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ABSTRACT
An alternative method for the quantifi cation of sulphametoxazole (SMZ) and trimethoprim (TMP) using 
diffuse refl ectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression 
(PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) 
were applied to select a spectral range that provided the lowest prediction error in comparison to the 
full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. 
The ranges of concentration considered were 400 to 900 mg g-1 SMZ and 80 to 240 mg g-1 TMP. Spectral 
data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Refl ectance Infrared 
Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance 
liquid chromatography (HPLC). The results obtained from the root mean square error of prediction 
(RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim 
(TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of 
pharmaceutical formulations. The selected interval algorithm allowed building regression models with 
minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1 for SMZ and 4.88 
mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.
Key words: chemometrics, diffuse reflectance infrared Fourier transform spectroscopy, green analytical 
method, high performance liquid chromatography, interval partial least squares (iPLS), synergy partial 
least squares (siPLS).
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INTRODUCTION

Quantitative analysis of pharmaceutical samples 
by spectroscopy is typically accomplished by uni-
variate regression methods. Infrared (IR) spectros-

copy is generally only able to provide qualitative 
and semi-quantitative analysis of pharmaceutical 
samples due to deviations from Beer’s law 
as a result of instrument and sample effects. 
However, the developments of reliable FTIR 
instrumentation and strong computerized data-
processing capabilities have greatly improved the 
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performance of quantitative IR work. Thus, modern 
infrared spectroscopy has gained acceptance as 
a reliable tool for quantitative analysis (Settle 
1997). Different accessories with diffuse or 
attenuated reflectance operating in mid-infrared 
and refl ectance or transmittance mode operating 
in near infrared enabled the analysis of samples in 
many different forms such as solutions, powders 
and intact tablets (Kipouros et al. 2006, Armenta et 
al. 2005, Boyer et al. 2006, Silva et al. 2009, 2012, 
Ferreira et al. 2013). In some instances, previous 
sample treatment is unnecessary and the results are 
obtained in real time (Lin et al. 2006). Quantitative 
analysis involving infrared spectroscopy has been 
applied to pharmaceutical samples in association 
with multivariate methods (Bunaciu et al. 2010). 
Partial Least Square (PLS) regression is the most 
popular multivariate calibration technique to build 
prediction models using spectroscopic signals 
(Lavine and Workman 2010). This association is 
very important now, since infrared spectroscopy 
technology may be a quick, non-destructive and 
environmentally friendly method in comparison 
to traditional analyses methods. In addition, this 
procedure is considered low time-consuming and 
requires only few milligrams of sample (Ferrão and 
Davanzo 2005). There are a whole series of problems 
in quantitative analysis for which multivariate 
calibration is appropriate, such as treatment for 
spectra with strong band overlapping. However, 
some spectral regions may contain information 
due to other analytes, non-modeled interferences, 
background variations and interactions, which 
degrade model accuracy (Hemmateenejad et al. 
2007). 

Recent applications have been published 
showing that spectral region selection using 
appropriate algorithms can signifi cantly improve 
the performance of these full-spectrum calibration 
techniques, avoiding non-modeled interferences 
and building a well-fi tted model (Lee et al. 2012, 
Nørgaard et al. 2005, Friedel et al. 2013). In practice, 

multivariate regression model optimization is based 
on the identifi cation of a complete data subset that 
will produce the lowest prediction error (Chen et 
al. 2008). Several approaches have been proposed 
for selection of optimal set of spectral regions for 
multivariate calibration such as genetic algorithms, 
interval PLS (iPLS) and synergy PLS (siPLS) (Silva 
et al. 2009, Friedel et al. 2013, Leardi and Nørgaard 
2004, Navea et al. 2005, Bogomolov and Hachey 
2007, Menezes et al. 2014, Ruschel et al. 2014). 
Interval PLS allows the construction of models 
with a spectral interval, and Root Mean Square 
Error of Cross Validation (RMSECV) values can 
be used as the criterion to evaluate the prediction 
ability of this interval. However, the exclusion of 
intervals with higher RMSECV values can cause 
the loss of useful information. Thus, advanced 
regression algorithms like siPLS can be applied to 
fi nd favorable interval combinations for calibration. 
Spectroscopy procedures involving multivariate 
calibration have received increasingly wider 
applications in pharmaceutical analysis (Bodson 
et al. 2006, Blanco et al. 2007, Garcia-Reiriz et al. 
2007, Müller et al. 2011, Li et al. 2012, Ferreira 
et al. 2013). However, mid-infrared (MIR) in 
combination with multivariate calibration is under-
utilized in pharmaceutical analysis in comparison 
to other spectroscopic techniques (Lundstedt-Enkel 
et al. 2006, Moros et al. 2007). 

One of the most interesting pharmacological 
groups that can be analyzed involving multivariate 
calibration methods are the antimicrobial 
compounds. These compounds are usually pharma-
ceuticals combined and, prior to be analyzed, 
require a separation step. Sulphamethoxazole 
(SMZ) is a sulfonamide used in combination with 
trimethoprim (TMP) in a single pharmaceutical 
product to treat infections such as bronchitis, 
middle ear infection, urinary tract infection, 
and traveler’s diarrhea (O’Neil 2006). The 
structural formulas of the sulphamethoxazole and 
trimethoprim are shown in Figure 1. Quantifi cation 
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of SMZ and TMP in pharmaceutical preparations 
has been described using the spectrophotometric 
method based on red-colored product formation 
by diazotization of sulphonamides (Nagaraja et 
al. 2002), the fl ow injection systems (Tomšů et al. 
2004), high performance liquid chromatography 
(Akay and Ozkan 2002, Goulas et al. 2014), second 
derivative spectrophotometry (Granero et al. 2002), 
adsorptive stripping voltammetry (Carapuça et al. 
2005) and multivariate methods (Ni et al. 2006, 
Cordeiro et al. 2008). 

Pharmacopoeial methods list HPLC as the 
offi cial assay procedure for quality control in phar-
maceutical preparations (USP 2007). In the present 
work, DRIFTS quantification of commercial 
tablets containing SMZ and TMP were presented. 
Interval Partial Least Square (iPLS) and Synergy 
Partial Least Square (siPLS) were applied to select 
a spectral range that provided the lowest prediction 
error in comparison to the full-spectrum model.

mg of SMZ and TMP per tablet, respectively) from 
nine manufactures (named commercial samples) 
were purchased from local drugstore or acquired by 
means of donation from pharmaceutical industries. 
SMZ and TMP certifi ed reference materials were 
acquired from Brazilian Pharmacopoeia (batches 
1010 and 1011 for SMZ and TMP, respectively). 
Methanol, acetonitrile and triethylamine were 
HPLC grade. For building of the clusters by 
hierarchical cluster analysis (HCA), the Euclidian 
distance and incremental linkage for were used. To 
carry out the HCA Pirouete® (Infometrix) software 
was used. For the selection of the calibration and 
the validation sets was employed The calibration set 
was constructed with thirty- two synthetic samples 
and nine commercial samples and the prediction 
set was constructed using seventeen synthetic 
samples and six commercial samples. Synthetic 
and commercial samples were prepared by powder 
mixing in a cryogenic mill Spex Certiprep (model 
6750 Freezer Mill, Metuchen, EUA). A time period 
of 2 min was enough to mix each sample, which 
was ground up to particle sizes smaller than 80 μm.

TABLE I
Synthetic samples used in calibration and prediction sets.

Samples SMZ (mg g -1) TMP (mg g -1) Excipients (mg g -1)
1c 400 120 480
2c 400 140 460
3c 400 160 440
4c 400 180 420
5c 400 200 400
6c 400 240 360
7c 600 80 320
8c 600 120 280
9c 600 140 260
10c 600 160 240
11c 600 180 220
12c 600 200 200
13c 600 240 160
14c 700 80 220
15c 700 120 180
16c 700 140 160

Figure 1 - Sulphamethoxazole (A) and trimethoprim (B) 
structural formulas.

MATERIALS AND METHODS

MATERIALS AND SAMPLE PREPARATION

SMZ (batch 22960805) and TMP (batch 200504246) 
bulk drugs were purchased from Henrifarma (São 
Paulo, Brazil) and used for the preparation of 
synthetic samples. Forty-nine formulations (named 
synthetic samples) containing SMZ (400 to 900 
mg g-1 range), TMP (80 to 240 mg g-1 range) and 
diluent (starch and magnesium stearate (99:1)) were 
prepared in laboratory, as shown in Table I. Fifteen 
formulations of commercial tablets (400 and 80 
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APPARATUS AND SOFTWARE

A Nicolet Magna 550 spectrometer (Nicolet 
Instrument Co., Madison, WI) was used for all the 
experiments. All spectra were recorded from 4000 
cm-1 to 600 cm-1 with 16 scans and spectral resolution 
of 4 cm-1. This instrument was equipped with an 
EasiDiff® diffuse refl ectance sampling accessory 
(Pike Technologies Inc., USA). For DRIFTS data 

acquisition, 34.0 ± 0.3 mg of solid sample was 
placed onto the accessory and its spectrum was 
recorded without any dilution in KBr (Wu et al. 
2010). For the background spectrum, we used only 
KBr grade spectroscopic. For each sample, three 
spectra were acquired and the average spectrum 
was used for building the multivariate models. 

Data were handled using Matlab software 6.5 
version (The Math Works, Natick, USA). For PLS 
multivariate calibration models, the “PLS Toolbox” 
2.0 version was used (Eigenvector Technologies, 
Manson, USA). The iToolbox for Matlab was 
used for the variable selection and the multivariate 
model development (Nørgaard et al. 2000). 
Software program was run on an IBM-compatible 
Intel Pentium 4 CPU 3 GHz and 2 Gbytes RAM 
microcomputer. The spectral band was divided into 
10, 25 and 50 intervals for evaluation of the models 
generated from iPLS and siPLS algorithms. The 
differential compaction degree and particle size may 
lead to baseline variations and artefacts because of 
physical light scattering, therefore, multiplicative 
scatter correction (MSC) was employed to reduce 
this scattering effect. The spectra of samples were 
preprocessed by mean centering. A statistical F test 
(α = 0.5%) was introduced in order to show if there 
were significant differences between prediction 
errors of the constructed models.

HPLC REFERENCE METHOD

SMZ and TMP content was carried out using HPLC 
procedure according to the method described in 
the United States Pharmacopoeia (USP 2007). 
This procedure was chosen as reference and it 
was performed with a HPLC system consisting of 
Agilent 1100 Series system. Commercial tablets 
were fi nely powdered. A mass corresponding to 160 
mg of sulphamethoxazole and 32 mg trimethoprim 
for each formulation was accurately weighed and 
dissolved in 100 mL of methanol. The sample 
preparations were subjected to sonication using an 
ultrasonic bath for fi fteen minutes. An aliquot of 5 

Samples SMZ (mg g -1) TMP (mg g -1) Excipients (mg g -1)
17c 700 160 140
18c 700 200 100
19c 700 240 60
20c 800 80 120
21c 800 120 80
22c 800 140 60
23c 800 160 40
24c 800 180 20
25c 800 200 0
26c 850 80 70
27c 850 120 30
28c 850 140 10
29c 850 150 0
30c 900 80 20
31c 900 90 10
32c 900 100 0
33p 500 125 375
34p 500 175 325
35p 500 220 280
36p 650 100 250
37p 650 150 200
38p 650 175 175
39p 650 220 130
40p 750 100 150
41p 750 125 125
42p 750 150 100
43p 750 175 75
44p 750 220 30
45p 825 100 75
46p 825 125 50
47p 825 175 0
48p 875 100 25
49p 875 125 0

Csynthetic samples used in calibration set.
p synthetic samples used in prediction set.

TABLE I (continuation)
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mL of each sample was added to 50 mL volumetric 
fl asks and the mobile phase was used to complete the 
volume. All these determinations were performed 
in triplicate for synthetic and commercial samples.

MULTIVARIATE ANALYSIS

Multivariate chemometric methods were applied 
to obtain quantitative information from the 
measurements. Partial Least Square Regression 
was applied to DRIFTS data to build calibration 
models, enabling prediction of SMZ and TMP 
amounts in pharmaceutical preparations. The 
Root Mean Square Error (RMSE) was calculated 
according to the equation 1 (Geladi et al. 2004):
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Where: ŷi is the predicted value for the test 
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Where: ŷi is the predicted value for the test set 
sample i, yi the measured value for the test set sample 
i. The iPLS models were built with the spectrum 
divided into 10, 25 and 50 intervals. The iPLS 
routine generated graphical information indicating 

the optimal number of latent variables used in each 
interval model, and RMSECV values. In this case, 
the subinterval that presented the lowest RMSECV 
values was selected. Synergy PLS models were 
constructed with the spectrum set divided into 
10, 25 and 50 intervals and combinations from 
two to fi ve intervals. The combined subintervals 
that presented the lowest RMSECV values were 
selected. The systematic error (“bias”) and the 
Standard Deviation of Validation (SDV) were 
calculated from equations 3 and 4, respectively 
(ASTM E1655-05 2005): 

n

yy
bias

n

i
ii∑

=

−
= 1

)( 

 

(3)

( )[ ]
1

1

2

−

−−
=

∑
=

n

biasyy
SDV

n

i
ii


 

(4)

Thereafter, the t-test was applied, according to 
equation 5 (ASTM E1655-05 2005): 

SDV
nbias

tsist =
 

(5)

The systematic error was not considered 
significant for the tsist values lower than critical 
value at alpha = 0.05 and df = n-1. 

Results obtained by DRIFTS for SMZ and 
TMP quantification in commercial tablets were 
compared with the interval permitted by Brazilian 
Pharmacopoeia (93-107% declared value).

RESULTS AND DISCUSSION

SELECTION OF CALIBRATION AND VALIDATION SAMPLES

The variations in the formulations could impose 
quite a challenge for the development of the 
universal model. Although the drugs in the tablets 
are the same, the types and amounts of excipients 
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in their formulations can vary considerably as per 
manufacturer products. If careful considerations are 
made when selecting the representative calibration 
sample set that will cover these variations, 
the universal model should be achievable. A 
Hierarchical Cluster Analysis (HCA) was then 
performed for a representative calibration and 
prediction sets for different samples (synthetic and 
commercial samples).

FULL-SPECTRUM PLS MODEL

Figure 2 shows the SMZ and TMP spectra used 
for the preparation of the synthetic samples. These 

spectra show signals (SMZ signals: N-H stretch 
3482, 3395 and 3315 cm-1, =C-H stretch 3160 cm-1, 
overtone aromatic p-disubstituted 1771 cm-1, C=N 
stretch isoxazole ring 1634 cm-1, C=C aromatic 
stretch 1475 cm-1, O=S=O stretch 1317 and 1189 
cm-1, C-H aromatic p-disubstituted 840 cm-1; TMP 
signals: N-H stretch 3475 and 3319 cm-1, C-H 
stretch 2935 and 2848 cm-1, C=C aromatic stretch 
1480 cm-1, C-O stretch 1243 and 1046 cm-1, C-H 
aromatic substituted 838 cm-1) corresponding to the 
aromatic rings (in this case heteroaromatic) for the 
pharmaceutical compounds used.

Figure 2 - DRIFTS spectra of sulphamethoxazole (A) and trimethoprim (B).

Initially, in order to have a measurement of 
the quality of the variable selection algorithms, as 
well as the effects that pretreatment, models were 
built using DRIFTS full-spectrum information. 
Full-spectrum PLS models were obtained with 

fourteen and eight latent variables for spectra with 
or without pretreatment, and results are shown 
in Tables II and III. Through RMSEP value was 
calculated for the accuracy of the results obtained 
with DRIFTS technique. 



An Acad Bras Cienc (2016) 88 (1)

 GREEN METHOD FOR QUANTIFICATION OF SULPHAMETHOXAZOLE AND TRIMETHOPRIM 7

When the results with and without pretreatment 
were compared, the number of latent variables 
increase for the models without pretreatment. The 
RMSECV and RMSEP values also increased for 
the models without pretreatment. These results 
demonstrate the necessity of pretreatments of the 
spectral data to build a multivariate regression 
models. On this basis in other tables will be 
presented only the results that employ them 
preprocessed spectral data. 

SULPHAMETHOXAZOLE iPLS MODELS

The principle behind the interval PLS algorithm 
is to split the spectrum into smaller equidistant 
regions and develop models for each subinterval. 
Thereafter, the subintervals RMSECV are 
compared to full-spectrum RMSECV values. The 
results are shown in Table III.

Interval PLS plots RMSECV values for each 
interval selected and the RMSECV values for the 
full-spectrum model using eight latent variables 
are shown in Figure 3. Interval of number 9 for 
model PLS with 10 intervals (iPLS10) produced 

the lowest RMSECV but did not produce RMSEP 
lower than the full-spectrum PLS model. Problems 
associated with overfitting were present in this 
model, which led to higher errors than the ones 
generated by the global model. This fact can be 
due to the lack of robustness of these models 
which, despite producing RMSECV in the same 
order as the global model, did not have enough 
information to build models with low prediction 
errors (Faber and Rajkó 2007). It is possible that 
the most important spectral information for the 
regression are not contiguous. In this case the 
selection of a single range is insuffi cient, leading to 
increased error in prediction (Friedel et al. 2013). 
Moreover, the calibration using the full spectrum 
may include non-informative spectral regions 
making the obtained model more vulnerable to 
noise. In this case, a judicious selection of spectral 
regions would improve the predictive ability of the 
PLS model (Lee et al. 2012). Therefore, variable 
selection by siPLS was implemented to verify if the 
combination of more than one interval would result 
in models with better predictive capacity.

TABLE II
Statistical results to iPLS calibration models and full-spectrum PLS model without pretreatment for the SMZ.

Model SMZ VNa Intervals LVsb RMSECV SMZ (mg g-1) R2
cal RMSEP SMZ (mg g-1)

PLS 1764 all 14 24.16 0.985 21.12
iPLS10 175 9 9 26.74 0.964 27.44
iPLS25 70 17 7 28.81 0.834 33.12
iPLS50 34 34 5 30.09 0.716 33.21

aVN: total number of variables. 
b LVs: latent variables.

TABLE III
Statistical results to iPLS calibration models and full-spectrum PLS model for the SMZ.

Model SMZ VNa Intervals LVsb RMSECV SMZ (mg g-1) R2
cal RMSEP SMZ (mg g-1)

PLS 1764 all 8 23.29 0.999 16.99
iPLS10 175 9 9 21.74 0.979 20.91
iPLS25 70 17 2 27.46 0.954 31.85
iPLS50 34 34 2 29.86 0.634 34.21

a VN: total number of variables.
bLVs: latent variables.
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SULPHAMETHOXAZOLE siPLS MODELS

The siPLS algorithm principle is to split the data 
set into a number of intervals (variable-wise) and 
to calculate all possible PLS model combinations 
of two, three or more intervals. Thereafter, the 
combined subinterval RMSECV is compared to 

full-spectrum RMSECV values. The spectrum 
was divided into 10, 25 or 50 intervals combined 
in up to 5 subintervals. The best results were 
achieved when the spectrum was split into ten 
intervals and the intervals of number 6, 7 and 10 
were selected, as shown in Table IV. For this siPLS 
model, results showed good correlation between 

Figure 3 - Cross-Validated Prediction Errors (RMSECV) values for full-spectrum model 
and interval models (bars) for the SMZ determination using PLS and iPLS algorithms 
(dotted line and numbers above interval numbers refer to full-spectrum RMSECV and 
latent variables used in each model, respectively).

TABLE IV
Statistical results to siPLS calibration models and full-spectrum PLS model for the SMZ.

Model SMZ VNa Intervals LVsb RMSECV SMZ (mg g-1) R2
cal RMSEP SMZ (mg g-1)

PLS 1764 all 8 23.29 0.988 16.99
siPLS10 350 6 and 8 7 14.97 0.997 13.25

siPLS10* 525 6, 7 and 10 4 15.28 0.996 13.03
siPLS10 700 3, 6, 7 and 9 10 13.79 0.999 23.43
siPLS10 875 1, 5, 6, 8 and 9 7 15.06 0.997 13.57
siPLS25 140 15 and 20 7 13.16 0.995 27.86
siPLS25 210 15, 20 and 22 6 13.75 0.996 22.88
siPLS50 70 30 and 39 5 16.32 0.974 25.43
siPLS50 105 30, 34 and 47 6 12.60 0.990 17.86

aVN: total number of variables.
bLVs: latent variables.
*selected model.
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reference and predicted values indicated by a 
correlation coeffi cient of 0.994, as shown in Figure 
4. The selected intervals included the regions of 
1,960 – 2,300 cm-1 (interval 6) and 1,620 – 1,960 
cm-1 (interval 7). Both intervals correspond to 
harmonic bands by aromatic ring (Colthup et al. 
1990). Interval 10 (600 - 939 cm-1) corresponds to 
out-of-plane N-H bending vibration. On the whole, 
the combination of intervals 6, 7 and 10 by siPLS 
algorithm, reduced RMSECV and RMSEP values. 
Therefore, it was possible to fi nd a narrow region 
for SMZ determination with small prediction 
errors; reduced variable numbers (525 variables 
compared to 1,764 used in the full-spectrum model) 
and reduced latent variables (4 LV compared to 8 

LV used in the full-spectrum model) resulting in a 
more robust model with better predictive power. 
Average prediction results, and RMSEP for the 
selected siPLS calibration models, are shown in 
Table V. The siPLS model using intervals 6, 7 
and 10 resulted in low Relative Standard Error of 
Prediction (RSEP = 1.77%), suggesting that the 
method used is accurate as also shown in Table V. 
The errors calculated for the prediction samples 
showed random behavior as shown by this model 
with insignifi cant systematic error (bias = 1.77 and 
tsist <tcrit). For a subset of commercial samples, no 
signifi cant trend was observed (bias = 1.29 and tsist 
<tcrit), which shows that the systematic error for the 
model may be considered insignifi cant. 

Figure 4 - Reference HPLC values versus predicted SMZ values for siPLS 
model using intervals 6, 7 and 10 and 4 latent variables.

TABLE V
Results of average prediction values for the better siPLS models.

Samples
SMZ TMP

Reference HPLC method
(mg g -1)

DRIFTS method
(mg g -1)

Reference HPLC method
 (mg g -1)

DRIFTS method
(mg g -1)

1S 503.59 499.04 175.73 169.99
2S 503.59 500.52 220.91 217.80
3S 654.67 650.59 100.41 93.37
4S 654.67 657.72 150.62 159.36
5S 654.67 638.90 220.91 222.82
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TRIMETHOPRIM iPLS MODELS

Figure 5 shows the central iPLS plots, the 
RMSECV values for each interval selected (bars) 
and the RMSECV values for full-spectrum model 
(line) using four latent variables. Table VI shows 
the statistical indicator for TMP iPLS calibration 
models using the spectrum subdivided into 10, 
25 and 50 intervals. The models were developed 
from the division of the spectrum into 10 and 25 
selected intervals in a similar region (941-1280 
and 1110-1250 cm-1), showing that this region is 
suffi cient to create a model for drug quantifi cation. 
For these regions does not occur a significant 
increase in RMSECV value compared to the value 
of the global model, but the RMSEP value and the 
number of variables have been reduced. As in the 
previous case, siPLS was implemented to verify if 

the combination of more than one interval would 
result in models with better predictive capacity.

TRIMETHOPRIM siPLS MODELS

The algorithm siPLS was implemented using the 
spectrum subdivided into 10, 25 or 50 intervals 
combined in up to 5 subintervals. Table VII shows 
the statistical indicators for TMP siPLS calibration 
models. The results showed a good correlation 
between reference and predicted values, indicated 
by a correlation coeffi cient of 0.983, as shown in 
Figure 6. 

The lowest RMSEP value was obtained 
when the spectrum was split into 25 intervals 
and intervals 15 and 17 were combined. For this 
siPLS model, the results showed a good correlation 
between reference and predicted values, indicated 

Samples
SMZ TMP

Reference HPLC method
(mg g -1)

DRIFTS method
(mg g -1)

Reference HPLC method
 (mg g -1)

DRIFTS method
(mg g -1)

6S 755.38 762.19 100.41 101.08
7S 755.38 758.25 175.72 181.46
8S 755.38 753.49 220.91 233.02
9S 830.92 834.03 100.41 95.66
10S 830.92 842.28 125.52 123.70
11S 830.92 815.18 175.72 181.70
12S 881.28 864.70 125.52 119.89
13C 698.12 692.53 145.10 135.51
14C 655.30 680.68 129.00 133.64
15C 722.95 737.63 141.83 138.71
16C 819.79 813.22 155.44 144.41
17C 820.66 819.38 156.23 160.23
18C 820.88 786.49 155.60 152.63
19S 503.59 494.30 125.52 123.16
20S 654.67 648.13 175.72 183.65
21S 755.38 741.58 125.52 126.30
22S 755.38 741.60 150.62 157.76
23S 881.28 865.27 100.41 101.02

RMSEP (mg g -1) 13.03       4.88
RSEP (%)  1.77       3.16

Ssynthetic samples.
C commercial samples.

TABLE V (continuation)
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Figure 5 - Cross-Validated Prediction Errors (RMSECV) values for full-spectrum model 
and interval models (bars) for the TMP determination using PLS and iPLS algorithms 
(dotted line and numbers above interval numbers refer to full-spectrum RMSECV and 
latent variables used in each model, respectively).

TABLE VI
Statistical results to iPLS calibration models and full-spectrum PLS model for the TMP.

Model TMP VNa Intervals LVsb RMSECV TMP (mg g-1) R2
cal RMSEP TMP  (mg g-1)

PLS 1764 all 4 12.22 0.959 10.61
iPLS10 175 9 5 13.19 0.952 6.87
iPLS25 70 21 6 12.92 0.954 8.66
iPLS50 35 28 4 11.26 0.965 10.13

aVN: total number of variables.
bLVs: latent variables.

TABLE VII
Statistical results to siPLS calibration models and full-spectrum PLS model for the TMP.

Model TMP TVa Intervals VLsb RMSECV TMP (mg g-1) R2
cal RMSEP TMP (mg g-1)

PLS 1764 all 4 12.22 0.951 10.61
siPLS10 350 6  and 10 6 9.495 0.982 7.04
siPLS10 525 6, 7 and 8 7 10.54 0.983 4.37
siPLS10 700 6,7, 8 and 10 7 9.89 0.988 6.40
siPLS10 875 1,4,6,7 and 8 9 8.92 0.989 9.14

siPLS25* 140 15 and 17 6 7.52 0.980 4.90
siPLS25 210 15,17 and 18 7 8.41 0.986 5.38
siPLS50 70 21 and 31 7 8.71 0.974 7.76
siPLS50 105 20,30 and 31 4 7.75 0.982 8.88

aVN: total number of variables.
bVLs: latent variables.
*selected model.
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by a correlation coefficient of 0.983, as shown 
in Figure 5. The selected intervals included the 
regions of 2100 to 2230 cm-1 (interval 15) and 1830 
to 1960 cm-1 (interval 17). Both intervals include 
harmonic bands vibrations of the pyrimidine ring 
presented in structure of TMP (Colthup et al. 1990). 
The siPLS model combined intervals 15 and 17 
allowing better predictive ability when compared 
to iPLS models and full-spectrum PLS model. 
Therefore, it was possible to fi nd a narrow region 
for TMP determination with small prediction errors 
and reduced variable numbers. Average prediction 
results, RMSEP and RSEP (%) for the selected 
siPLS calibration model are shown in Table V. This 
siPLS model combining three intervals resulted 
in low prediction errors (RSEP = 3.16%). The 
systematic error obtained for the model was not 
signifi cant. The errors calculated for the prediction 
samples showed random behavior (bias = 1.26 and 
tsist <tcrit). For a subset of commercial samples, no 
signifi cant trend was observed (bias = -0.09 and tsist 
<tcrit), which shows that the systematic error for the 
model may be considered insignifi cant.

CONCLUSIONS

Using the PLS regression algorithm combined with 
DRIFTS data it was possible to develop multivariate 
models for simultaneous determination of SMZ 
and TMP in commercial pharmaceutical products. 
Assay results, expressed as the percentage of the 
label claim, were found to be 95.8 to 103.9% for 
SMZ and 95.7 to 106.4% for TMP. These results 
were in agreement with the content of SMZ 
and TMP in powder mixtures according to the 
USP 30 requirements (93 to 107%) for the solid 
preparations. The variable selection techniques 
used in this work, produced models with better 
predictive ability compared to full-spectrum 
PLS models. The siPLS algorithm proved to be 
most appropriate, combining the spectral regions 
containing the most relevant information for each 
analyte quantifi ed. The proposed method is simple, 
solvent-free and allows potential applications for 
simultaneous, fast and reliable determination of 
SMZ and TMP in solid pharmaceutical dosage 
forms. 

Figure 6 - Reference HPLC values versus predicted TMP values for siPLS 
model using 15 and 17 intervals and 6 latent variables.
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RESUMO

Um método alternativo para quantifi cação de 
sulfametoxazol (SMZ) e trimetoprima (TMP), empre-
gando espectrometria por refl etância difusa no infra-
vermelho por transformada de Fourier (DRIFTS) e 
regressão por mínimos quadrados parciais (PLS) foi 
desenvolvido. Regressão por mínimos quadrados 
parciais por intervalo (iPLS) e por sinergismo de 
intervalos (siPLS) foram aplicadas para selecionar 
as faixas espectrais que produziram modelos com 
menores erros na previsão, em comparação ao modelo 
que emprega todo o espectro. Quinze comprimidos de 
formulações comerciais e quarenta e nove amostras 
sintéticas foram usados. As faixas de concentração 
consideradas foram de 400-900 mg g-1 para o SMZ e de 
80-240 mg g-1 para a TMP. Os espectros por refl etância 
difusa no infravermelho por transformada de Fourier 
(DRIFTS) foram adquiridos na faixa 600-4000cm-1 
com resolução de 4 cm-1. O presente procedimento foi 
comparado com cromatografi a líquida de alta efi ciência 
(HPLC). Os resultados obtidos para os erros quadráticos 
médios de previsão (RMSEP), durante a validação dos 
modelos para as amostras de sulfametoxazol (SMZ) e 
trimetoprima (TMP) usando siPLS, demonstram que 
esta abordagem trata-se de uma técnica válida para 
análise quantitativa de formulações farmacêuticas. Os 
modelos de regressão, obtidos a partir dos intervalos 
selecionados pelo algoritmo, apresentaram menores 
erros quando comparados ao modelo PLS global. Para 
as melhores regiões selecionadas pelo siPLS , Os valores 
RMSEP de 13,03 mg g-1 para SMZ e de 4,88 mg g-1 para 
TMP foram obtidos a partir da seleção das melhores 
regiões espectrais pelo siPLS. 
Palavras-chave: quimiometria, espectrometria por refl e-
tância difusa no infravermelho por transformada de Fourier, 
metodologia ambientalmente amigável, croma tografi a 

líquida de alta efi ciência, mínimos quadrados parciais 
por intervalo (iPLS), mínimos quadrados parciais por 
sinergismo de intervalos (siPLS).
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