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ABSTRACT

OBJECTIVE: This study aims to propose a comprehensive alternative to the Bland-Altman plot 
method, addressing its limitations and providing a statistical framework for evaluating the 
equivalences of measurement techniques. This involves introducing an innovative three-step 
approach for assessing accuracy, precision, and agreement between techniques, which enhances 
objectivity in equivalence assessment. Additionally, the development of an R package that is 
easy to use enables researchers to efficiently analyze and interpret technique equivalences.

METHODS: Inferential statistics support for equivalence between measurement techniques 
was proposed in three nested tests. These were based on structural regressions with the 
goal to assess the equivalence of structural means (accuracy), the equivalence of structural 
variances (precision), and concordance with the structural bisector line (agreement in 
measurements obtained from the same subject), using analytical methods and robust approach 
by bootstrapping. To promote better understanding, graphical outputs following Bland and 
Altman’s principles were also implemented.

RESULTS: The performance of this method was shown and confronted by five data sets from 
previously published articles that used Bland and Altman’s method. One case demonstrated 
strict equivalence, three cases showed partial equivalence, and one showed poor equivalence. The 
developed R package containing open codes and data are available for free and with installation 
instructions at Harvard Dataverse at https://doi.org/10.7910/DVN/AGJPZH.

CONCLUSION:  Although easy to communicate, the widely cited and applied Bland and 
Altman plot method is often misinterpreted, since it lacks suitable inferential statistical support. 
Common alternatives, such as Pearson’s correlation or ordinal least-square linear regression, also 
fail to locate the weakness of each measurement technique. It may be possible to test whether 
two techniques have full equivalence by preserving graphical communication, in accordance 
with Bland and Altman’s principles, but also adding robust and suitable inferential statistics. 
Decomposing equivalence into three features (accuracy, precision, and agreement) helps to 
locate the sources of the problem when fixing a new technique.

DESCRIPTORS: Confidence Intervals. Statistical Inference. Data Interpretation, Statistical. 
Regression Analysis.
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INTRODUCTION

Bland and Altman’s1 paper, which has become well-known and is widely used in various 
medical fields, introduced a graphical approach to compare two measurement techniques 
using peak flow meters. This method has been used to compare modern peak flow meters2, 
DNA sequencing methods3, athletes’ performances4, blood pressure measurements5, muscle 
tone quantifications6, and validations of self-reported height and weight7. It has been 
referenced in over 35,000 scientific publications.

In short, Bland-Altman plots assess the 95% limit of agreement (LoA) given by a band from 
the mean difference ±1.96 standard deviation of the measurements of two techniques. If the 
range between the lower and upper LoA is clinically unimportant, the techniques are assumed 
to be equivalent8–10. More recently, confidence intervals were added into the upper and lower 
LoA11–15 to provide a tolerance range. However, this tolerance only provides  the band limits 
with a statistical test, not with an additional decision for technique equivalence. The Bland-
Altman plot method is, therefore, subjective16. Clinical importance is attributable by the 
researcher as a threshold, in situations such as the acceptance of a null hypothesis only by 
visual inspection of the graph, without any inferential statistical support or measurement 
of the equivalence level.

Due to a lack of statistical support, the equivalence approach led to misunderstandings 
and anecdotal data interpretation, sometimes contradicting the original author’s 
recommendation. It is often misinterpreted that “two exams are equivalent when the 
majority of data are within the band limits,”16,17 which is always true, ranging from 75% to 
100% independently of data distribution according to Chebychev’s inequality theorem18,19, 
or that “the points inside the band must be uniformly distributed,” which was never 
stated by the original authors. The Bland-Altman plot method is insufficient, as it only 
provides a visual decision.

Although widely used, the Bland-Altman plot method lacks a clear null hypothesis on method 
equivalence and, consequently, cannot guide statistical decision-making, and it relies on 
subjective judgment through visual inspection16. The available packages, in R language, are 
not sufficiently clear and do not provide a comprehensive solution to determine when two 
measurement techniques can be considered equivalent.

Our study applied a three-step statistical decision, allowing the researcher to determine 
if there are enough elements to reject the equivalence of two techniques. The solution 
includes three nested tests with p-values and robust statistical decisions by bootstrapping. 
This method was implemented into a freely distributable R package and the whole analysis, 
including statistics and graphical outputs, only requires one command line to be executed 
by the researchers.

METHODS

This investigation proposes the addition of statistical criteria to Bland and Altman’s plot 
method1. Since it is a purely theoretical approach, it was not submitted to an ethics committee.

The R package containing open codes and sample data is available for free and with 
installation instructions on the Harvard Dataverse20.

Rationale

We propose three steps to claim strict equivalence between measurement techniques: 
checking (1) the equivalence of structural means (equality of accuracy), (2) the structural 
variances (equality of precision), and (3) the agreement with the structural bisector line 
(equal measurements obtained from the same subject). Full equivalence can be assumed 
when none of the tests reject equivalence. This study considered a 5% significance level.
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At first, this statistical approach may seem somewhat convoluted because it occurs when 
researchers have only observed the data, and decisions depend on structural, non-observable 
values. The obscure term ’structural’ refers, in this context, to true values, estimated from 
a statistical approach necessary to purge observed measures from measurement errors21,22.

Regressions applied to all three tests are not crude, but rather statistical artifices that 
connect structural values with functional procedures, providing conclusions on accuracy, 
precision, and agreement. This approach combines scattered statistical theoretical results 
from 1879 to 201511,23–29. The tests are conceptually nested and propose inference based 
on solid mathematical foundation. The final test, which is also the most important one, 
assesses agreement with the bisector, demonstrating the reliability of the values obtained 
from the two measurement techniques applied to each individual. This test depends on 
the Deming regression11,16, which had its basic theorem developed over a century ago28. 
However, it would not make sense to authenticate such agreement if the two methods 
did not measure with equal precision—test 2, based on the theorem demonstrated by 
Shukla in 197324—and nor with the same accuracy, introducing a bias—test 1, based on 
Hedberg and Ayers in 201523.

Bootstrapping30 was also used to compute confidence intervals in addition to analytical 
tests. It was shown in graphics to support the researcher’s interpretation and to make 
it easier to communicate results. In our application, bootstrapping was represented by 
shadowed areas containing 95% of all resampled regressions, which is assumed to be the 
area containing the true populational regression.

The main concepts, balancing the connection between structural null hypotheses and their 
functional correspondences, are outlined in the following topics.

Observed and true variable values

Measurements provided from a reference technique A and candidate under assessment 
technique B (each technique was applied once to each subject), according to the physics 
error theory, resulted in:

B : y = Y + δ

A : x = X + ϵ                   (1)

in which

y and x …are independent pairs of observed measurements,

Y and X …are the true correspondent measurements,

δ and ϵ …are independent measurement errors with a null average.

These error terms appear because all measurement techniques have a certain degree of 
imprecision. Assuming that Y and δ, and X and ϵ are also statistically independent and 
that these errors have no preferential direction (null averages, E[δ] = 0 and E[ϵ] = 0), the 
mean of all observed values is equal to the mean of the true values (y– = Y– and x– = X–), which 
is demonstrated by their respective expected (E) values:

E[y] = E[Y  + δ] = E[Y ] + E[δ] = E[Y]

E[x] = E[X + ϵ] = E[X] + E[ϵ] = E[X]               (2)

Consequently, the observed mean difference between techniques is also equal to the 
structural bias (y– – x– = Y– – X–). These equalities allow the functional computation and 
structural hypotheses to correspond, reducing all three nested tests to two ordinary least 
square linear regressions and one Deming regression. The relationship between structural 
and functional tests will be described in the following topics.
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Test 1: accuracy

In the analysis of covariance (ANCOVA), Hedberg and Ayers applied a covariate with 
measurement error to test mean structural equality for these repeated measure designs23. 
This simple linear regression applies the differences between measurements obtained from 
the same subjects, yi − xi, and the centered value of the reference measurement, xi − x–.

The null hypotheses:

structural H0,1: E[X] = E[Y ] 

functional H0,1: α = 0

computing the regression yi − xi = α + β(xi − x–) + νi            (3)

in which νi is the error term.

By centering values on the x axis, by subtracting x– from each original value, xi, the intercept 
of a regression line, α, becomes more meaningful as it corresponds to the mean of y − x, while 
the slope, β, is not affected. This artifice allows us to assess the equivalence of measurement 
means from different techniques, with the intercept representing the mean difference. 
Analytically, the null hypothesis of no mean difference is not rejected when zero is in the 
95% confidence interval of the intercept.

Graphically, the regression intercept is the mean of y − x and located where the line crosses 
the y axis. The null hypothesis is (0, 0), meaning no difference between techniques. If 
bootstrapping shows (0, 0) outside the 95% confidence interval, the null hypothesis is rejected.

Test 2: precision

The verification of equal variability of measurement errors in two techniques is based on 
Shukla24 and was also independently adopted by Oldham26 without widespread application. 
The null hypotheses are:

structural H0,2: λ = V[δ] / V[ϵ] = 1

functional H0,2: ρ(x − y, x + y) = 0

computing the regression yi − xi = α + β(xi + yi) + θi             (4)

in which θi is the error term.

The structural null hypothesis computes lambda as the ratio between the variability of 
measurement errors. If the variability of errors is similar (λ = 1), the precisions of both 
techniques are similar.

It was demonstrated that a regression of y − x against x + y can detect unequal precisions, 
as the slope of the regression will not be null when the true value of λ ≠ 124,31. Analytically 
and graphically, the null hypothesis of equal precisions is rejected if a horizontal line cannot 
be fitted into the 95% confidence band defined by the functional regression. Note that 
when each technique is applied to each subject more than once, it requires correction for 
computing λ —which was implemented according to the NCSS Manual32. The axes proposed 
by Shukla are the same ones used in Bland and Altman’s original concept1, which shows 
that the original method only compares the precision between measurement errors and is 
not a full equivalence test.

Test 3: bisector line agreement

This test applies the Deming regression to verify if two measurement techniques measure 
the same values in the same subjects11,25,27–29. While the ordinary least square regression 
considers the independent variable x as free of measurement error, the Deming regression 
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reasonably takes errors in both measurement techniques into account. Linnet27 studied 
several regression methods, showing that the Deming regression is robust and performs 
better than the ordinary least square regression.

When true values measured by two techniques coincide, ordered pairs of these measures 
follow the true bisector line. Therefore, the null hypotheses are:

structural H0,3: Y = X or

Y – X = α + (β − 1) X, in which α = 0 and β = 1 

functional H0,3: E[y] = x

computing the regression yi − xi = α + (β − 1) xi + δi − βϵi (5)

in which δi and ϵi are error terms.

Contrary to the ordinary least square regression statistical, which considers β = 0, the Deming 
regression verifies if the slope of the regression line is equal to 1 (β = 1), which represents 
the bisector line agreement. In addition, β simultaneously appears as the regression slope 
multiplying x and as part of the regression overall error term (δ − βϵ). Transitively, it implies 
that x becomes correlated with the combined error, preventing the computation of an 
ordinary least square regression21,22,33–35

.

The Deming regression also depends on λ, estimated in the previous step, to compute 
the true X and Y values before the computation of the regression estimates. When the 
value of lambda is not assumed to be 1, it affects the band width. Analytically, the null 
hypothesis is rejected if α ≠ 0 and β ≠ 1. Since these two parameters are estimated 
together, the Bonferroni correction is applied to control the probability of a type I error 
and preserve test power (effective significance level is 2.5%). Graphically, two alternative 
statistical approaches were implemented for the bisector line agreement: the assessments 
of the 95% prediction ellipse and of the 95% confidence band of regression, both done 
by bootstrapping. In the first one, the null hypothesis is to be rejected if (β, α) is not 
inside the ellipse, in the second one, if the bisector line cannot fit inside the band. These 
methods test intercept and slope together and provide stronger statistical power than 
an independent assessment of these two factors.

Translations

The three tests were conducted using both analytical (based on p value) and graphical 
(based on bootstrapping) approaches. Due to differences in accuracy, there are cases 
in which the analytical approach indicates no rejection of the null hypothesis while 
the graphical approach shows lines outside the confidence bands during precision and 
bisector line agreement tests. This discordance can be attributed to bias in a particular 
technique, as shown in the examples of Figures 1 and 2 (which are, respectively, cases 
without and with bias). Therefore, a combination of analytical and graphical approaches 
is necessary for better interpretation of precision and agreement36, especially in the 
presence of biased means.

The bias in accuracy can be corrected by translating lines according to the amount of bias 
computed. This correction enables the analytical approach to align with the graphical one, 
positioning lines inside the confidence band obtained by bootstrapping. For a precision 
test, the null hypothesis is not rejected when a horizontal line shifted by the bias can fit 
into the 95% confidence band (as shown in the examples of Figure1 [top-right panel] and 
Figure 2 [central panel]). Similarly, in the bisector agreement test, non-rejection of the null 
hypothesis occurs when the lines that are parallel to the bisector line, translated by the 
bias range, can fit into the 95% bootstrapping confidence regression band (as shown in the 
examples of Figure1 [bottom-left panel] and Figure 2 [right panel]).
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RESULTS

We revisited five data sets: one from the original Bland and Altman data1 (case 1), three 
from Bland and Altman37 (case 2), and another one from data provided by Videira and 
Vieira38 (case 3).

Case 1

Bland and Altman1 proposed a graphical plot method which aimed to assess the equivalence 
of two peak expiratory flow rate (PEFR) measurement techniques: the Wright Peak Flow 
and Mini Wright Peak Flow meters. Our study, which involved 17 subjects, considered 
both of these instruments to be strictly equivalent. Figure 1 displays several statistical 
tests, including accuracy, precision, and bisector concordance, with p-values of 0.4782, 
0.6525, 0.6726 and 0.6456, respectively. The structural regression bands were obtained 
by bootstrapping. Results show the null hypothesis inside the 95% confidence interval 
for accuracy, within the 95% confidence band defined by the structural regression for 
precision, and also inside the 95% confidence band defined by Deming regression for 
bisector concordance (λ = 1.692). Additionally, the bottom-left panel shows the 95% 

Figure 1. Graphical representation from accuracy, precision, and bisector concordance tests showing that peak flow measurements from Wright 
and Mini PEFR are strictly equivalent. See text, case 1. A traditional Bland-Altman plot is depicted for comparison with the precision test.
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prediction ellipse, an alternative way to test slope and intercept together. A traditional 
Bland-Altman plot was also included for comparison; note that the axes are the same as 
those used in the precision test.

Case 2

Bland & Altman37 provided three other examples of ways to apply their graphical method.

(1) In a comparison between systolic blood pressure measurements taken by an observer and 
an automatic machine, a systematic bias towards the machine was detected (n = 85). While 
the authors concluded that equivalence could not be assumed in this case, due to a large 
interval range, our analysis showed that the observer and machine may be interchangeable 
after deducting the bias. The structural bias is represented by the 95% confidence interval 
above the diamond, but the measurements passed precision and bisector line agreement 
tests. The intercept is inside the 95% prediction ellipse, and the non-null intercept cannot 
be corrected by traditional analytical approaches (Figure 2).

(2) The second example compares how two techniques, Nadler and Hurley, estimate the 
percentage of plasma volume in blood (n = 99). The original authors found increasing bias 
towards Nadler’s technique, since it had greater average values. Two strategies were then 
proposed to verify equivalence: logarithm transformation and scaling Hurley multiplied by 
1.11. Figure 3 shows our approach, which confirms no equivalence between methods in any 
of the three tests (Figure 3, upper row). Logarithm transformation does not solve structural 
bias but leads to equivalences in precision and agreement lines (Figure 3, second row). The 
multiplication of Hurley values by 1.11 is a more successful strategy, with marginal failure 
for accuracy (Figure 3, third row). Using our approach, we found strict equivalence after 
multiplying Hurley values by approximately 1.1038, resulting in improved precision and 
agreement line tests (Figure 3, lower row).

(3) Bland and Altman1 compared fat content in human milk (n = 45) using enzymic hydrolysis 
of triglycerides and then the standard Gerber technique. They found that one technique 
overestimated smaller values and underestimated greater ones, thus requiring traditional 
lines to be adjusted into a slanting band formed by two straight lines, to accommodate these 
differences. Our proposal (Figure 4) naturally produced a slanted band, making adjustments 
unnecessary. Our results contradict the authors’ conclusion that the two techniques are 
equivalent in precision and agreement.

Case 3

Using questionnaires, Videira and Vieira38 compared anesthesiologists’ self-perception 
with their peers’ perceptions regarding their skills in deciding on the use of neuromuscular 

Figure 2. Comparison of systolic blood pressure measured by a human observer J and an automatic machine S showing a structural bias 
(overestimation by S) at accuracy test, and concordance at the precision test and bisector test.  See text, case 2(a).
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blocking drugs (n = 88). They found that self-perception and peer perception did not match; 
the subjects overestimated their abilities compared to their colleagues. Our approach 
(Figure 5) identified this bias as the “above-average effect” (tendency to consider oneself as 
better qualified) and also shows that the two perceptions are not equivalent.

Figure 3. Comparison of the percentage of plasma volume in blood provided by two different equations (Nadler and Hurley methods) 
using raw data (upper panels), logarithm transformation (second row), Hurley measurements x 1.11 (third row), and Hurley measurements 
x 1.1038. See text, case 2(b).
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DISCUSSION

Bland and Altman’s analysis emphasizes clinical significance, and their plots largely ignore 
statistical inference, relying on visual inspection to draw what Watson and Petrie regard 
as subjective conclusions16. Our contribution adds an objective statistical inference to this 
method and locates causes of non-equivalence by isolating accuracy, precision, and bisector 
agreement, but it still follows the original Bland and Altman idea, preserving graphical 
outputs that facilitate communication10.

Altman and Bland argued that “the use of correlation is misleading” and insufficient 
for comparing clinical measurements39. They also emphasized that “comparability of 
techniques of measurement is an estimation problem: statistical significance is irrelevant”40. 
We respectfully disagree from the latter statement because it is necessary to compare related 
measurement techniques with proper confidence intervals. In fact, we looked for statistical 
treatment comparing any two related measurement techniques and for a proper method 
to compute confidence intervals, to replace non-informative Chebychev’s intervals with 
or without additional LoA flexibilization or adaptations, which create the slanted limits of 
agreement that these authors erroneously proposed41.

In this study, we analyzed five published data sets using the Bland and Altman plot 
method. The three-step tests we proposed implemented statistical support and were 
able to locate the sources of non-equivalence between techniques. In the case of peak 
f low expirometers1, for instance, we found that there was strict agreement in accuracy, 
precision, and agreement line. The other three data sets37 are examples of solvable 

Figure 4. Comparison of the content of fat in human milk measured by glycerol released by enzymic hydrolysis of triglycerides (Trig) and by 
the standard Gerber method. These two methods measured equal average (left panel), but are not strictly equivalents in precision (central 
panel) or by bisector concordance (right panel). See text, case 2(c).
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equivalence between methods; our three-step tests, however, provide solutions more 
effectively. Finally, for the data set of Videira and Vieira’s38study, our approach showed 
the conceptual importance of nested tests, demonstrating that correcting the bias 
alone to assess the mean difference would result in a meaningless decision from the 
bisector line (third test) due to discrepancies in precision (second test). Without taking 
into account the nesting nature of our approach, one could have accepted equivalence 
despite the differences in precision.

There are other packages that address the Bland-Altman plot method in R: blandr, MethComp, 
MethodCompare, and mcr. The blandr42 package provides various ways to display the 
traditional plot, including limits of agreement (LoA) confidence intervals. Just like in 
the original method, the decision in blandr is solely based on visual inspection, and the 
Deming regression, which we consider to be the fundamental part for assessing complete 
equivalence between two measurement methods, is not applied. Interestingly, the example 
in the blandr.method.comparison function, from the blandr package, states that “Paired 
t-tests evaluate significant differences between the means of two sets of data. They do not 
test agreement, as the results of a t-test can be hidden by the distribution of differences,” 
“Correlation coefficients only tell us the linear relationship between 2 variables and nothing 
about agreement,” and “Linear regression models are conceptually similar to correlation 
coefficients, and again tell us nothing about agreement.” However, despite these correct 
statements about the limitations of these statistics, all three insufficient statistics were 
still computed in the example.

MethodCompare43 is a package with a small set of functions and aims to compare bias 
with precision. The author of this package, Patrick Taffé, was cited in this article9,14, and he 
aims to improve the confidence intervals of limits of agreement. Respectfully, we believe 
that studies focused on LoA11–15 do not address the fundamental issue of equivalence 
between methods. They are improvements of a secondary aspect of the Bland-Altman 
plot method, which already faces the problem of dealing with an uninformative interval, 
as discussed below.

MethComp44 implements several maneuvers accumulated in the literature in an attempt 
to improve the Bland-Altman plot method. This package uses the Passing and Bablok 
regression (PBreg), a non-parametric regression that has the same problem as the OLS 
regression: it does not consider the measurement error of one of the variables into account 
and, therefore, is also not the appropriate solution. This package has several functions with 
large numbers of parameters. Although it is evident that the author invested a lot of time 
and care in developing the package, there are no obvious tests to verify the bias or precision 
of its methods, and these evaluations are necessary for the Deming regression. Although 
this package includes the Deming regression, it does not display it with confidence bands 
and focuses on comparing it with the OLS regression, which (as the original authors of the 
Bland-Altman plot method themselves state39) should not be chosen. The parameters of 
the package request the value of lambda, with a default of 1, but do not provide resources 
to estimate it. Additionally, intercept and slope are not estimated together, which may 
incorrectly lead to the non-rejection of equivalence. This issue is illustrated in the second 
row of Figure 3. There is a small dotted rectangle drawn around the elliptical region of 
the agreement test. If the slope and intercept are not considered together, any point 
within this rectangle (i.e., any slope within its left and right limits, and any intercept 
within its bottom and top limits) would result in a statistical decision of non-rejection 
of the null hypothesis. However, the non-rejection decision should only be made when 
the point (1,0) is within the elliptical region. In the example given, non-rejection was only 
defined due to translation. It is important to note that without considering translation, 
MethComp would not be able to detect that the Deming regression line did coincide  
with the bisector.

We identified the package mcr45 as the closest one to ours. However, its approach also has 
limitations. This package includes a simple Bland-Altman plot without limits of agreement 
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(LoA) using the plotDifference function. It also includes the Deming regression with the 
mcreg function. However, similar to MethComp package, it uses a default lambda value of 
1 without providing guidance on its estimation, which is an issue. The approach to bias in 
the mcr package is somewhat incomplete and misguided. It uses the observed bias (y - x) as 
the dependent variable and the observed reference measurement values as the independent 
variable, without centering it by its mean value (x − x-). Then, as shown in the examples of 
the plotBias function, the mcr package lacks a clear statistical test for decision-making 
and uses several variations of the Deming regression, which should be performed with true 
values rather than observed values. The documentation of this function and of its regression 
variants is obscure. The author was apparently unaware of the theoretical foundation of 
Hedberg and Ayers23, which could have been used to develop a statistical test for accuracy. 
Furthermore, the package has no functions to verify the equivalence of precisions, which is, 
in practice, more important and more difficult to address than the bias between a surrogate 
method and a reference method.

To our knowledge, this is the first time a single procedure brings together and applies the 
results of Hedberg and Ayers23, Shukla24, Shoukri31, and Linnet27, and provides a theoretical 
basis for statistics related to accuracy, precision, and Deming regression, respectively. 
This study also implemented analytical methods, bootstrapping, and easily interpretable 
graphical outputs. Most importantly, although each function in our package can be used 
independently (examples are detailed in the package documentation), we have created a 
coordinating function that allows researchers to use a single command to generate a complete 
report in plain text, HTML, or PDF from nothing but an Excel or similar file containing 
data in a data frame. The elements in Figure 1, for instance, were extracted from the report 
generated using the following command:

out  <-  eirasagree::AllStructuralTests(eirasdata::PEFR,
 reference.cols=c(1:2),
 newmethod.cols=c(3:4),
 alpha=0.05,
 out.format=”html”)

In addition, eirasagree provides treatment for repeated measures, which is not done by the 
other mentioned packages. It is common for researchers to take multiple measurements 
using the same technique when comparing a new method to replace an established one. 
Depending on whether unique or repeated measures are provided, eirasagree calculates 
the value of lambda and automatically uses it in subsequent tests. This feature enhances 
the package’s ability to handle repeated measurements effectively.

One of the most significant criticisms of both the traditional Bland-Altman plot method 
and the discussed packages is the reliance on visual inspection for decision-making. 
In this regard, eirasagree innovates by automating the recognition of lines or points 
within the regions of bands or ellipses, providing decision indicators for the users. This 
eliminates the subjective aspect of visual interpretation and increases objectivity in the 
decision-making process.

Another innovative concept of line translations was also introduced, allowing the assessment 
of precision and bisector agreement even in the presence of unequal means between two 
measurement techniques. Biased techniques that provide equal precision and agreement may 
still be useful with a simple calibration or correction. Reversely, if a surrogate technique is 
unbiased but less precise, it could be eligible as a screening step; however, if this imprecision 
imposes risks to patients, the technique must be reviewed. In essence, the decomposition of 
accuracy, precision, and agreement with the bisector line analysis can guide researchers in 
determining where to focus their efforts to improve a new technique when full equivalence 
is not achieved.

Notably, the axes used in the precision test are the same as those used in the original 
Bland-Altman plot method. Contrary to the belief of many users, the original method, 
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even under optimal conditions, aims to compare the precision of two measurement 
techniques, not their equivalence. However, this comparison is not possible because the 
original Bland-Altman bands (i.e., the so-called limits of agreement, LoA) do not represent 
a confidence interval; they merely correspond to the limits of a Chebyshev interval18,19. 
Chebyshev’s inequality theorem provides information about the percentage of data that 
is guaranteed to fall within a given interval, regardless of probability distribution. For 
instance, in a normal distribution, approximately 95% of the data falls within plus or minus 
two standard deviations around the mean, while according to Chebyshev’s theorem, a 
minimum of 75% is guaranteed for any distribution. For comparison, Figure 1 illustrates 
the original Bland-Altman bands and highlights that decision-making cannot be solely 
based on whether or not the majority of points fall within the bands, because this is always 
the case. Additionally, these bands cannot provide information about any regression 
slopes, as they are always horizontal. The correct approach is to use the hyperbolic-shaped 
95% confidence band, as shown in the precision tests on Figures 1, 2, 3, 4, and 5, which 
allows for the assessment of the existence of a slope-zero line, considering the precision 
between the two measurement methods. These bands can be inclined depending on the 
precision relationship of the methods, thus leading to the rejection of the null hypothesis 
of precision equivalence.

To compare two techniques, non-rejection of the null hypothesis is not enough, and the 
acceptance of equivalence (the acceptance of the null hypothesis) is conceptually necessary. 
Power computation obtained from a sample a posteriori is meaningless46, which means that 
planning sample size along with study design a priori is crucial to preserve statistical power. 
Budd et al.47 proposed at least 100 observations to claim the consistency of a candidate 
measurement procedure applicable to different populations (item 6.3, page 12). This number 
lowered to 40 after an analysis in more controlled laboratory conditions (item 7.2, page 15). 
However, this same source deals with more than a measure of each technique from the 
same patient, with average or median (which we disagree): it affects the computation of λ, 
wastes information, and, consequently, raises an ethical problem when invasive techniques 
are under assessment. Linnet also approached this issue, stating that sample sizes between 
40 and 100 usually need to be reconsidered48 and that the ideal number depends on the 
quotient between the maximum and minimum measurements, proposing numbers ranging 
from small sample sizes to those in the order of 500 pairs of measurements (with mention 
to numbers up to thousands). Some classic Bland and Altman examples applied here and 
in many other published studies may be below the limit and only allow the rejection/non-
rejection of null hypotheses, lacking power to define true equivalence along the three 
statistical steps presented in this study.

CONCLUSION

By preserving Bland and Altman’s principle of graphical communication and implementing 
robust and suitable inferential statistics, it is possible to test whether two techniques 
have full equivalence. This approach decomposes equivalence into accuracy, precision, 
and agreement for measurement techniques, which helps find the source of problems 
when full equivalence does not verify, making it possible to fix new techniques. The 
use of the selected statistical methods using R provides automatized and standardized 
outputs of an otherwise complex calculation, allowing for better communication  
among researchers.
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