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ABSTRACT. This study evaluated the efficiency of genome-wide selection (GWS) based on regularized 

quantile regression (RQR) to obtain genomic growth curves based on genomic estimated breeding values 

(GEBV) of individuals with different probability distributions. The data were simulated and composed of 

2,025 individuals from two generations and 435 markers randomly distributed across five chromosomes. 

The simulated phenotypes presented symmetrical, skewed, positive, and negative distributions. Data were 

analyzed using RQR considering nine quantiles (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) and traditional 

methods of genomic selection (specifically, RR-BLUP, BLASSO, BayesA, and BayesB). In general, RQR-

based estimation of the GEBV was efficient—at least for a quantile model, the results obtained were more 

accurate than those obtained by the other evaluated methodologies. Specifically, in the symmetrical-

distribution scenario, the highest accuracy values were obtained for the parameters with the models 

RQR0.4, RQR0.3, and RQR0.4. For positive skewness, the models RQR0.2, RQR0.3, and RQR0.1 presented 

higher accuracy values, whereas for negative skewness, the best model was RQR0.9. Finally, the GEBV 

vectors obtained by RQR facilitated the construction of genomic growth curves at different levels of interest 

(quantiles), illustrating the weight–age relationship. 
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Introduction 

Growth curves help summarize the weight-age (or yield-time) relationship in animals and plants based on 

a few interpretable parameters, such as mature weight (asymptotic weight) and maturity rate (growth rate). 

Growth-curve models aim to explain the growth process over time. This information regarding the demand 

and care needed for each plant or animal development stage facilitates effective economic decision-making. 

Pong-Wong and Hadjipavlou (2010) used a two-step method to analyze growth trajectories using a 

Genomic Selection (GS) approach in the current post-genomic era. In this framework, growth models fit 

weight–age (or yield–time) data in the first step, whereas growth curve parameter estimates are used as the 

dependent variables in GS methods in the second step. Ibáñez-Escriche and Blasco (2011) showed that GS 

modified the growth curve with markers acting simultaneously on the three parameters of the Gompertz 

curve. Using a genome-wide association study (GWAS) framework, Howard et al. (2015) performed a study 

based on polynomial coefficients to identify genomic regions affecting growth and feed intake curves in Duroc 

boars. Silva et al. (2017) identified GWAS-based candidate genes, whose biological functions can be useful in 

explaining the genetic basis of postnatal growth in pigs.  

These genomic methods focus on estimating single nucleotide polymorphism (SNP) marker effects in 

the mean body weight (BW) over time; the function is defined for the expected value of BW conditional 

on X (age), or simply E(BW|X). Mosteller and Tukey (1977) showed that regression curves can be 

estimated for different quantiles of the response variable distribution, providing a complete picture of 

the regression (Cade & Noon, 2003). This method, called Quantile Regression (QR) (Koenker & Bassett 

Jr., 1978), can estimate parameters for all portions of the probability distribution of the response variable 

(e.g., BW). This enabled us to better understand the relationship between response (BW) and explanatory 

variables (age). In addition, QR does not require assumptions regarding the error distribution and is 

robust to outliers (Oliveira et al., 2021b).  
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To deal with high-dimensional problems, such as a large number of parameters and a small number of 

observations, methods combining shrinkage estimation and variable selection (BLASSO, BayesA, BayesB, 

etc.) have been proposed for GS. Under a QR framework, this method is called regularized QR (RQR) (Li 

& Zhu, 2008). Nascimento et al. (2017) proposed the use of RQR in GS studies was proposed by 

Nascimento et al. (2017) using simulated data. This approach has been used in plant and animal breeding 

studies and has shown to be a promising technique. Nascimento et al. (2019a) estimated the Genomic 

Estimated Breeding Values (GEBV) for different levels (quantiles) of the probability distribution 

associated with flowering time in common bean. Oliveira et al. (2021b) evaluated the efficiency of RQR 

throughout the breeding process using simulated data from autogamous plants. Barroso et al. (2017) used 

the same methodology to estimate the effects of SNP markers on growth curves in pigs.  

However, few studies have evaluated phenotypes that assume non-normal distributions, such as skewed 

distributions. However, breeding programs may lead to phenotypes with skewed distributions of flowering 

time (Maurer et al., 2015; Nascimento et al., 2019a), order of parity (Varona, Ibañez-Escriche, Quintanilla, 

Niguera, & Casellas, 2008), and hormone concentrations (de Campos et al., 2015; Mathur et al., 2012). Thus, 

treating phenotypes inappropriately by assuming symmetrical distributions can substantially affect the 

accuracy of genomic prediction (Maurer et al., 2015). 

In this study, we propose an RQR methodology for the genomic prediction of growth curves using 

simulated data with distributions with different levels of asymmetries and compare its prediction accuracy 

values with those of traditional GS methods (namely, RR-BLUP, BLASSO, BayesA, and BayesB). 

Material and methods 

Simulated population 

Publicly available simulated data from the QTLMAS2009 (Coster, Bastiaansen, Calus, van Arendonk, 

& Bovenhuis, 2010) were used in this study. The dataset consisted of 2,025 individuals from two 

generations with complete information on 453 SNP markers that were randomly distributed over five 

chromosomes. Individuals in this dataset consisted of 25 parents (20 females and 5 males) and 2,000 

progenies from 100 full-sib families (a combination of male and female parents). Each family included 

20 full-sibs. 

Of the 100 families, 50 (1,000 individuals) had phenotypic records (BW) generated at five time points 

(t= 0, 132, 265, 397, and 530 days), according to the logistic growth curve:  

y(t) =
α1

1+exp[
(α2−tj)

α3
]

           (1) 

where 1 is the asymptotic weight; 2 is the inflection point of the curve; and 3 is the slope of the curve. 

Genomic breeding values and skewness 

True genomic breeding values (TGBVs) for each curve parameter were simulated for each individual as the sum 

of additive effects based on six quantitative trait locus). One large QTL and five small QTLs were assigned to each 

of the three curve parameters, assuming the same heritability (h2 = 0.50) (Coster et al., 2010). The original dataset 

was modified by inserting positive and negative skewness to evaluate the impact of skewness (non-normal 

phenotypic distributions) on the genomic prediction accuracy of growth curves. We also evaluated normal 

phenotypic distribution (the original simulated dataset). Random errors were added to the TGBVs based on three 

distributions: (1) normal error as N{0, σe
2 = sd[yi(t)]}, (2) positive skewed error as exp (λ = 1 σe

2⁄ ), and (3) negative 

skewed error as −exp (λ = 1 σe
2⁄ ) . Thus, the distribution of phenotypic values (growth curve parameters) was 

simulated as symmetric, positively skewed, and negatively skewed. The modified datasets are freely accessible at 

https://github.com/licaeufv. 

Estimation of growth curve parameters 

A logistic nonlinear regression model (model 1) was used to estimate the growth curve parameters 

based on individual weight–age data. The estimated growth curve parameters (1: asymptotic weight, 2: 

inflection point of the curve, and 3: slope of the curve) were used as phenotypes in subsequent analyses.  

https://github.com/licaeufv
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Genomic prediction analyses 

Genomic prediction (GP) analyses were performed using the data from all individuals with phenotypic and 

genotypic records. Different methods were used in this study. 

Traditional GS methods 

The methods used in this study include BLASSO (De Los Campos et al., 2009), RR-BLUP, BayesA, and 

BayesB (Meuwissen, Hayes, & Goddard, 2001). These methods assume normal distributions for the phenotype 

values. Bayesian methods were implemented using 100,000 MCMC (Markov chain Monte Carlo) iterations, 

with a burn-in and thin layer of 10,000 and five iterations, respectively. 

Regularized quantile regression. Data were analyzed using regularized quantile regression (RQR) (Li & Zhu, 

2008) based on nine quantiles (τ): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. This method consists of 

obtaining the vector of marker effect estimates (τ) that solves the following optimization problem: 

βτ = argmin𝛃τ{∑ ρτ[α̂Si − (μ + ∑ xikβτk
m
k=1 )] + λ∑ |βτk|

m
k=1

n
i=1 }, 

where τ ∈ ]0,1[  indicates the quantile, µ is the mean, xik  is the incidence of the ith individual and the kth 

marker, τk is the effect of the ktb marker, ∑ |βτk|
m
k=1  is the sum of the absolute values of the regression 

coefficients, and λ is the regularization parameter. The parameter ρτ(.) is denoted as a check function 

(Koenker & Bassett Jr., 1978), and is defined by 

ρτ [α̂Si − (μ +∑xikβτk

m

k=1

)] =

{
 
 

 
 τ ∙ [α̂Si − (μ +∑xikβτk

m

k=1

)] , if  α̂Si − (μ +∑xikβτk

m

k=1

) > 0,

−(1 − τ) ∙ [α̂Si − (μ +∑xikβτk

m

k=1

)] ,    otherwise.

 

Thus, the values of τk represent marker effects in the τth quantile of interest. 

A grid of shrinkage parameter values () ranging from 0 to the posterior  estimate from BLASSO is used. 

However, we reported results that yielded the highest prediction accuracy. 

The genomic estimated breeding values (GEBVs) were obtained for each quantile as GEBV(τ) = ∑ xikβ̂τk
m
k=1 , 

where τ represents the τth quantile of interest. Subsequently, the mean genomic growth curve for the ith 

animal and the τth quantile was estimated as  

ŷ(τ)ij =
μ̂(τ)α̂1+û(τ)α̂1i

{1+exp[(μ̂(τ)α̂2+û(τ)α̂2i
)−(μ̂(τ)α̂3+û(τ)α̂3i

)tij]}
       (3) 

where ŷ(τ)ij is the predicted BW for animal i at age j (tij) and quantile τ; μ̂(τ)α̂1 , μ̂(τ)α̂2 and μ̂(τ)α̂3 are the adjusted 

trait means (parameter estimates for the logistic model) for 1, 2 and 3, respectively. Mean genomic growth 

curves were also obtained using other methods evaluated in this study (BLASSO, RR-BLUP, BayesA, and BayesB). 

In addition, for each genomic selection method and scenario (symmetric, positive, and negative skewness), 

the slope of the regression of GEBVs on TGBVs was calculated as a measure of prediction bias.  

Comparison of methodologies under a GS approach 

Genomic prediction analyses were performed using a two-fold cross-validation approach, with each 

fold defined using Ward’s hierarchical clustering method (Ward  Jr., 1963) based on genotypes. The 

accuracy of genomic prediction for the 13 different genomic selection models (BLASSO, RR-BLUP, 

BayesA, BayesB, RQR0.1, RQR0.2, …, RQR0.9) was calculated as the average (from each fold) Pearson 

correlation coefficient between the pre-adjusted phenotypes and GEBVs divided by the square root of heritability. 

Subsequently, bar graphs were generated using accuracy values and their respective standard errors. 

In addition, Cohen’s kappa coefficient (Cohen, 1960) was used to calculate the percentage of the top 

10% of individuals with the highest GEBVs across 13 different genomic selection models (BLASSO, RR-

BLUP, BayesA, BayesB, RQR0.1, RQR0.2, …, RQR0.9). Cohen’s Kappa coefficient is given by, C=NC-CRandom/(1-

CRandom), where NC is the relative observed agreement among methodologies, and CRandom is the 

hypothetical probability of random agreement.  
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Computational features 

Data analysis was carried out on a computer with a 2.60GHz core i7 processor and 16GB of RAM. Analyses 

were performed using the functions nls (nonlinear logistic model fitting), rq (regularized quantile regression), 

and BGLR (Bayesian LASSO, RR-BLUP, BayesA, and B) (de Los Campos & Pérez-Rodríguez, 2014) from the R 

package (R Core Team, 2021) statistics, quantreg (Koenker, 2015) and BLGR (Pérez, de Los Campos, Crossa, 

& Gianola, 2010). The plausibility of these values was assessed separately for each MCMC chain using the 

Raftery–Lewis and Geweke convergence diagnostics in the boa (Smith, 2007) R package. All data and R codes 

used in this study are freely accessible on the Web: https://github.com/licaeufv. 

Results 

Figures 1, 2, and 3 show the distributions of phenotypic and genotypic (Breeding Values - BV) values for 

all parameters 1 - mature weight, 2 - inflection point, and 3 - slope considering symmetric, positive, and 

negative skewness phenotypic distributions, respectively. As expected, compared with the distributions of 

the genotypic values, the distributions of the phenotypic values presented larger ranges for all the simulated 

scenarios (Figures 1, 2, and 3). The distributions of genotypic values were symmetrical for all scenarios and 

parameters. These distributions were concentrated in the middle, lower, and high quantiles of phenotypic 

distributions for the symmetric, positive, and negative skewness scenarios, respectively (Figures 1, 2, and 3).  

In the symmetric distribution scenario, the highest accuracy values obtained were 0.62, 0.28, and 0.58, 

respectively, for 1, 2, and 3 parameters considering RQR0.4, RQR0.3, and RQR0.4, respectively (Figure 1). These 

values were higher than those obtained from the BLASSO (0.57, 0.21, and 0.49), RR-BLUP (0.51, 0.21, and 0.47), 

BayesA (0.60, 0.21, and 0.55), and BayesB (0.60, 0.21, and 0.54) models (Figure 1). For 3 the accuracy of the 

RQR0.5 model (0.54) was slightly lower than that obtained for BayesA (0.55), which considered the symmetric 

distribution and expected value in the estimation. 

 
Figure 1. Estimated accuracy and standard error values using thirteen different genomic selection models (BLASSO, RR-BLUP, BayesA, 

BayesB, RQR0.1, RQR0.2, …, RQR0.9) considering the symmetrical phenotypic distribution scenario. Y-axes show average estimated 

accuracy values for each parameter (X-axis). 

Considering the positive skewness, the RQR0.2, RQR0.3, and RQR0.1 models presented higher accuracy 

values (0.70, 0.34, and 0.52) than the BLASSO (0.60, 0.20, and 0.40), RR-BLUP (0.52, 0.18, and 0.37), BayesA 

(0.66, 0.18, and 0.40), and BayesB (0.66, 0.18, and 0.40) models (Figure 2). 

For negative skewness, the RQR0.9 model presented higher accuracy values (0.70, 0.57, and 0.57) for all 

parameters when compared to BLASSO (0.64, 0.37, and 0.37), RR-BLUP (0.55, 0.30, and 0.30), BayesA (0.67, 

0.40, and 0.41), and BayesB (0.67, 0.41, and 0.41) models (Figure 3). 

https://github.com/licaeufv
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Figure 2. Estimated accuracy and standard error values using thirteen different genomic selection models (BLASSO, RR-BLUP, BayesA, 

BayesB, RQR0.1, RQR0.2, …, RQR0.9) considering the positive skewness phenotypic distribution scenario. Y-axes show average estimated 

accuracy values for each parameter (X-axis). 

 
Figure 3. Estimated accuracy and standard error values using thirteen different genomic selection models (BLASSO, RR-BLUP, BayesA, 

BayesB, RQR0.1, RQR0.2, …, RQR0.9) considering the negative skewness phenotypic distribution scenario. Y-axes show average estimated 

accuracy values for each parameter (X-axis). 

The average genomic growth curves using the GEBVs obtained from six different genomic selection models 

(BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, and RQRbest) and the true values for each parameter of the logistic 

growth curve are shown in Figures 4, 5, and 6. The RQRbest model was obtained by considering quantile regression 

fits that presented higher prediction accuracy values. Thus, were considered RQR0.4, RQR0.3, and RQR0.4, for the, 1, 

2, and 3 parameters in the symmetric scenario; RQR0.2, RQR0.3, and RQR0.1, for the, 1, 2, and 3 parameters in the 

positive skewness scenario; and RQR0.9, for all parameters (1, 2, and 3) in the negative skewness scenario. 

Thirteen different genomic prediction models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.1, RQR0.2, …, 

RQR0.9) were fit considering the cross-validation approach, where the two subsamples were obtained 

using Ward hierarchical clustering analysis (Figure S1 available at https://det.ufv.br/moyses-

nascimento/). The accuracy estimates for all parameters and scenarios ranging from 0.09 to 0.70 are 

presented in Figures 1, 2 and 3. According to these values, the RQR models showed better results than 

those obtained from BLASSO, RR-BLUP, and BayesA and BayesB (Figures 1, 2, and 3).  
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Figure 4. Mean genomic growth curves using the genomic estimated breeding values (GEBVs) obtained by 6 different genomic selection 

models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, and RQRbest) and the breeding values for each parameter of a logistic growth curve 

considering the symmetric scenario. 

Although evidence of significant bias was detected (Table 1), considering the mean genomic growth curves 

(Figures 4, 5, and 6), RQR showed the least bias compared to BLASSO, RR-BLUP, BayesA, and BayesB for all 

parameters and scenarios. When the distribution of phenotypic values is symmetric, RQR0.5 and RQRbest fits are the 

nearest curves obtained using the breeding values for each parameter of the logistic growth model (Figure 4). For 

the positive and negative scenarios, RQRbest yielded estimates with the least bias (Figures 5 and 6).  

 
Figure 5. Mean genomic growth curves using the genomic estimated breeding values (GEBVs) obtained by 6 different genomic selection 

models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, and RQRbest) and the breeding values for each parameter of a logistic growth curve 

considering the positive skewness scenario. 

In general, when compared to the mean curve based on true values, the curve obtained by RQRbest 

outperformed those from the other models (BLASSO, RR-BLUP, BayesA, BayesB) (Figures 4, 5, and 6).  

The curves generated by BLASSO and BayesB presented similar behaviors for RR-BLUP and BayesA. These curves, 

when compared with those obtained from quantile models RQR0.5 and RQRbest, presented higher growth over the time 

range (from 0 to 530 days); the curve behavior was overestimated for the symmetric and positive skewness scenarios 
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(Figures 4 and 5). In the negative skewness scenario, compared with the RQRbest model, these models added to RQR0.5 

underestimated the curve behavior (i.e., presented lower growth over the range in the study) (Figure 6).  

 
Figure 6. Mean genomic growth curves using the genomic estimated breeding values (GEBVs) obtained by 6 different genomic selection 

models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, and RQRbest) and the breeding values for each parameter of a logistic growth curve 

considering the negative skewness scenario. 

The average genomic growth curves (based on GEBVs) obtained using 13 different genomic selection 

models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.1, RQR0.2, …, RQR0.9) in each scenario are shown in Figures 

S2, S3, and S4 (available at https://det.ufv.br/moyses-nascimento/). As expected, for higher quantile 

regressions, the curve behavior shows higher growth over time when compared to the lower quantile 

regressions (Figures S2, S3, and S4 - available at https://det.ufv.br/moyses-nascimento/). The curves based 

on BLASSO, BayesB, RR-BLUP, and BayesA exhibit similar behaviors.  

In general, the slopes between breeding values and GEBV of all models and scenarios were significantly 

different from the unit (p < 0.01), indicating a significant bias in the prediction. The RQRbest was not 

significantly different from that in the positive skewness scenario. Although evidence of significant bias was 

detected, the slope values derived from the RQRbest were slightly lower for all traits and scenarios (Table 1). 

Table 1. Regression coefficient estimates of parameters regressed on breeding values for all scenarios and 6 different genomic selection 

models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, and RQRbest). 

 Scenarios 

Models Symmetric Positive Negative 

BLASSO 0.87* 0.79* 1.17* 

RR-BLUP 0.89* 0.82* 1.25* 

Bayes A 0.91* 0.82* 1.26* 

Bayes B 0.87* 0.77* 1.12* 

RQR0.5 0.96* 0.89* 1.24* 

RQRbest 1.05* 0.97ns 1.07* 

*Significant at 1% probability by t-test; ns = not significant. 

Spearman’s correlation (upper diagonal) and Cohen’s Kappa concordance coefficients (lower diagonal) between 

GEBVs were obtained using six different genomic selection models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, 

and RQRbest) considering the symmetric, positive, and negative skewness phenotypic distribution scenarios, as 

shown in Tables 2, 3, and 4.  

In general, except for the RQR0.5 model in scenario 1, Spearman’s correlations varied from moderate to high 

positive values. The lowest Spearman’s correlation was observed between the RR-BLUP and RQRbest models (0.52) 

in the negative-skewness scenario. The highest Spearman’s correlation coefficient was observed for BayesA and 

BayesB (1.00) in the symmetric scenario (Tables 2, 3, and 4).  
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After ranking the individuals according to the GEBVs obtained from six different genomic selection models 

(BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, and RQRbest), considering all parameters and scenarios, the 

percentage of selected individuals in common was calculated using Cohen’s kappa coefficient based on GEBVs for 

the first 100 individuals (lower diagonal Tables 2, 3, and 4). The RQR models present a Cohen’s kappa concordance 

coefficient lower than 0.5. Specifically, the lowest value was observed between BLASSO and RQR0.5 (0.14), and the 

highest value between BLASSO and RQRbest (0.82) in the symmetric scenario (Table 2).  

Table 2. Comparison of estimates of Spearman’s correlation (upper diagonal) and Cohen’s Kappa concordance (lower diagonal) 

coefficients between GEBV values obtained using 6 different genomic selection models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, and 

RQRbest) for each parameter of a logistic growth curve considering the symmetric scenario. 

Parameters Models BLASSO RR-BLUP Bayes A Bayes B RQRbest RQR0.5 

1 

BLASSO 1.00 0.93 0.95 0.94 0.86 0.88 

RR-BLUP 0.69 1.00 0.88 0.88 0.87 0.87 

Bayes A 0.70 0.57 1.00 1.00 0.88 0.87 

Bayes B 0.70 0.57 0.99 1.00 0.88 0.87 

RQRbest 0.55 0.60 0.57 0.57 1.00 0.93 

RQR0.5 0.62 0.58 0.63 0.63 0.73 1.00 

2 

BLASSO 1.00 0.93 1.00 0.99 0.88 -0.08 

RR-BLUP 0.74 1.00 0.93 0.95 0.73 0.14 

Bayes A 0.96 0.74 1.00 1.00 0.87 -0.09 

Bayes B 0.96 0.75 0.99 1.00 0.86 -0.06 

RQRbest 0.82 0.61 0.81 0.81 1.00 -0.13 

RQR0.5 0.14 0.25 0.16 0.16 0.15 1.00 

3 

BLASSO 1.00 0.56 0.92 0.93 0.69 0.66 

RR-BLUP 0.49 1.00 0.68 0.65 0.55 0.67 

Bayes A 0.85 0.6 1.00 1.00 0.83 0.84 

Bayes B 0.87 0.57 0.97 1.00 0.82 0.82 

RQRbest 0.65 0.37 0.69 0.70 1.00 0.89 

RQR0.5 0.60 0.55 0.72 0.71 0.68 1.00 

RQRbest: RQR0.4, RQR0.3, and RQR0.4 fit models for, respectively, parameters in the symmetric scenario; RQR0.2, RQR0.3, and RQR0.1 fit models for the, 1, 2, and 

3 parameters in the positive skewness scenario and RQR0.9 fit models for all parameters (1, 2, and 3) in the negative skewness scenario. 

Table 3. Comparison of estimates of Spearman’s correlation (upper diagonal) and Cohen’s Kappa concordance (lower diagonal) 

coefficients between GEBV values obtained using 6 different genomic selection models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, 

and RQRbest) for each parameter of a logistic growth curve considering the positive skewness scenario. 

Parameters Models BLASSO RR-BLUP Bayes A Bayes B RQRbest RQR0.5 

1 

BLASSO 1.00 0.96 0.96 0.96 0.79 0.81 

RR-BLUP 0.74 1.00 0.85 0.85 0.65 0.73 

Bayes A 0.77 0.58 1.00 0.99 0.81 0.85 

Bayes B 0.81 0.58 0.95 1.00 0.85 0.85 

RQRbest 0.63 0.46 0.64 0.67 1.00 0.77 

RQR0.5 0.59 0.45 0.69 0.68 0.57 1.00 

2 

BLASSO 1.00 0.98 1.00 0.90 0.56 0.37 

RR-BLUP 0.79 1.00 0.96 0.81 0.52 0.33 

Bayes A 0.95 0.74 1.00 0.93 0.57 0.39 

Bayes B 0.66 0.49 0.70 1.00 0.50 0.45 

RQRbest 0.31 0.33 0.28 0.22 1.00 0.60 

RQR0.5 0.33 0.36 0.31 0.22 0.41 1.00 

3 

BLASSO 1.00 0.92 0.97 0.96 0.65 0.69 

RR-BLUP 0.69 1.00 0.82 0.79 0.53 0.52 

Bayes A 0.76 0.46 1.00 1.00 0.68 0.75 

Bayes B 0.76 0.46 0.99 1.00 0.67 0.76 

RQRbest 0.30 0.23 0.31 0.31 1.00 0.82 

RQR0.5 0.39 0.23 0.48 0.49 0.45 1.00 

RQRbest: RQR0.4, RQR0.3, and RQR0.4 fit models for, respectively, parameters in the symmetric scenario; RQR0.2, RQR0.3, and RQR0.1 fit models for, the, 1, 2, 

and 3 parameters in the positive skewness scenario and RQR0.9 fit models for all parameters (1, 2, and 3) in the negative skewness scenario. 
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Table 4. Comparison of estimates of Spearman’s correlation (upper diagonal) and Cohen’s Kappa concordance (lower diagonal) 

coefficients between GEBV values obtained using 6 different genomic selection models (BLASSO, RR-BLUP, BayesA, BayesB, RQR0.5, 

and RQRbest) for each parameter of a logistic growth curve considering the negative skewness scenario. 

Parameter Models BLASSO RR-BLUP Bayes A Bayes B RQR0.5 RQRbest 

1 

BLASSO 1.00 0.91 0.92 0.90 0.78 0.84 

RR-BLUP 0.79 1.00 0.85 0.86 0.78 0.75 

Bayes A 0.85 0.71 1.00 1.00 0.81 0.89 

Bayes B 0.82 0.72 0.95 1.00 0.81 0.88 

RQR0.5 0.64 0.61 0.66 0.67 1.00 0.79 

RQRbest 0.66 0.60 0.72 0.72 0.63 1.00 

2 

BLASSO 1.00 0.96 0.99 1.00 0.71 0.59 

RR-BLUP 0.86 1.00 0.97 0.97 0.73 0.54 

Bayes A 0.94 0.90 1.00 1.00 0.70 0.60 

Bayes B 0.95 0.91 0.99 1.00 0.71 0.60 

RQR0.5 0.56 0.52 0.56 0.55 1.00 0.43 

RQRbest 0.53 0.43 0.49 0.51 0.35 1.00 

3 

BLASSO 1.00 0.98 0.96 0.97 0.80 0.64 

RR-BLUP 0.90 1.00 0.91 0.93 0.71 0.53 

Bayes A 0.71 0.70 1.00 1.00 0.87 0.76 

Bayes B 0.80 0.77 0.91 1.00 0.87 0.74 

RQR0.5 0.47 0.42 0.56 0.55 1.00 0.82 

RQRbest 0.38 0.34 0.45 0.44 0.49 1.00 

RQRbest: RQR0.4, RQR0.3, and RQR0.4 fit models for, respectively, parameters in the symmetric scenario; RQR0.2, RQR0.3, and RQR0.1 fit models for, the, 1, 2, 

and 3 parameters in the positive skewness scenario and RQR0.9 fit models for all parameters (1, 2, and 3) in the negative skewness scenario. 

Discussion 

We proposed genomic selection (GS) for growth curves based on RQR to obtain curves for different parts 

(quantiles) of the BW distribution in the presence of skew. The use of RQR to estimate genomic breeding value 

was efficient because, at least for one quantile model, the accuracy values presented better results when 

compared to those obtained from BLASSO, RR-BLUP, BayesA, and BayesB for all scenarios (Figures 1, 2, and 3). 

These results are reasonable because unlike traditional methods based on conditional expectations, E(Y|X), 

RQR allows fitting regression models on different parts of the distribution of the variable response, enabling 

a complete understanding of the phenomenon under study (Barroso et al., 2017; Cade & Noon, 2003; Koenker 

& Bassett Jr., 1978; Nascimento et al., 2017; Oliveira et al., 2021b). Therefore, it seems possible to find the 

best model to represent the relationship between the dependent (phenotype) and independent (marker 

effects) variables, thereby increasing the predictive performance of the model. 

For the symmetric scenario, the best models for predicting 1 (asymptotic weight), 2 (inflection point), 

and 3 (slope of the curve) genetic values were RQR0.4, RQR0.3, and RQR0.4, respectively. These results make 

sense because the best-regularized quantiles are around the center of the distribution of the phenotypic 

values, which, in symmetrical situations, concentrate on the major mass of probability. As expected, under 

the skewness situation, the RQR models with lower (RQR0.2, RQR0.3, and RQR0.1) and higher (RQR0.9) quantiles 

presented better results for predicting GBVs for positive and negative skewness phenotypic distribution 

scenarios, respectively. In these situations, the mass of probability is concentrated on the lower and higher 

quantiles for positive and negative skewness phenotypic distributions, respectively.  

Specifically, as with several traits, growth curve parameters can present different skewness levels, and RQR 

fit can improve model accuracy. In these cases, a functional relationship defined as higher (> 0.50) or lower 

quantiles (< 0.50) can improve GWS studies and subsequently improve the selection process of individuals in 

breeding programs. However, due to the infinite number of quantiles in RQR, finding the “best” one to explain 

the functional relationship is still a challenge.  

In general, all models presented moderate to high positive Spearman correlations (Tables 1, 2, and 3). 

However, considering the agreement of Cohen’s kappa coefficient, the classification agreement between RQR 

fit models and non-quantile models (RR-BLUP, BLASSO, BayesA, and BayesB) varied from moderate (0.60-

0.79) to minimal (0.21-0.39) (McHugh, 2012). This result suggests differences between the quantile and non-

quantile model classifications. The difference between the results of Spearman’s correlations and Cohen’s 

kappa coefficient occurs because kappa coefficients consider the possibility of random concordance. 

Altogether, these concordance results indicate that using quantile regression to obtain curves on different 

parts of the BW distribution and even combining this information to set an RQRbest model is an interesting 
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and promising approach. In addition, the advantages of RQR are combined with those of the two-step 

approach. The two-step approach allows obtaining the GEBVs for any time in the observed range, ranking the 

animals using the GEBVs values directly for the parameter estimates and by the GEBVs of the evaluated trait. 

Nonlinear QR to describe growth curves in plant breeding programs has already been used to evaluate dry 

matter accumulation in garlic plants by Puiatti et al. (2018; 2020), and the length and width of the fruit of 

pepper genotypes by Oliveira et al. (2021a). In all of these studies, nonlinear QR was efficient in fitting models 

at different levels and classifying genotypes. In the context of genomic selection, RQR has already been 

successfully applied by Nascimento et al. (2019a) to predict the genetic value of individuals in traits associated 

with the flowering time of the common bean, showing a very promising technique for the traditional 

techniques of genomic selection. 

In animal breeding, nonlinear RQ has been successfully used to fit the lactation curve of dairy cows and 

growth curves in pigs at different established quantiles (Younesi, Shariati, Zerehdaran, Nooghabi, & 

Løvendahl, 2019; Nascimento et al., 2019b). In genomic data, Barroso et al. (2017), using the RQR, built 

genomic growth curves using RQR, which allowed the identification of genetically superior individuals in 

relation to growth efficiency. Furthermore, RQR enables us to find, in different quantiles, the most relevant 

markers for each trait evaluated and their respective chromosomal positions. 

RQR is a promising and efficient technique in plant and animal breeding. However, more studies using 

different sizes of datasets (individuals and markers) are needed to address the efficiency of RQR. Other issues 

are related to the shrinkage parameter, which can be defined using a grid of values, cross-validation, or a 

Bayesian approach (Alhamzawi, Yu, & Benoit, 2012) and the definition of the best quantile fit model 

considering different levels of skewness.  

Conclusion 

The proposed model based on Quantile regression (QR) provided more accurate values than BLASSO, RR-

BLUP, BayesA, and BayesB for all the simulated phenotypes with different skewness levels. The GEBV vectors 

obtained by RQR enabled the construction of genomic growth curves at different levels of interest (quantiles), 

comprehensively revealing the weight–age relationship. 

References 

Alhamzawi, R., Yu, K., & Benoit, D. F. (2012). Bayesian adaptive Lasso quantile regression. Statistical 
Modelling, 12(3), 279-297. DOI: https://doi.org/10.1177/1471082X1101200304 

Barroso, L. M. A., Nascimento, M., Nascimento, A. C. C., Silva, F. F., Serão, N. V. L., Cruz, C. D., ... 

Guimarães, S. E. F.. (2017). Regularized quantile regression for SNP marker estimation of pig growth 

curves. Journal of Animal Science and Biotechnology, 8(59), 1-9. DOI: https://doi.org/10.1186/s40104-

017-0187-z 

Cade, B. S., & Noon, B. R. (2003). A gentle introduction to quantile regression for ecologists. Frontiers 

in Ecology and the Environment, 1(8), 412-420. DOI: https://doi.org/10.1890/1540-

9295(2003)001[0412:AGITQR]2.0.CO;2 

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological 

Measurement, 20, 37–46. DOI: https://doi.org/10.1177/001316446002000104 

Coster, A., Bastiaansen, J. W. M., Calus, M. P. L., van Arendonk, J. A. M., & Bovenhuis, H. (2010). Sensitivity 

of methods for estimating breeding values using genetic markers to the number of QTL and distribution 

of QTL variance. Genetics Selection Evolution, 42(9), 1-11. DOI: https://doi.org/10.1186/1297-9686-42-9 

Campos, C. F., Lopes, M. S., Silva, F. F., Veroneze, R., Knol, E. F., Sávio Lopes, P., & Guimarães, S. E. F. 

(2015). Genomic selection for boar taint compounds and carcass traits in a commercial pig 

population. Livestock Science, 174, 10-17. DOI: https://doi.org/10.1016/j.livsci.2015.01.018 

De Los Campos, G, & Pérez-Rodríguez, P. (2014). Bayesian generalized linear regression. R package version 

1.0. 4. Vienna, AT: The R Foundation. Retrieved on July 16, 2018 from http://CRAN. R-Project. 

Org/Package= BGLR 

de los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, E., ... Cotes, J. M. (2009). 

Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 

182(1), 375-385. DOI: https://doi.org/10.1534/genetics.109.101501 

https://jasbsci.biomedcentral.com/articles/10.1186/s40104-017-0187-z#auth-S__E__F_-Guimar_es-Aff2
https://doi.org/10.1890/1540-9295(2003)001%5b0412:AGITQR%5d2.0.CO;2
https://doi.org/10.1890/1540-9295(2003)001%5b0412:AGITQR%5d2.0.CO;2
https://doi.org/10.1534%2Fgenetics.109.101501


Quantile regression for genomic growth curves Page 11 of 12 

Acta Scientiarum. Agronomy, v. 46, e65081, 2024 

Howard, J. T., Jiao, S., Tiezzi, F., Huang, Y., Gray, K. A., & Maltecca, C. (2015). Genome-wide association 

study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc 

Boars. BMC Genetics, 16(59), 1-11. DOI: https://doi.org/10.1186/s12863-015-0218-8 

Ibáñez-Escriche, N., & Blasco, A. (2011). Modifying growth curve parameters by multitrait genomic 

selection. Journal of Animal Science, 89(3), 661-668. DOI: https://doi.org/10.2527/jas.2010-2984 

Koenker, R. (2015). Quantile Regression in R: a Vignette. Retrieved on Feb. 28, 2018 from https://Cran. r-

Project.Org/Web/Packages/Quantreg/Vignettes/Rq 

Koenker, R., & Bassett Jr., G. (1978). Regression quantiles. Econometrica, 46(1), 33-50. 

DOI: https://doi.org/10.2307/1913643 

Li, Y., & Zhu, J. (2008). L 1-norm quantile regression. Journal of Computational and Graphical Statistics, 

17(1), 163-185. DOI: https://doi.org/10.1198/106186008X289155 

Mathur, P. K., ten Napel, J., Bloemhof, S., Heres, L., Knol, E. F., & Mulder, H. A. (2012). A human nose 

scoring system for boar taint and its relationship with androstenone and skatole. Meat Science, 91(4), 

414-422. DOI: https://doi.org/10.1016/j.meatsci.2012.02.025 

Maurer, A., Draba, V., Jiang, Y., Schnaithmann, F., Sharma, R., Schumann, E., … Pillen, K. (2015). Modelling 

the genetic architecture of flowering time control in barley through nested association mapping. BMC 

Genomics, 16(1), 1-12. DOI: https://doi.org/10.1186/s12864-015-1459-7 

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276-282. 

DOI: https://doi.org/10.11613/BM.2012.031 

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. (2001). Prediction of total genetic value using genome-wide 

dense marker maps. Genetics, 157(4), 1819-1829. DOI: https://doi.org/10.1093/genetics/157.4.1819 

Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression: a second course in statistics. London, UK: Pearson. 

Younesi, H. N., Shariati, M. M., Zerehdaran, S., Nooghabi, M. J., & Løvendahl, P. (2019). Using quantile 

regression for fitting lactation curve in dairy cows. Journal of Dairy Research, 86(1), 19-24. DOI: 

https://doi.org/10.1017/S0022029919000013 

Nascimento, M., Silva, F. F., Resende, M. D.V., Cruz, D, C., Nascimento, A. C.C., Viana, J. M. S., Azevedo, C. 

F., & Barroso, L. M. A. (2017). Regularized quantile regression applied to genome-enabled prediction of 

quantitative traits. Genetics and Molecular Research, 16(1), 1-12. 

DOI: https://doi.org/10.4238/gmr16019538 

Nascimento, A. C., Nascimento, M., Azevedo, C., Silva, F., Barili, L., Vale, N., ... Serão, N. (2019a). Quantile 

regression applied to genome-enabled prediction of traits related to flowering time in the common bean. 

Agronomy, 9(12), 1-10. DOI: https://doi.org/10.3390/agronomy9120796  

Nascimento, M., Nascimento, A. C. C., Dekkers, J. C. M., & Serão, N. V. L. (2019b). Using quantile regression 

methodology to evaluate changes in the shape of growth curves in pigs selected for increased feed 

efficiency based on residual feed intake. Animal, 13(5), 1009-1019. 

DOI: https://doi.org/10.1017/S1751731118002616  

Oliveira, A. C. R., Cecon, P. R., Puiatti, G. A., Guimarães, M. E. S., Cruz, C. D., Finger, F. L., ... Lacerda, M. S. 

(2021a). Nonlinear models based on quantiles in the fitting of growth curves of pepper genotypes. Revista 

Brasileira de Biometria, 39(3), 447-459. DOI: https://doi.org/10.28951/rbb.v39i3.505 

Oliveira, G. F., Nascimento, A. C. C., Nascimento, M., Sant’Anna, I. C., Romero, J. V., Azevedo, C. F., ... 

Moura, E. T. C. (2021b). Quantile regression in genomic selection for oligogenic traits in autogamous 

plants: A simulation study. PLoS ONE, 16(1), 1-12. DOI: https://doi.org/10.1371/journal.pone.0243666  

Pérez, P., de Los Campos, G., Crossa, J., & Gianola, D. (2010). Genomic-enabled prediction based on 

molecular markers and pedigree using the Bayesian linear regression package in R. The Plant Genome, 

3(2), 106-116. DOI: https://doi.org/10.3835/plantgenome2010.04.0005 

Pong-Wong, R., & Hadjipavlou, G. (2010). A two-step approach combining the Gompertz growth model with 

genomic selection for longitudinal data. BMC Proceedings, 4(1), 1-5. DOI: https://doi.org/10.1186/1753-6561-

4-S1-S4 

Puiatti, G. A., Cecon, P. R., Nascimento, M., Nascimento, A. C. C., Carneiro, A. P. S., Silva, F. F., ... Oliveira, A. C. 

R. (2018). Quantile regression of nonlinear models to describe different levels of dry matter accumulation in 

garlic plants. Ciência Rural, 48(1), 1-6. DOI: https://doi.org/10.1590/0103-8478cr20170322 

https://doi.org/10.2527/jas.2010-2984
https://doi.org/10.1198/106186008X289155
http://dx.doi.org/10.11613/BM.2012.031
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.4238/gmr16019538
https://doi.org/10.3390/agronomy9120796
https://doi.org/10.3835/plantgenome2010.04.0005


Page 12 of 12 Nascimento et al. 

Acta Scientiarum. Agronomy, v. 46, e65081, 2024 

Puiatti, G. A., Cecon, P. R., Nascimento, M., Nascimento, A. C. C., Carneiro, A. P. S., Silva, F. F., ... Cruz, C. 

D. (2020). Nonlinear quantile regression to describe the dry matter accumulation of garlic plants. Ciência 

Rural, 50(1), 1-8. DOI: https://doi.org/10.1590/0103-8478cr20180385 

R Core Team. (2021). R: A language and environment for statistical computing. Vienna, AT: R Foundation for 

Statistical Computing. 

Silva, G. N., Nascimento, M., Sant’Anna, I. C., Cruz, C. D., Caixeta, E. T., Carneiro, P. C. S., ... Oliveira, M. S. 

(2017). Artificial neural networks compared with Bayesian generalized linear regression for leaf rust 

resistance prediction in Arabica coffee. Pesquisa Agropecuária Brasileira, 52(3), 186-193. 

DOI: https://doi.org/10.1590/s0100-204x2017000300009 

Smith, B. J. (2007). boa: An R package for MCMC output convergence assessment and posterior inference. 

Journal of Statistical Software, 21(11), 1-37. DOI: https://doi.org/10.18637/jss.v021.i11 

Varona, L., Ibañez-Escriche, N., Quintanilla, R., Niguera, J. L., & Casellas, J. (2008). Bayesian analysis of 

quantitative traits using skewed distributions. Genetics Research, 90(2), 179-190. 

DOI: https://doi.org/10.1017/S0016672308009233 

Ward Jr., J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American 

Statistical Association, 58, 236-244. DOI: https://doi.org/10.1080/01621459.1963.10500845 

  

 

https://doi.org/10.18637/jss.v021.i11

