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Pseudo-dynamic simulations 
applied to ball mill grinding 
circuit using population 
balance model and 
Monte Carlo Method
Abstract

Process simulations can be used to improve grinding circuit performance, 
which efficiently reduces operating costs. The population balance model (PBM) is 
widely accepted for grinding modeling because it can reproduce breakage events 
in tumbling mills, as described by Austin et al. (1984). In this study, a pseudo-
dynamic model is introduced, integrating the PBM with the Monte Carlo Method 
to stochastically simulate variables in an industrial grinding circuit. This inte-
grated approach enabled circuit simulations over a period of 2 hours, representing 
the operational variables as seen in historical data. Model validation showed a 
correlation of 0.74 in the product size distribution when comparing simulated 
outcomes with the original population.
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1.1 Population Balance Model
The PBM solution proposed by 

Reid (1965) for the size discretization 
of breakage events occurring in batch 
grinding processes is shown in Equa-

tion 1 (Fuerstenau et al., 2004):

where m
i
 (t) represents the mass fraction 

of particles at size interval i and time t. S
i
 

represents the breakage rate of particles 
at size interval i, and b

ij
 represents the 

fragment distribution after breakage, 
that is, the larger j material fraction that 
changes to size i after breaking. The 
breakage function (Equation 2) can be 

defined as the distribution of fragments 
appearing after the breakage of a single 
particle within a specific size interval 
(Austin et al., 1984):

where B
ij
 is the breakage function and Φ, 

γ, and β are parameters to be adjusted 
to the experimental data. The selection 

function, or the specific rate of breakage, 
describes the rate at which particles within 
a particle size range are reduced and cross 

their lower size limit. Equation 3 presents 
a model that describes the selection func-
tion (Austin et al., 1984):

where x
i
 is the particle size; x

o
 is the 

standardization size, which is equal to 
1 mm; a is a constant that depends on 
the grinding conditions; α is a constant 
that depends on the characteristics of 
the material (positive number normally 

between 0.5 and 1.5); µ is the critical size 
at which the selection function achieves 
maximum value; and Λ is a positive 
number indicating the speed of decrease 
of the S

i
 with increase in size i. The S

i
 and 

B
ij
 parameters can be obtained through 

bench tests and/or industrial sampling. 
Herbst & Fuerstenau (1980) proposed 
that S depends on the consumed power 
and material mass in the mill. Thus, it 
is possible to obtain a specific selection 
function (S

i
E) using Equation 4:
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1. Introduction

Grinding circuits are essential in 
mineral processing to increase the mineral 
surface or recover valuable metals from 
gangue. They have a direct influence on 
the efficiency of downstream metallurgical 
processes. However, grinding demands high 
energy, liners, and grinding media consump-
tion (Herbst et al., 2003). Therefore, small 
improvements to this process can result in 
considerable economic returns.

Grinding simulations have been 
the subject of intensive research over the 
past decades, and several models have 
been developed to provide information on 
circuit design, optimization, and control 
(Fuerstenau et al., 2004; Shi & Xie, 2015; 
Le Roux et al., 2020). PBM is widely ac-
cepted for simulating the grinding process, 
where particles are transformed in terms 
of size and composition (King, 2012), and 
satisfactorily replicating particle breakage 
events in tumbling mills through selection 
and breakage functions (Austin et al., 1984).

Simulation is a tool that combines 
mathematical models to virtually reproduce 
the behavior of a system, phenomenon, or 
process. Moreover, it can be used to provide 
an “artificial” experience and to evaluate 
different operational conditions. Simula-
tions have been used successfully in the 
mining sector at various stages of the pro-
duction chain due to their ability to improve 
the performance of unit operations and 
circuits at a low investment cost. The term 
“process simulation,” either steady-state, 
dynamic, or pseudo-dynamic, in mineral 
processing implies predicting plant or circuit 
performance in terms of mass flow, solid 
concentration, particle size distribution, and 
other variables as functions of the intrinsic 
properties of a specific ore, equipment, and 
operational conditions (Napier-Munn et 
al., 1999). Unlike the steady-state model, 
which assumes the immutability of the 
process variables through a time interval, 
dynamic or pseudo-dynamic simulation is 

especially useful for predicting the behavior 
of a stochastic process, such as grinding.

A stochastic process is a family of ran-
dom variables that represents the evolution 
of a system over time. This evolution can be 
modeled by mathematical models, such as 
the Monte Carlo Method (MCM). More-
over, the ability to analyze the unpredictable 
behavior of process variables is especially 
important in the context of modeling and 
simulation (Hodouin et al., 1988; Mishra, 
2007; Ghaffari et al., 2012).

Recent advances in dynamic modeling 
for mineral processing simulations highlight 
the use of models created using Simulink in 
MATLAB (Liu & Spencer, 2004). These 
models have been employed to predict the 
dynamic behavior of plants (Khoshnam et 
al., 2015). Moreover, hybrid models, which 
blend dynamic and steady-state approaches, 
have been effectively employed for simulat-
ing mill-flotation circuits (Le Roux et al., 
2020; Karelovic et al., 2016).

dm
i
 (t)

dt
= - S

i 
m

i
 (t) +

i -1

j =1
b

ij 
S

j 
m

j 
(t), i = 1,2,3 ...n

where H is the material mass in the mill (Holdup), and P
net

 is the net consumed power.
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1.3 Monte Carlo Method
A stochastic process can be 

defined as the unpredictable evolu-
tion of a random time phenomenon. 
Despite the known initial conditions, 
there are many possible directions for 
the process evolution. In contrast, the 
deterministic process has only one 
solution. The stochastic process is 
represented by a set of time-indexed 

random variables. Stochastic processes 
are simulated using MCM, which are 
based on the generation of pseudo-
random numbers (Gentle, 2003).

Owing to various factors, such 
as circuit characteristics, control 
network, instrument accuracy, and 
response time, the mill process-
controlled variable path oscillates 

unpredictably over time. The logic 
controller operates in the system with 
the aim of maintaining the mean of 
the control variable in the vicinity of a 
set point. Therefore, the Mean Regres-
sion Method (MRM) was chosen for 
simulation. This model is included in 
the MCM and can be used to randomly 
describe a stochastic process (Dias, 

where a3 is a constant dependent on 
the application. The efficiency of 

adjusted classification (E) and Plitt's 
(1976) m parameter can be calculated 

using the following Equations 8 and 
9, respectively: 

where a
4
 is a constant dependent on the application. The Equation 10 can be used to express the slurry short-circuit:

where B
pf 

 is the underflow short-circuit; B
pw

 
is the water short-circuit; λ is constant de-

pending on the application. The water short-
circuit B

pw
 can be expressed by Equation 11:

where R
s
c is the total solids recovery (hypothetical) expressed by weight.

B
pf
 = λB

pw

F
p 
= a3

C
h
1.19(Du/Do)2.64 exp(- 4.33φ  + 8.77φ 2)

C
p
0.54(Dc)0.38

(7)

(8)

(9)

(10)

(11)

E
i
c = 1 - exp - 0.693

d
i

d50c

m

m = exp a4 - 1.58
F

p

(F
p
 + 1)

(Dc)2C
h

Q

0.15

B
pw
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F

p

(F
p
 + 1)

- ϕRc
s

/(1- ϕ [1- λ (1 - Rc)]) s

1.2 Classification model
Sepúlveda & Gutiérrez (1986) 

proposed a modified version of Plitt's 
(1976) hydrocyclones classification 
model as described below. The cyclone 

feed pressure (C
p
) is represented by 

Equation 5:

where a1 is a constant dependent on the 
application; Dc is the cyclone diameter 
(in); Di is the cyclone inlet diameter (in); 
Do is the vortex (in); Du is the apex (in); C

h
 

is the cyclone height (in); Q is the feed flow 
(m3/h); φ is the feed volume solids fraction. 
The adjusted cutting size, also known 
as d50c

, refers to the particle size that is 

evenly divided between the underflow and 
overflow streams, based on the adjusted 
efficiency curve. This parameter can be 
calculated using the following Equation 6:

where a2 is a constant dependent on 
the application. The Equation 7 rep-

resents the flow partition, denoted by 
F

p
, which is defined as the ratio of the 

underflow and overflow in a circulat-
ing load:

(5)

(6)

C
p 
= a1

Q1.46 exp(-7.63φ  + 10.79φ 2)

(Dc)0.20C
h
0.15(Di)0.51(Do)1.65(Du)0.63

d50c 
= a2

(Dc)0.44(Di)0.58(Do)1.98exp(11.12φ )

(Du)0.80C
h
0.37Q0.44(ρ

s
 - 1)0.5
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The purpose of this study is to 
develop a tool that simulates con-
tinuous grinding processes using 
well-known mathematical models. 

Incorporating both the PBM and the 
MCM, the pseudo-dynamic model 
aims to reproduce operational vari-
ables similar to the original data. To 

validate and demonstrate the model's 
efficacy, a ball mill circuit from a gold 
ore plant was selected for modeling 
and simulation.

The gold plant process can be 
summarized into three stages of crush-
ing and one stage of grinding to obtain 

the required product sizes for the 
downstream leaching process. The mill 
has an internal grate discharge and is 

in a direct closed circuit classified by 
cyclones (Table 1).

The parameter h can be defined 
as the expected time for the sto-

chastic variable X to reach half way 
toward the equilibrium level X. Equa-

tion 17, discretized in time, enables  
the simulation.

With a normal distribution and 
mean equal to zero, Equation 17 is treated 
as the sum of mathematical expectation 

and a random term. The model identi-
fies the long-term equilibrium level for 
the random variable as a very important 

reference, such that the variable P follows 
a mean regression towards an equilibrium 
level given by Equation 18:

where P = e(X) represents the long-term 
equilibrium constant of a random vari-
able. The mean regression model defines 

the simulated mean as E [P(T)] = e{x[X(T)]}, 
demonstrating that the ratio between vari-
ables X and P it is possible to obtain the 

following (Equations 19 and 20) expected 
value for the random variable at time T 
during the simulation:

where Var[X(T)] is defined in Equa-
tion 15. By combining Equations 15, 
19, and 20, it is possible to simulate 

the paths of the random variable P, 
following a mean regression process. 
This allows the direct simulation of the 

real process for P (t) using Equation 21 
(Dias, 2005).

X = ln(P)

E [P (T)] = exp { X(0) e-ηT + X (1 - e-ηT )}

P (T) = exp { X(t) - 0.5 Var [X(t)]}

P (T) = exp {[ln [P(t-1)] exp [-ηΔt]] + [ln (P) (1- exp[-ηΔt])] - [(1-exp[-2ηt]) σ2/4η] + σ √(((1-exp[-2ηΔt])/2η) )  N(0,1)}

1.4 Objective

2. Materials and methods

2.1 Grinding data and ore sampling

X
t
 = X

t-1e-η Δt  + X(1 -      ) + σe-η Δt (1 - exp(-2ηΔt)/(2η )) N (0,1) (17)

(18)

(19)

(20)

(21)

2005). The following formalization 
(Equation 12) of the MRM, that is, 

the arithmetic Ornstein–Uhlenbeck 
process for stochastic variable X(t), 

is in accordance with the sequence 
described by Dias (2005):

where η is the regression parameter, X 
is the mean, and σ is volatility. Equa-
tion 12 shows that a regression force 

acts on variable X, pulling it toward an 
equilibrium level (mean). The parameter 
η represents the speed of the regression 

process. The stochastic differential 
equation has the following solution 
(Equation 13).

With the functions of mathematical 
expectation (Equation 14) and variance 

(Equation 15), the variable X(T) has a nor-
mal distribution. Equation 16 shows the re-

lationship between the mean reverting speed 
and half-life (h) of the regression process.

dX = η(X - X) dt + σ dz,

h = (ln(2)) / η

(12)

(16)

(13)

(14)

(15)

X(T) = X(0)e-η + (1 -      ) X + σT
T

0

e-η 
T

e-η 
T

eη t dz (t) 

E[X(T)] = X(0)e-η  + x(1 -      )T
e-η 

T

Var[X(T) = (1-     )
2η
σ 2

e-η 
T
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Batch grinding tests with mono 
size fractions, are, in general, short-
time tests with the purpose of prevent-
ing regrind. The material to be tested 
has a pre-classified predominant size, 

is sieved between mesh ranges, and has 
a √2 ratio. The material was ground at 
different time intervals, and a particle 
size analysis was performed at each 
step, including the original “zero time” 

sample. The tests were conducted in a 
mill of 254 mm diameter and length, 
with 70% critical speed, 20% ball fill-
ing, 25.4 mm single size balls and 50% 
material filling (Austin et al., 1984).

For the pseudo-dynamic simula-
tion, an algorithm was developed in 
Visual Basic for Application (VBA) 
- Excel to calculate the model of N 
individual steady-state simulations be-
tween short fractions of the total simu-
lated time and to obtain the expected 
outputs. To identify the optimal values 

for the circuit's operating parameters, a 
search algorithm was employed during 
the simulation.

To estimate the circuit's mass bal-
ance, the simulation's time interval was 
set equal to the residence time required 
for a specific fraction of the total mass 
introduced into the grinding circuit. 

This fraction ensures the complete fill-
ing of the effective ball circuit volume. 
The developed model considers an ac-
cumulation or a decrease in the mass 
in the circuit over time, in contrast to 
one of the basic premises of steady-state 
simulation. The mass balance can be 
summarized using Equation 22.

The control variables for the cir-
cuit, specifically new feed and cyclone 
feed density, were selected for stochastic 
simulation over time using MRM and 
subsequently utilized as inputs to the 
grinding model. To test the applicabil-
ity of MRM, it was essential to ensure 
that these variables followed a normal 
density function. Therefore, an Anderson-

Darling test for normality was conducted, 
with a significance level set at p > 0.05 
(Umaporn, 2011).

Following is the description of 
the algorithm to perform pseudo-
dynamic model calculations for the 
grinding circuit:

(a) The MRM statistical parameters 
are entered to calculate the throughput rate 

and cyclone feed density variables: mean 
to be maintained (setpoint), volatility, and 
half-life time (Dias, 2005).

(b) The simulation period is set 
to approximately 2h (the same as the 
sampling campaign).

(c) N interactions loops (N = 1,2,3,4, ...) 
are initiated: I. First, the circuit residence 
and simulation times are calculated:

a. Simulation time evolution is calculated using Equation 23:

b. The residence time in the circuit can be calculated as a function of the total mill-fed mass rate (new through-
put + underflow) using Equation 24:

INPUT-OUTPUT=ACCUMULATION (22)

(23)

2.2 Grinding tests in mono-size fractions

2.3 Griding Modeling 

t(N) = Initial start time,          N = 1

t(N) = 
N

1
τ (N) + t(N = 1), N > 1

A sampling campaign was performed 
to obtain data for the mass balance and 
ore for laboratory tests. New feed, mill 
discharge, cyclone overflow and under-
flow were collected every 5 min for 2 h. 
Throughout this time, the plant maintained 

a stable operation with a consistent new 
feed rate of 115t/h, and control setpoints 
remained unchanged. At the end of the 
sampling period, a large sample of ore feed 
(≈ 500kg) was collected directly from the 
feed belt. Samples were weighed, dried, 

and divided into aliquots for screening 
and grinding batch tests in mono size frac-
tions (Austin et al., 1984). All data for the 
grinding process variables were collected 
during the sampling time from the plant 
PLC (programming logic controller).

Table 1 – Grinding circuit parameters.

Ball mill / Ore

Effective Diameter/Length (feet) 12/17 Interstitial slurry (%) 100

Balls charge filling (%) 40 Lift angle (°) 31.9

Critical speed (%) 73 Installed power (kW) 1150

Make-up ball size (mm) 63 Balls density (t/m³) 7.75 

Ore density (t/m³) 2.75 New feed setpoint (t/h) 115

Cyclone cluster

Vortex (mm) 140 Number in operation/total 3/5

Apex (mm) 100 Diameter/Height/Inlet (mm) 500/1090/195
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P
net

 = 0.238D3.3 (L  ⁄  D) N
c
 ρ

ap
 ( J-1.065J2 sinδ )

3. Results and discussion

3.1 Model parameters estimation
The breakage function was 

estimated using mono-size grinding 
tests on the sampled ore, employing 
the BII method developed by Austin 
et al. (1984). This technique directly 

calculates the breakage function 
values and includes corrections for 
fractures caused by undesirable ma-
terial regrinding. Figure 1 shows the 
distribution of fragments from the 

normalized breakage of the 3 mono 
size tests. Values are plotted in cumu-
lative form, B

ij
, versus size as a frac-

tion of the breaking size, d
i
/d

j
 (Austin  

et al., 1984).

Parameter calculations of the classifica-
tion and selection functions were performed 
using Moly-Cop ToolsTM . This simulator is 

provided with parameter estimation routines 
for analyzing data produced in the labora-
tory and/or industrial sampling. The grind-

ing model parameters are listed in Table 2 
and the sample’s particle size distribution 
and the fitted results are plotted in Figure 2.

Figure 1 – Cumulative progeny fragment distributions 
from breakage of 3 mono size grinding tests and estimating the breakage function estimation.

where D and L are the mill diameter (ft) and 
length (ft), respectively, N

c
 is the tumbling 

speed, expressed as a fraction of the critical 
speed, ρ

ap
 is apparent load density, (t/m³) is 

the apparent volumetric fractional mill fill-
ing, and δ represents charge lifting angle.

(27)

where τ(N) represents the residence 
time (in minutes) at cycle N, F(N) de-
notes the total feed mass rate during 
cycle N (in t/h), P(N) is the total slurry 
rate in cycle N (in m³/h), VC is the oc-
cupied volume of the mill discharge box 

(m³), and H signifies the mill hold-up 
(in tons).

II. The MRM is used for a ran-
dom simulation of the selected process 
variables (new feed and cyclone feed 
density), or the values are searched 

in the database, depending on the 
simulations described in section 3.2.

III. The minimization routine of 
the objective function (Equation 26) at 
time t(N) complies with the following 
mass balance Equation 25:

where NF(N) is the dry mass of the cir-
cuit feed in the mill in cycle N, OF(N) 
is the dry mass in the cyclone overflow 
in cycle N, UF(N) is the dry mass in the 
cyclone underflow in cycle N. CLV rep-
resents the difference in dry mass of the 
circulating load between consecutive 

cycles (N and N-1), indicating either an 
accumulation or a decrease.

A search algorithm was applied 
to minimize the objective function 
(Equation 26). This algorithm adjusts 
input model variables, including the 
percentage of solids in mill discharge, 

cyclone underflow and overflow, and 
water addition, aiming to identify the 
system's optimal solution.

To calculate the net consumed 
power of the model was used the 
Equation 27 proposed by Hogg & 
Fuerstenau (1972):

(24)

(25)

(26)

τ (N) = 
H

F(N)
VC

P(N)
+ 60

NF (N) + UF (N) OF (N) + UF (N)
τ (N)τ (N)

- = ± CLV

NF (N) + UF (N) OF (N) + UF (N)
τ (N)τ (N)

-  ± CLV
2

F
obj

 =
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The MRM fitting (constants 
presented in Table 3) was obtained by 

statistical analysis of the original popu-
lation, empirical modeling through a 

set of inputs, and observation of ran-
dom outputs.

The pseudo-dynamic model and 
MRM were validated by comparing the be-
havior of the simulated results with the data 
measured by instruments/sensors installed 
in the processing plant, at the same time of 
the sampling. An evaluation was performed 
to determine whether the proposed models 
could produce data similar to the original 
data. First, to validate the pseudo-dynamic 
grinding model, the mill control variables 

of the cyclone feed density and mill feed 
rate in the S1 simulation (Table 4) were set 
to the same value by the algorithm as those 
measured by online instruments. The varia-
tion in size distribution results sampled from 
the mill feed was also used as input for the 
model (Figure 5-a).

The behavior replication test was ap-
plied to one output variable of the model 
- product size distribution - comparing simu-

lated results with measured values (Figure 
3). Disregarding the discrepant values of the 
data, good correlation and R-squared results 
were observed for the product size distribu-
tion, with values of 0.7376 and 0.5441, 
respectively. To identify outliers, the data 
points that significantly influenced the cor-
relation coefficient were ranked, and the IQR 
(Interquartile Range) method was employed 
to calculate the lower and upper limits.

3.2 Pseudo-dynamic model validation

Random variables Mean Volatility Regression parameter

Mill feed rate (t/h) 115 1.90 0.9

Cyclones feed density (t/m³) 1.581 3.0 × 10−3 1.9

Table 3 - Regression model constants.

Figure 3 – Correlation between measured and simulated (S1) mill product size (passing 106 µm). 

Classification Selection Breakage

a1 6.54 a 8.07x10-5 Φ 0.62

a2 1.31 α 1.5 γ 0.59

a3 12.93 Λ 2.98 β 5.13

a4 0.72 μ 1331

λ 1.31

Table 2 – Classification, selection, and breakage parameters.

Figure 2 – Particle size distribution: sampling and fitting results.
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The output behavior of the pseudo-
dynamic model, as represented by the S1 
and S2 simulations, was plotted alongside 
the curves of the measured data from the 
grinding circuit (Figure 5). The results 
demonstrated that the model could identify 

the time-evolution behavior of process vari-
ables. Specifically, the product size of the S1 
simulation exhibited similar trends, peri-
ods, and amplitudes when compared to the 
data (Figure 5 - b). The S2 simulation results 
indicate that the MRM successfully gener-

ated a population mirroring the behavior 
of the original data. This capability paves 
the way for testing alternative setpoints for 
cyclone feed density and new mill feeds in 
subsequent studies, all while preserving the 
intricate variability of the circuit.

 

Unit Measured(A)

Pseudo-dynamic simulations

S1 MCM model

S2

Process variables 

Throughput t/h 114.95 115.0 115.1

Standard deviation 1.88 1.93 2.02

Coefficient of variation % 1.63 1.68 1.76

Cyclones feed density t/m³ 1.5806 1.581 1.582

Standard deviation (10−3) 2.91 2.94 3.21

Coefficient of variation % 0.190 0.186 0,20

Mill product (passing 106 µm) % 82.04(B) 81.87 81.48

Coefficient of variation % 1.61 1.59 1.42

Circulating load (%) 3.55(C) 3.27 3.21

Coefficient of variation % - 5.51 4.42

Nominal power kW 1057 1056 1057

Coefficient of variation % 0.23 0.45 0.43

Specific energy consumption kWh/t 9.18 9.19 9.19

(A) Plant database. (B) The mean of the online measurement of particle size in individual cyclone overflow. (C) Results from 

mass balance derived from the sampling data.

Table 4 – Summary of the pseudo-dynamic simulations (mean results).

In the second part of the validation, 
MRM was used in the S2 simulation  
(Table 4) to randomly calculate the evolu-
tion of the selected process variables (cy-
clone feed density and mill feed rate) over 
time, using the statistical model parameters 
(Table 3): mean to be maintained (setpoint), 
volatility, and regression parameter.

Statistical analysis was performed using 
histograms and normal distributions of the 
database and randomly estimated popula-
tions for mill throughput (Figure 4 – a and 
b) and cyclone feed density (Figure 4 – c and 
d). The analysis was performed to verify the 
MRM capacity to reproduce the behavior of 
the original data. The S2 simulation provided 

the mean and standard deviation results 
that were very close to the real data for the 
analyzed variables, and both populations 
presented similar normal distribution curves. 
The population of these measured and ran-
dom variables passed the Anderson–Darling 
normality test (p-value > 0.05), which is a 
requirement for MRM (Figure 4).

Figure 4 – Histogram and normal distribution for the measured data (a and c) and values estimated using 
MRM (b and d) in the S1 simulation for mill throughput and cyclone feed density. Normality test results indicated (p-value > 0.05).

(a)

(b)

(c)

(d)
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4. Conclusion

In short, the study developed and 
tested a pseudo-dynamic model to ac-
curately simulate the grinding process. 
Highlights include the fact that the 
proposed models underwent behavior 
replication tests, which proved their ef-
ficacy in simulating the grinding process. 

Additionally, the research presented a 
pseudo-dynamic model that combined 
PBM and MCM. This approach enabled 
the simulation of time-indexed random 
variables, resulting in outcomes with dis-
persion parameters that were comparable 
to the measured data. For future studies, 

the recommendation is to employ the 
developed tool for optimizing operational 
parameters and formulating effective 
control strategies for the grinding circuit. 
This approach allows the evaluation of the 
effects of deviations in grinding variables 
on downstream processes.

Figure 5 – Time evolution comparison of grinding circuit 
variables: S1 simulation vs. S2 (MCM) simulation vs. instrument measurements.
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