

1. Seek for a contact interaction (with zero range)
that cancels the infinity of the kinetic energy that
appears if we calculate the expectation value of
ℏ2

2m
d2

dr2 with functions of the form u(r)
r .

This contact interaction is constructed for example
by adding to the kinetic energy a square well
potential with length ϵ and whose depth is fine
tuned.
This contact interaction will depend on a parame-
ter that we denote by α and the new Hamiltonian
is

H(α) = − lim
ϵ→0

ℏ2

2m

[
d2

dr2 − π2

4ϵ2 + 2α
ϵ

+ 4α2

π2 + α2
]

for r < ϵ

and

H(α) = − ℏ2

2m
d2

dr2 for r > ϵ.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0316 Revista Brasileira de Ensino de Física, vol. 46, e20230316, 2024
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For more details, see references [15] for three
dimensions, and [23] and [24] for two dimensions.

2. To extend the operator domain by imposing that
du(0)

dr

u(0) = α. This is a general result. When we
restrict the range of the functions where the action
of your operator acts you must put boundary
conditions. These boundary conditions are easily
deduced if you can solve the equations that give the
deficiency indexes. In this case they can be derived
by integration by parts. Assume that ϕ1(r) and
ϕ2(r) are in the domain we search. Then we have∫ ∞

0

(
−d2ϕ∗

2(x)
dx2

)
ϕ1(x)dx

−
∫ ∞

0
ϕ∗

2(x)
(

−d2ϕ∗
1(x)
dx2

)
dx

= ϕ∗
2(0)ϕ1(0)

[
dϕ1(0)
dx

ϕ1(0) −
dϕ2(0)
dx

ϕ2(0)

]

and so
dϕ1(0)

dx

ϕ1(0) = α real (see [16] for details).
3. By giving up arguing and to declare that there is

a delta function in the Hamiltonian that forces us
to take u(0) = 0. This last option is not entirely
correct because as is well know the delta function
is too strong in three dimensions and it is more
restrictive than the one described above.

Remark 2 The same problem as the one discussed
above occurs in two dimensions and the alternative
solutions to problems that occur is the same as the ones
given above. Consider the Laplacian in two dimensions.
When we transform to polar coordinates, translation
invariance is lost, because the point (x = 0 and y = 0)
becomes singular. Therefore, the Kinetic energy operator
must be studied carefully. The solutions obtained to
the problem described above are the same as the ones
described above for three dimensions, namely

1) Seek for a contact interaction that cancels the
infinity of the kinetic energy if we want to use the
singular solution. This was done in [23].

2) Look for self-adjoint extensions of the operator
extensions This was done in [16, 24].

3) To give up arguing. But in this case, we cannot say
that there is a delta function at the origin, because
as explained in [23] the delta function is too strong
in two dimensions.

6. A Final Example

In this final example we discuss a more complicated case
using the machinery developed before.

The problem is the asymmetric, or biharmonic, har-
monic oscillator in one dimension and was presented in
the article by W. Edward Gettys and H.H. Graben [25].

The Hamiltonian of this problem is

H = − ℏ2

2m
d2

dx2 + 1
2mx

2 (
ω2

1θ(x) + ω2
2θ(−x)

)
. (68)

As explained already the above should be interpreted
as a differential expression of an operator. To be an
operator we must specify its domain. For the above
differential expression when ω1 = ω2 we don’t need to
add any boundary condition, the domain are functions
that are square integrable on the line. To require that the
eigenfunctions can be normalized is sufficient to guaran-
tee the self-adjointness of the operator. See V.S. Araujo
et al. [26]. In fact, the operator whose action is (68) in
the domain L2(−∞,+∞) is essentially self-adjoint.

To find the eigenvalues and eigenfunctions of the above
operator before specifying its domain we solve the two
differential equations

− ℏ2

2m
d2

dx2 Ψ(x) + 1
2mω

2
1x

2Ψ(x) = EΨ(x),

for − ∞ < x < 0 (69a)

− ℏ2

2m
d2

dx2 Ψ(x) + 1
2mω

2
2x

2Ψ(x) = EΨ(x),

for 0 < x < ∞. (69b)

However, let’s first consider the usual solution of
the simple harmonic oscillator. This is relevant for
the problem, because to solve the problem described
above one must solve the Schrödinger equation for the
harmonic oscillator in some range. Let’s therefore briefly
recall the solution of the harmonic oscillator.

6.1. The standard harmonic oscillator

The equation to be solved in standard notation is:

− ℏ2

2m
d2

dx2 Ψ(x) + 1
2mω

2x2Ψ(x) = EΨ(x),

for − ∞ < x < ∞. (70)

The point x = 0 is an ordinary point of the equation (70)
and so have two linear independent solutions that can
be obtained as a series expansion [27].

By making different, but related, transformations
we get the usual versions of the harmonic oscillator
equation. We are going to need all of them for clarity,
because they are all used in different textbooks and
because as have seen these transformations may change
the domain of the operators.

1. The Weber equation

Change to ξ =
( 2mω

ℏ
) 1

2 x and ε = E
ℏω to get the Weber

equation

d2ψ

dξ2 +
(
ε− ξ2

4

)
ψ = 0. (71)

This form is used in [28].
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2. The Hermite equation

Change to ξ =
(
mω
ℏ

) 1
2 x and ψ(x) = e− ξ2

2 f(ξ) to get

d2f

dξ2 − 2ξ df
dξ

+
(

2E
ℏω

− 1
)
f = 0. (72)

The point x = 0 is an ordinary point of the equa-
tion 1 [27] and so have two linear independent solutions
that can be obtained as a series expansion. This equation
was used in the book by Eugen Merzbacher [29] to solve
the so-called double oscillator.

3. The confluent hypergeometric equation
Change in the Hermite equation z = ξ2 and u(z) = f(ξ)
to get

z
d2u

dz2 +
(

1
2 − z

)
du

dz
+ ν

2u = 0, (73)

where E =
(
ν + 1

2
)
ℏω, which is the confluent hypergeo-

metric equation [30, chapter VI].
Each of these forms are equations that have been

studied very thoroughly in the 19th century, and each
of these forms have been used to solve similar problems
to the bi-harmonic oscillator. For example, as men-
tioned before, the Hermite equation was used by Eugen
Merzbacher [29] to solve the so-called double oscillator.

We prefer to use equation (73). It has two independent
solutions [30, Chapter 6]. They are 1F1

(
−ν

2 ; 1
2 ; z

)
and

U
(
−ν

2 ; 1
2 ; z

)
where 1F1

(
−ν

2 ; 1
2 ; z

)
is the hypergeometric

function, and U
(
−ν

2 ; 1
2 ; z

)
is defined by

U

(
−ν

2 ; 1
2 ; z

)
=

√
π

{
1F1

(
−ν

2 ; 1
2 ; z

)
Γ

( 1
2 − ν

2
)

− z
1
2

1F1
( 1

2 − ν
2 ; 3

2 ; z
)

Γ
(
−ν

2
) }

, (74)

where Γ stands for the gamma function.
When z → ∞, 1F1

(
−ν

2 ; 1
2 ; z

)
diverges like ez, while

U
(
−ν

2 ; 1
2 ; z

)
→ 0; hence, since ψ(x) must be normalized

we are left with U
(
−ν

2 ; 1
2 ; z

)
. This can be checked in [30,

p. 289].
Hence

ψ(ξ) = Ce
−ξ2

2 U

(
−ν

2 ; 1
2 ; z

)
, (75)

where C is a constant and so equation (75) is the solution
of the problem. (See in this connection [25])

Note that ν, and hence E, are still arbitrary. These
are not determined by the normalizability of ψ. We
emphasize this because the usual treatment in the
literature gives the impression (see for example [31,
Chapter 4]) that the convergence of ψ for x → ∞
determines the eigenvalue.

When the potential is continuous the derivative of the
wave function should not have a discontinuity, hence we

must examine the derivative of ψ(ξ), dψ(ξ)
dξ , that is

dψ(ξ)
dξ

= − 2Cξe− ξ2
2

{
U

(
−ν

2 ; 1
2 ; z

)
+ νU

(
1 − ν

2 ; 1
2 ; z

)}
. (76)

When z → 0, we find
dψ(ξ)
dξ

∼
√
πCν

Γ
( 1

2 − ν
2
)

Γ
(
1 − ν

2
) ξ

|ξ|
, (77)

which is discontinuous at ξ = 0!
Then since we are examining equation (77), the

demonstration on the paper by D. Branson [3] requires
that this discontinuity should be eliminated by requiring
that

ν

Γ
( 1

2 − ν
2
)

Γ
(
1 − ν

2
) = 0. (78)

This will hold when ν is a negative integer and we get
the usual harmonic oscillator solution. In more detail,
when ν is an integer only the first term of equation (74)
remains, and the function U becomes an even function
of z. When −ν is odd only the second term survives, and
U becomes an odd function of z. Furthermore when ν is
an integer the F s in equation (74) turns out to be the
Hermite polynomials and the equation (75) becomes the
usual solution of the harmonic oscillator.
3.1. The bi harmonic oscillator
The reader must by now becoming a bit uncomfortable,
because we can write the potential of the bi harmonic
oscillator as

V (x) = 1
2mx

2 (ω1θ(x) + ω2θ(−x)) , (79)

where θ(x) is the Heaviside step function whose deriva-
tive, at x = 0, is discontinuous. In fact, the solution of
equation (69a) is given by equation (73) with ω replaced
by ω1 and the solution of equation (69b) is given by the
same equation (73) with ω replaced by ω2 and x replaced
by −x.

We have now three options:
1) The eigenvalues of the bi harmonic oscillator can

be obtained by requiring that the wave functions
and their derivatives are continuous at x = 0.
This is equivalent to retain the point x = 0 and
therefore the operator whose action is (79) belong
to L2(−∞,+∞). This is done in the paper by W.
Edward Gettys and H.H. Graben [25].

2) To remove the point x = 0. This means that we
are in mathematical parlance putting a barrier
or frontier at x = 0. By doing this we can
construct self-adjoint operators by imposing the
boundary conditions (57) to the wave functions at
the removed origin[

dφ(0+)
dx

φ(0+)

]
= eiθ

∣∣∣∣α β
γ δ

∣∣∣∣
[
dφ(0−)
dx

φ(0−)

]
. (80)
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Let’s take the boundary condition given by θ = 0,
α = 1, and γ = δ = 0. Then we have φ(0+) =
φ(0−) = φ(0) and dφ(0+)

dx − dφ(0−)
dx = βφ(0), and

we have construct a self-adjoint operator, that
corresponds to a delta function at the origin. In
fact, some people would claim that the solution we
got is wrong because we missed a delta function
at x = 0. To circumvent, or accept this sentence
we may declare that the Hamiltonian have a delta
function at x = 0, with strength α. This option
requires that we declare that the wave functions
are generalized function (or distribution as they
are also called). However, we can ignore this point.
See J. Viana-Gomes and N.M.R. Peres [32] or S.H.
Patil [33].
We do not want to argue with them but in fact
we have construct a five-parameter family of self-
adjoint operators that can indeed be interpreted as
contact interactions as shown below.

3) These operators can be interpreted as an operator
whose action is − d2

dx2 plus contact interactions (or
zero range interactions) that includes not only the
delta function but also derivatives of the delta
function. These contact interactions given by [19]
are

V̂ (x) = g1δ(x) − (g2 − ig3)δ(x) d
dx

+ (g2 + ig3) d
dx
δ(x) − g4

d

dx

(
δ(x) d

dx

)
(81)

where the four parameters, gi (i = 1 to 4), are
related to the parameters given by equation (42),
for example, g1 = β.
The energy levels of potential (81) are given in ref-
erence [18]. The complete analysis is complicated
and a recent reference is given by [34].

7. Conclusions

In this paper we examined the claim that some solutions
of the TISE are not solutions because they contain
a delta function that was forgotten. We showed that
these solutions are eigenfunctions of operators that are
self-adjoint extensions of an appropriate operator. If
you admit that self-adjointness is the only criteria to
accept operators and their eigenfunctions in quantum
mechanics these solutions are perfectly acceptable.

Another point of view is to accept that these eigen-
functions are eigenfunctions of operators with the same
action but with added zero-range or contact iterations.
In the case of one-dimensional problems (or problems
that can be reduced to one dimensional problems but
with barries) it is better to interpret the wave function
as generalized functions.

Acknowledgments

The authors acknowledge partial support from CNPq
(Conselho Nacional de Desenvolvimento Científico e
Tecnológico).

References

[1] M. Amaku, F.A.B. Coutinho, O.J.P. Eboli and E.
Massad, Rev. Bras. Ens. Fis. 43, e20210132 (2021).

[2] M. Amaku, F.A.B. Coutinho, O.J.P. Eboli and E.
Massad, Braz. J. Phys. 51, 1324 (2021).

[3] D. Branson, Am. J. Phys. 47, 1000 (1979).
[4] M. Andrews, Am. J. Phys. 49, 291 (1981).
[5] D. Home and S. Sengupta, Am. J. Phys. 50, 552 (1982).
[6] T. Cheon and T. Shigehara, Phys. Lett. A 243, 111

(1998).
[7] Y.S. Huang and H.R. Thomann, Europhys. Lett. 115,

60001 (2016).
[8] M. Khorrami, Europhys. Lett. 116, 60010 (2016).
[9] A. Prados and C.A. Plata, Europhys. Lett. 116, 60011

(2016).
[10] J. Munzenmayer and D. Frydel, arxiv:2012.00166v1

(2020).
[11] A.A. Khelashvili and T.P. Nadareshvili, Am. J. Phys.

79, 668 (2011).
[12] A.A. Khelashvili and T.P. Nadareshvili, Bull. Georgian

Natl. Acad. Sci. 6, 68 (2012).
[13] A.A. Khelashvili and T.P. Nadareshvili, Phys. Part.

Nucl. Lett. 12, 11 (2015).
[14] S. Flugge, Practical Quantum Mechanics (Springer, New

York, 1974), v. 1.
[15] F.A.B. Coutinho and M. Amaku, Eur. J. Phys. 30, 1015

(2009).
[16] V.S. Araujo, F.A.B. Coutinho and J.F. Perez, Am. J.

Phys. 72, 203 (2004).
[17] F.A.B. Coutinho, Y. Nogami and J.F. Perez, J. Phys A

30, 3973 (1997).
[18] F.A.B. Coutinho, Y. Nogami and J.F. Perez, J. Phys. A

32, L133 (1999).
[19] S. De Vincenzo and C. Sanchez, Can. J. Phys. 88, 809

(2010).
[20] A. Cintio and A. Michelangeli, Quantum Stud.: Math.

Found. 8, 271 (2021).
[21] D.M. Gitman, I.V. Tyutin and B.L. Voronov, Self-

adjoint Extensions in Quantum Mechanics (Birkhauser,
New York, 2012).

[22] C.R. de Oliveira, Intermediate Spectral Theory and
Quantum Dynamics (Birkhauser, Bassel, 2009).

[23] J.F. Perez and F.A.B. Coutinho, Am. J. Phys. 59, 52
(1991).

[24] R. Kowalski, K. Podlaski and J. Rembielinski, Phys.
Rev. A 66, 032118 (2002).

[25] W.E. Gettys and H.H. Graben, Am. J. Phys. 43, 626
(1975).

[26] V.S. Araujo, F.A.B. Coutinho and F.M. Toyama, Braz.
J. Phys. 38, 178 (2005).

[27] E.T. Copson, An Introduction to the Theory of Functions
of a Complex Variable (Oxford University Press, Oxford,
1970).

Revista Brasileira de Ensino de Física, vol. 46, e20230316, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0316



Amaku et al. e20230316-13

[28] F.D. Mazzitelli, M.D. Mazzitelli and P. Soubelet, Am.
J. Phys. 85, 750 (2017).

[29] E. Merzbacher, Quantum Mechanics (John Wiley and
Sons, Hoboken, 1998), 3 ed.

[30] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas
and Theorems for the Special Functions of Mathematical
Physics (Springer-Verlag Inc, New York, 1966).

[31] L.I. Schiff, Quantum Mechanics (McGraw-Hill, New
York, 1995), 3 ed.

[32] J. Viana-Gomes and N.M.R. Perez, Eur. J. Phys. 32,
1377 (2011).

[33] S.H. Patil, Eur. J. Phys. 27, 899 (2006).
[34] R.-J. Lange, J. Math. Phys. 56, 122105 (2015).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0316 Revista Brasileira de Ensino de Física, vol. 46, e20230316, 2024


	Introduction
	Some Results Found in the Literature About the Behavior of the Wave Function and its Derivative at Singular Points
	Examples of Questionable Statements
	The infinite spherical square well Huang2016
	Singular behavior of the Laplace operator in Polar spherical coordinates
	The infinite spherical square well again

	Finding the Domain of the Operators Associated with a Differential Expression
	Examples

	Alternative Solutions to the Questionable Statements Presented Before in Section 3
	A Final Example
	The standard harmonic oscillator

	Conclusions

