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ABSTRACT  
Biological wastewater treatment is a process that removes pollution caused by carbon, 

nitrogen and phosphorus. For this purpose, aerobic microorganisms must have an adequate 

amount of oxygen to avoid slowing down this process. This research therefore evaluated the 

influence of dissolved oxygen concentration and time on the rate of microbial growth in 

wastewater samples. To do so, a mixed culture of aerobic microorganisms was used with an 

equivalent concentration of SSV=150 mg/L, dissolved oxygen levels of 2, 3, 4 ppm, observation 

time of 5 days and concentration of pollutants equal to 800 ppm. It was determined that the 

growth of microorganisms responded to the cell synthesis phase, and it increased from 150 

mg/L of SSV to 386.9, 412.07 and 423.7 mg/L, depending on the level of dissolved oxygen (2, 

3 and 4 ppm). On the other hand, as the treatment time elapsed, the rate of microbial growth 

decreased, despite the fact that the significance of the effect of dissolved oxygen concentration 

was negligible. Finally, time and the interaction of both variables were relevant. 

Keywords: batch reactor, bioremediation, microbial growth, oxygenation, wastewater. 

Efeito da concentração de oxigênio dissolvido na produção de 

biomassa em águas residuais 

RESUMO 
O tratamento biológico de águas residuais é um processo que remove a poluição por 

carbono, nitrogênio e fósforo. Para isso, os microrganismos aeróbicos devem receber uma 

quantidade adequada de oxigênio para evitar a desaceleração desse processo. Nesse sentido, 

nesta pesquisa, foi avaliada a influência da concentração de oxigênio dissolvido e do tempo na 

velocidade de crescimento microbiano em amostras de águas residuais. Para isso, foi utilizada 

uma cultura mista de microrganismos aeróbicos com uma concentração equivalente de 

SSV=150 mg/L, níveis de oxigênio dissolvido de 2, 3, 4 ppm, tempo de observação de 5 dias e 

concentração de poluente igual a 800 ppm. Foi determinado que o crescimento dos 

microrganismos respondeu à fase de síntese celular e aumentou de 150 mg/L de SSV para 

386,9, 412,07 e 423,7 mg/L, dependendo do nível de oxigênio dissolvido (2, 3 e 4 ppm). Por 

outro lado, com o passar do tempo de purificação, a taxa de crescimento microbiano diminuiu, 
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embora a significância do efeito da concentração de oxigênio dissolvido tenha sido 

insignificante. Por fim, o tempo e a interação de ambas as variáveis foram relevantes. 

Palavras-chave: biorremediação, crescimento microbial, esgoto, oxigenação, reator em lote. 

1. INTRODUCTION  

The limited availability of natural resources such as water has led to the construction of 

water treatment facilities to improve water management and safety (Caligan et al., 2022). In 

this sense, conventional technologies such as artificial wetlands, bacterial beds, sequential 

biological reactors, among others have been discussed along with advanced treatment 

technologies such as reverse osmosis, microfiltration or ultrafiltration (Khatri et al., 2020). The 

integrated methods of small-scale fixed-bed activated sludge in preconstructed reactors are 

highly efficient treatment for parameters such as BOD5 , COD, TP, TKN, NH4-N, TSS, fecal 

coliforms and total coliforms, even without a disinfection system, and can be optimized in two 

weeks (Naghipour et al., 2022). Also, Advanced Oxidation Processes (AOP) such as catalytic 

ozonation, electrochemical oxidation, sonochemical and photocatalytic processes that, in 

combination with biological processes, including the use of enzymes and microorganisms, 

allow the degradation of emerging toxic pollutants in a sustainable way with hydroxyl, 

superoxide, hydroperoxyl and sulfate radicals (Babu Ponnusami et al., 2023). Another 

modification of these treatments includes the use of bacteria associated with the phycosphere 

to control anthropogenic pollutants in wastewater treatment and whose interaction in a 

photobioreactor system allows us to understand the reduction of pollutants and improve the 

amount of biomass (Dang et al., 2022). 

In that framework, the biological treatments which coagulate the dissolved biodegradable 

organic matter and then separate it from the water are the most important (Meng et al., 2019). 

This process can take place in the presence of oxygen (aerobic treatment) or in the absence of 

oxygen (anaerobic treatment) (Jung and Pauly, 2011). Being necessary to enhance the oxidation 

process so that aerobic microorganisms such as microalgae, cyanobacteria and photosynthetic 

live microorganisms (Janpum et al., 2022) can convert organic wastes into inorganic by-

products during wastewater bioremediation processes (Bahita and Belarbi, 2015).  

Since biological treatment development can be limited by factors such as: temperature, 

pressure, oxygenation level, agitation, geometric shape, characteristics of the enclosures where 

the biological action takes place and the presence of suspended solids (Khatri et al., 2020), 

which leads to high costs as part of the whole treatment process, with aeration being an essential 

step to reduce not only the energy used, but also the CO2 emissions (Jung and Pauly, 2011).  

For this reason, this study explored the relationship and influence of dissolved oxygen in 

wastewater on the rate of microbial growth during the treatment of contaminants in wastewater 

samples. 

2. MATERIALS AND METHODS 

Experimental tests were performed in a batch reactor implemented with two control 

systems, one for measuring the dissolved oxygen concentration and the other for temperature 

control, as shown in Figure 1.  

This consisted of a fine bubble air diffuser, pressure regulator and solenoid valve that 

helped to guarantee the adequate DO concentration considered in the research design. The air 

entering the regulator came from a compressor at a pressure of 2 psi. The DO sensor had a range 

of 0 to 20 mA. The temperature control system consisted of a resistive temperature sensor 

(PT100. Range 0 to 800°C). 
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Figure 1. Schematic diagram of the experimental apparatus. 

In addition, to guarantee the adequate amount of dissolved oxygen and meet the needs of 

the aerobic treatment, the selection of the type of aerator (fine bubble) that guarantees a better 

contact surface and degradation of the pollutants was taken into account, as well as the use of 

air flow control devices implemented in the aeration system. Likewise, the installation of the 

Data Logger allowed the continuous measurement of the DO concentration in the water to 

prevent it from falling below a critical level. 

Then, 20L of synthetic wastewater were prepared according to the standardized protocol 

proposed by the (OECD, 2006), considering the quantities shown in Table 1 in order to ensure 

that the samples obtained have the same physicochemical characteristics of a wastewater 

sample treated in a conventional treatment system (Castellanos, 2019), avoiding the risk of 

exposure to pathogenic substances.  

Table 1. Quantity of dissolved substances to 

prepare 20L of wastewater. 

Substance Amount 

Peptone 8.36 g 

Sucrose 1.88 g 

Starch 4.40 g 

Ammonium sulfate 1.44 g 

Dibasic sodium phosphate 0.20 g 

Subsequently, the decontamination tests were performed considering three levels of 

dissolved oxygen concentration (2, 3 and 4 ppm) at a temperature of 17°C. For this purpose, 

the wastewater samples were added and mixed in the Batch reactor with the aerobic 

microorganisms in an amount of 0.5 g/L. Finally, the dissolved oxygen and temperature control 

systems were activated, recording the time and determining the suspended solids from the 
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volatile suspended solids (VSS) analysis. 

2.1. Determination of volatile suspended solids 

This procedure was based on the separation of suspended solids from a wastewater sample 

with a standard glass fiber filter. Then, with the retained solids, the following were determined 

gravimetrically: the solids dried at 105°C, the fixed solids and the volatile solids (VSS) 

incinerated at 550°C (OECD, 2006), as detailed in Figure 2:  

 
Figure 2. Procedure for obtaining SSV. 

The recorded data were replaced in the following Equations 1, 2 and 3: 

𝑚𝑔 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑠𝑜𝑙𝑖𝑑𝑠 (𝑆𝑆)

𝐿
=

𝐵−𝐶

𝑣 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝐿
           (1) 

𝑚𝑔 𝑓𝑖𝑥𝑒𝑑 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑠𝑜𝑙𝑖𝑑𝑠 (𝑆𝑆𝐹)

𝐿
=

𝐴−𝐶

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝐿
               (2) 

𝑚𝑔 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑠𝑜𝑙𝑖𝑑𝑠 (𝑉𝑆𝑆)

𝐿
= 𝑆𝑆 − 𝑆𝑆𝐹                (3) 

3. RESULTS 

Table 2 shows the daily gravimetric measurements of the crucible plus glass fiber filter 

(C), of the crucible plus glass fiber filter with retained residues after drying at 105°C (B) and, 

finally, of the crucible plus glass fiber filter with residual solids after calcining at 550°C (A). 

Figure 3 shows that the amount of volatile suspended solids increased on the first two days 

of biological reactor treatment and decreased on the fourth day. Meanwhile, on the fifth day, 

the cell synthesis phase came to an end in the three cases tested at 2, 3 and 4 ppm of dissolved 

oxygen concentration. After that time, the endogenous respiration phase began, where the 

concentration of VSS increased as a result of the metabolism of the microorganisms that favored 

the treatment process of the contaminated water. 

Considering the average of the VSS of the five-day treatment, the total increase with 

respect to the initial amount was 257.5 mg/L. That is, a level equal to 1.7 times the initial value 

was reached as a result of the increased oxygen availability. In other words, dissolved 

biodegradable solids were more likely to become cellular material for microorganisms. 
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Table 2. Daily gravimetric measurements. 

Dissolved oxygen concentration (ppm) 
t 

(days) 

C (mg) B (mg) A (mg) 

I II III I II III I II III 

 

 

2 

0 18380.5 18199.1 17760.4 18385.5 18204.1 17765.4 18381.0 18199.6 17760.9 

1 18360.2 17780.3 18130.5 18367.4 17787.3 18137.4 18360.9 17781.1 18131.2 

2 18117.3 17721.4 17556.2 18126.8 17730.5 17565.0 18118.3 17722.4 17557.1 

3 17970.4 18235.5 17968.3 17981.2 18246.2 17979.2 17971.6 18236.7 17969.5 

4 17747.7 18327.7 17543.1 17759.4 18340.1 17555.2 17748.9 18329.0 17544.4 

5 18130 17675.6 18240.6 18142.6 17689.0 18253.7 18131.3 17677.1 18242.0 

 

 

3 

0 18460.3 18187.3 17755.2 18465.3 18192.3 17760.2 18460.8 18187.8 17755.7 

1 18119.5 17690.1 18147.2 18126.9 17697.5 18155.2 18120.2 17690.9 18148.1 

2 18123.2 17749.2 17767.2 18133.2 17759.6 17777.2 18124.2 17750.3 17768.2 

3 17989.2 18248.3 18335.1 18001.1 18260.6 18347.8 17990.5 18249.6 18336.5 

4 17732.1 18312.8 17868.1 17745.6 18326.1 17881.2 17733.6 18314.2 17869.5 

5 18102.3 17645.5 18324.6 18116.1 17659.4 18338.5 18103.8 17647.0 18326.1 

 

 

4 

0 18356.5 18284.1 18320.4 18361.6 18289.1 18325.4 18357.1 18284.6 18320.9 

1 17721.2 17825.7 18223.6 17729.5 17833.7 18231.8 17722.1 17826.6 18224.5 

2 18312.3 17861.1 17664.2 18323.3 17871.5 17675.3 18313.5 17862.2 17665.5 

3 18310.4 18340.9 18298.7 18323.2 18353.3 18311.1 18311.8 18342.3 18300.0 

4 17768.1 18351.6 17698.1 17782.2 18365.1 17711.9 17769.8 18353.1 17699.7 

5 18298.2 17851.4 18302.2 18312.6 17865.8 18316.0 18299.7 17853.0 18303.5 
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Figure 3. Evolution of the VSS as a function of time. 

3.1. Growth rate of microorganisms 

This parameter was obtained from the increase of the VSS during one day, establishing the 

following Figure 4: 

 
Figure 4. Daily bacterial growth rate. 
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In addition, a slower bacterial growth rate was observed when the dissolved oxygen 

concentration level was 2 ppm. Confirming that this parameter in initial moments or when the 

presence of dissolved substrate in the water is 800 ppm, the process of microorganism 

production and water decontamination is accelerated, but with low levels of chemical oxygen 

demand, the effect of substrate limitation is observed. 

3.2. Relationship of the specific growth rate with the dissolved oxygen concentration 

Calculating the specific growth rates for each dissolved oxygen level on a daily basis, and 

plotting these values graphically, as shown in Figure 5: 

 
Figure 5. Specific growth rate obtained on a daily basis at each oxygen level. 

The notable difference during the first and second day of treatment, as well as, the bacterial 

growth rate, when the level of dissolved oxygen concentration was 2 ppm, is lower than at 3 

ppm, and this in turn is lower than at 4 ppm.  The mathematical relationship obtained from the 

specific growth rate with the water oxygenation level is shown below (Table 3): 

Table 3. Coefficients of determination. 

Day Mathematical Relation R2 

1 µ = 0.0663COD + 0.2041 0.9992 

2 µ = 0.0158 COD + 0.2291 0.6882 

3 µ = -0.0086 COD + 0.1937 0.1753 

4 µ = -0.0152 COD + 0.1393 0.6741 

5 µ = -0.0166 COD + 0.0997 0.7187 

According to the coefficients of determination (R2), after the second day, the relationship 

established between the two variables (dissolved oxygen and specific growth rate) is not defined 

or does not tend to be linear or quadratic.  
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4. DISCUSSION 

In all cases, the concentration of volatile suspended solids (VSS) increased from the time 

of inoculation of the mixed culture that was previously adapted for a two-day period. This rate 

was indirectly associated with the daily growth rate of the microorganisms. This behavior was 

expected due to the fact that when working with discontinuous treatment systems, the 

concentration of substrate in the water decreases as a result of the metabolism and conversion 

of these substances in the cell wall of the microorganisms. These statements are supported by 

authors such as (Ekama et al., 2006; Molina-Muñoz et al., 2007) based on their experimental 

and theoretical research with bioreactors concerning enzymatic activities (acid phosphatases 

and dehydrogenase) and the biodiversity of the bacterial community present. 

This phenomenon can have direct consequences on organoleptic parameters, such as the 

odor of treated water. Specifically, when the dissolved oxygen concentration is limited, 

especially under aerobic conditions, the formation of undesirable metabolites such as volatile 

sulfur compounds can occur. These compounds are commonly associated with unpleasant odors 

and they result from the incomplete degradation of organic matter and can negatively impact 

the sensory quality of treated water (Piotrowski et al., 2023). Research underscores the 

importance of maintaining adequate levels of dissolved oxygen to prevent the generation of 

unwanted odors in treatment systems. 

Beyond odor, the dissolved oxygen concentration also influences other parameters, 

including nutrient removal efficiency, sludge formation, and the activity of specific 

microorganisms (Quan et al., 2012). An appropriate level of dissolved oxygen supports the 

activity of aerobic microorganisms responsible for nitrification, thereby contributing to the 

efficient removal of nitrogen compounds, as postulated by (Wang et al., 2021), who also further 

emphasizes the significance of maintaining optimal dissolved oxygen balances in water 

treatment systems. This is not only critical for ensuring effective organic matter degradation 

and odor prevention but also for optimizing nutrient removal and other key biological functions 

of the system (Melo et al., 2022). 

In comparison with other biological processes, such as artificial wetlands, (Faulwetter et 

al., 2009) emphasizes the critical relevance of dissolved oxygen concentration in microbial 

growth and, consequently, in the effectiveness of the pollutant reduction process. Although the 

influence of time and the interaction between variables underscore the complexity of the 

biological process undertaken, it is highly advisable to broaden the estimation of rates by 

considering multiple levels of oxygenation. This would facilitate a greater number of regression 

analyses with diverse equations, thereby contributing to a more comprehensive understanding 
of the process dynamics in various biological contexts, as discussed by (Copelli et al., 2015; Mines 

et al., 2017). 

According to this, (Metcalf & Eddy, 1995) report that the growth of the bacterial 

population occurs with substrate limitation.  Whereas (Couvert et al., 2019) agree that, 

depending on the type of respiration of the microorganisms, the affectation given by oxygen 

concentration is not the same and that oxygen can be considered as an inhibitor of bacterial 

growth. Also Barreiro-Vescovo et al. (2020) and Mujtaba and Lee (2016) mention important 

aspects of the symbiosis found in their research, such as bacterial oxygen consumption that was 

limited to a few hours after the addition of wastewater; and the microalgae not only acted as 

oxygen producers, but manifested photorespiration events and endogenous respiration 

processes throughout the continuous culture treating the wastewater. 

This confirms the importance of using a sequencing batch reactor operating with and 

without biomass recirculation, in addition to algae and bacterial aggregates to simplify aeration 

requirements and reduce high biomass harvesting costs (Papadopoulos et al., 2023), as they 

provide the possibility to treat domestic wastewater without external air supply (Hakim et al., 

2022). Also, the results of (Du et al., 2022) suggest that in the consortium of microalgae and 
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bacteria, the biodegradation of aerobic bacteria produces CO2 benefiting the photosynthetic 

oxygen evolution of the microalgae, which in turn favors the proliferation of aerobic microbes 

(Zhang et al., 2018). Similarly, (Luan et al., 2022) used an intermittently-aerated moving bed 

biofilm reactor and successfully treated synthetic rural wastewater without professional 

maintenance and with a lower amount of oxygen, ensuring high bacterial activity as well as 

autotrophic biomass ratio. 

5. CONCLUSIONS 

Regarding the evolution profile of the microbial concentration along the synthetic 

wastewater decontamination process, it was observed that it had a typical behavior of the cell 

wall synthesis phase and increased from 150 mg/L of VSS to 386.9, 412.07 and 423.7 mg/L, 

respectively, for the different levels of dissolved oxygen concentration (2, 3 and 4 ppm). This 

is explained by the fact that, as the level of dissolved oxygen concentration increases, so does 

the rate of microbial growth. Whereas the longer the purification time, the faster the growth rate 

decreases. On the other hand, the specific growth rate of microorganisms obtained on a daily 

basis and the dissolved oxygen concentration do not have a definite mathematical relationship.  

Therefore, the significance of DOC is negligible, while the time and the interaction of both 

variables were relevant.  

Similarly, the level of dissolved oxygen is a critical factor influencing the efficiency of 

biological wastewater treatment. It affects parameters such as microbial growth rate and the 

activity of specific microorganisms. Therefore, maintaining an optimal balance of dissolved 

oxygen is essential, not only to ensure effective degradation of organic matter and odor 

prevention but also to optimize the removal of nutrients and other key biological functions of 

the system. Finally, it would be advisable to estimate the values of microbial growth rates as 

well as their activity, considering more levels of oxygenation to be able to perform a greater 

number of regression analyses with other forms of equations.  
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