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Abstract

Investigating the interplay of factors that result in a viral zoonotic outbreak is difficult, though it is increasingly
important. As anthropogenic influences shift the delicate balance of ecosystems, new zoonoses emerge in humans.
Sub-Saharan Africa is a notable hotspot for zoonotic disease due to abundant competent mammalian reservoir hosts.
Furthermore, poverty, corruption, and an overreliance on natural resources play considerable roles in depleting
biological resources, exacerbating the population’s susceptibility. Unsurprisingly, viral zoonoses have emerged in
Africa, including HIV/AIDS, Ebola, Avian influenza, Lassa fever, Zika, and Monkeypox. These diseases are among
the principal causes of death in endemic areas. Though typically distinct in their manifestations, viral zoonoses are
connected by underlying, definitive factors. This review summarises vital findings on viral zoonoses in Africa using
nine notable case studies as a benchmark for future studies. We discuss the importance of ecological recuperation
and protection as a central strategy to control zoonotic diseases. Emphasis was made on moderating key drivers
of zoonotic diseases to forestall future pandemics. This is in conjunction with attempts to redirect efforts from
reactive to pre-emptive through a multidisciplinary “one health” approach.

Keywords: zoonoses, epidemic, pandemic, omicron, ecological restoration, HIV, Ebola, Lassa fever, monkeypox,
Rift Valley fever, West Nile virus.

Resumo

Investigar a interacdo de fatores que resultam em um surto zoonético viral é dificil, embora seja cada vez mais
relevante. A medida que as influéncias antropogénicas mudam o delicado equilibrio dos ecossistemas, novas
zoonoses surgem em humanos. A Africa Subsaariana é um ponto critico notavel para doencas zoonéticas devido
a abundantes reservatdérios mamiferos competentes. Além disso, a pobreza, a corrupgdo e o excesso de confianga
nos recursos naturais desempenham papéis consideraveis no esgotamento dos recursos bioldgicos, exacerbando
a suscetibilidade da populacdo. Sem surpresa, zoonoses virais surgiram na Africa, incluindo HIV/AIDS, Ebola,
gripe aviaria, febre de lassa, zika e variola dos macacos. Essas doencas estdo entre as principais causas de morte
em areas endémicas. Apesar de serem tipicamente distintas em suas manifestacdes, as zoonoses virais estao
conectadas por fatores subjacentes e definitivos. Esta revisdo resume descobertas vitais sobre zoonoses virais na
Africa usando nove estudos de caso notaveis como referéncia para estudos futuros. Discutimos a importancia da
recuperacdo e protecdo ecolégica como estratégia central para o controle de doencas zoondticas. Foi dada énfase
a moderacdo dos principais impulsionadores de doengas zoonéticas para prevenir futuras pandemias. Isso ocorre
em conjunto com tentativas de redirecionar os esfor¢os de reativos para preventivos por meio de uma abordagem
multidisciplinar de “uma s6 satde”.

Palavras-chave: zoonoses, epidemia, pandemia, 6micron, restauragdo ecolégica, HIV, Ebola, febre de Lassa, variola
dos macacos, febre do Vale do Rift, virus do Nilo Ocidental.

1. Introduction

An overwhelming portion of human diseases circulate ~ far as 200,000 years ago (Forni et al., 2022). Even so,
through non-human hosts, and about 60% have been  investigating the interplay of factors that result in a viral
directly linked to zoonotic origins. If phylogeny is traced, =~ zoonotic outbreak is difficult, though its necessity should
it is expected to unearth zoonotic viral transmission as  not be understated (Holmes, 2022). As anthropogenic
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influences shift the delicate balance of ecosystems, new
zoonoses emerge in humans. These once-rare events
have been on an incline (Williams et al., 2021), with
devastating ecological, social, and economic consequences
(Chauhan et al., 2020). Sub-Saharan Africa has notable
hotspots for zoonotic disease due to abundant competent
mammalian reservoir hosts.

Furthermore, poverty, corruption, and an overreliance
on natural resources play considerable roles in depleting
biological resources, exacerbating the population’s
susceptibility (Chauhan et al., 2020). By 1986, Africa
had lost 65% of its wildlife habitat hotspots of exotic
plants and animals, and current estimates report a 50%
habitat alteration in 33 African countries, and up to 70%
in 20 countries (NCBI, 2021). Significant viral zoonoses
have emerged in Africa, including HIV/AIDS, Ebola, Lassa
fever, Zika, and Monkeypox (Brady et al., 2012; Bhatt et al.,
2013; Berry et al., 2020; Zhu et al., 2020). Azuma et al.
(2020) reported on case studies of viral zoonoses in Africa,
including the year it was first recorded and the mortality
rate. HIV was first reported in 1980 with a mortality rate
of 10,700,000, Ebola in 1976 with 12,930, Monkeypox
in 1970 with 5,000, Rift Valley fever in 1977 with 3,000,
West Nile virus in 1999 with 2,330, Zika virus in 1947 with
50, Lassa fever in 1969 with 250,000, and COVID-19 in
2020 with 4,000,000 (Ceballos et al., 2015).

These diseases are among the principal causes of death
in endemic areas (WHO, 2020; Cavalerie et al., 2021).
Though typically distinct in their manifestations, viral
zoonoses are connected by underlying, definitive factors
(Visher et al., 2021). Other authors have attempted to link
the occurrences of zoonotic outbreaks in Africa to establish
causality (Smith et al., 2003; Al-Tawfiq and Memish, 2014;
Kansky et al., 2016; NCBI, 2021). However, the wealth of
information, already skewed with socio-economic biases,
grossly understates the African situation (Altizer et al.,
2011). This review summarises vital findings on viral
zoonoses in Africa using eight notable case studies as
a benchmark for future studies (Akinduti et al., 2021;
Akinduti et al., 2022). We propose two practical steps to
alleviate, control and perhaps, prevent future outbreaks
within the continent. Our contribution is valuable to prior
attempts to redirect zoonotic disease control efforts from
reactive to pre-emptive through a multidisciplinary “one
health” approach (Amenu et al., 2019; Williams et al., 2021;
Obafemi et al., 2021).

2. Theories of Zoonotic Emergence

According to a fact sheet documented by WHO (2020),
zoonotic diseases (zoonosis) are infectious diseases caused
by pathogens migrating and rapidly circulating through
the human population from different species. Though
viruses are ubiquitous, only an estimated 0.001% constitute
significant health and economic concerns to man and his
environment (Visher et al.,, 2021). Several forces amplifying
this minority include viral disease etiology, epidemiology,
host biochemistry, and distribution. The exact model in
which this occurs is still a subject of scientific speculation
as particular details may vary between pathogens and
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outbreak episodes (Andersen et al., 2015; Azuma et al.,
2020). Current predominant hypotheses offer solutions to
two central questions: What is the origin of viral zoonotic
outbreaks? Secondly, what forces influence their adaptation
and outbreak in new populations?

2.1. Spillover model and circulation model

The origin of viral zoonotic outbreaks is a primary
contention in zoonotic studies. Scientists have investigated
the timeline and phylogeny of zoonotic pathogens, and
several have linked them to animal populations, especially
birds, bats, rodents, and monkeys (Kansky et al., 2016;
Baud et al., 2020). Lassa virus is linked to multimammate
rats: Mastomys natalensis (Wille et al., 2021). HIV-1 is adapted
from the Simian Immunodeficiency Virus in Rhesus macaques
and Sooty mangabeys (Weldemhret, 2021). Zika Virus was
initially isolated from a febrile Rhesus macaque (Pierson and
Diamond, 2018). Several studies also implicate non-human
primates as the reservoir of diseases like Monkeypox,
Ebola, and COVID-19 (Bausch and Schwarz, 2014; Lu et al.,
2015; Jin et al,, 2021; Obafemi et al., 2021; Akinduti et al.,
2021; Akinduti et al., 2022). Thus, before or during human
outbreaks, the enzootic and sylvatic cycles of several zoonotic
viruses have been thoroughly demonstrated.

Negative laboratory tests indicate that several organisms,
genetically similar and dissimilar to man, react diversely
to human-adapted viral strains (Bhowmick et al., 2020;
Williams et al., 2021). Zika Virus strains isolated from
humans tested in bats, mice, and rats resulted in a less
than 2 log increase in viral load (Bolles et al., 2011). Horses
experimentally infected with the NY99 strain of West Nile
virus were asymptomatic, failing to develop the viral load
necessary for transmission (Bongaarts, 2009; Briggs et al.,
2010). Numerous studies like this diminish the probability
of particular lineages of viral zoonoses. Without notable
adaptation, rapid propagation of viruses in all living
species is unlikely. Therefore, from an anthropocentric
perspective, tracing a virus’s origin leaves room for
fewer explanations. They either emerged from a singular
interspecies transmission or as a recombination of several
inter- and intraspecies transmissions.

The concept of diseases existing in distinct species
populations can be traced before man to the “Spillover
model” described by Daszak et al. (2000) represented
a phenomenon where an infection circulates within
a particular species before inadvertently overflowing
into others. The spillover effect is a population-scale
interpretation of disease transmission. It alludes to the
presence of a threshold the virus must overcome before
interspecies transmission occurs (Brink and Eva, 2009).
This closed system approach may be helpful when
describing a community of cells that constitute a singular
organism, but not in the context of multi-individual living
communities. The primary critique of this model is that
its linear approach rarely accurately captures the nuances
of “chance” present in nature (Burniston et al., 2015).
Identifying a singular trans-species event that precedes
a “Spillover” might be tedious at best.

Genetic and physiological variations between species,
described in this context as “species barriers,” may require
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viruses to adapt to new populations. Earlier infections may
not necessarily translate into disease if resolved by the
immune system. Even when diseases occur, symptoms
may be absent or poorly identified where present.
Unidentifiable incidents like this are often left unresolved
or misdiagnosed (Butler, 2012; Wille et al., 2021). In poorer
continents like Africa, such occasions may not even
be reported (Butler, 2012). Viruses probably circulate
within the population long before they are considered or
characterised (Visher et al., 2021). Within the open system
of natural habitat, anthropogenic activities interfere with
organisation, so infected non-human hosts may more
readily contact other species, including humans. This
is the basis of what Frutos et al. (2021) described as the
“circulation model”. This model posits that divergent viral
sub-populations evolve independently within organisms
of different species encountered randomly. Repeated
infections, which may not result in diseases, constitute
the stuttering phase of an outbreak and may persist until
the virus attains optimal virulence and transmissibility.
An outbreak occurs if this unlikely event coincides with
a hotspot of susceptible species.

2.2. Dilution, amplification and coevolution

Understanding the forces that influence viral adaptation
in new populations is fundamental and imperative. When
viruses migrate into novel populations, survival necessitates
evolution (Lion and Metz, 2018). Events of viral adaptations
can be navigated using key hypotheses such as “the dilution
effect” (Chlebicz and Slizewska, 2018; CDC, 2020), “the
amplification effect” (Colwell et al., 2008; CBD, 2017), and
“the coevolution effect” (Dietrich et al., 2015; Engineering
and Technology, 2020). The dilution effect proposes that
the likelihood of disease outbreaks is limited or hindered
in greater species diversity. It suggests that fragmented
habitats support the evolution of pathogens (Dudas et al.,
2017) due to reduced biodiversity.

Conversely, the amplification effect proposes that
species diversity enhances pathogenic evolution and the
outbreak of diseases (Ceballos et al., 2015). This is based
on the rationale that higher species diversity increases
the likelihood of a suitable host for given zoonoses.
According to Lemieux et al. (2022), both theories act in
tandem with reality to produce a net diluted or amplified
effect. The coevolution effect hypothesised by Zohdy et al.
(2019) proposes that within the diverging communities
created by habitat fragmentation, obligate parasites and
hosts facilitate the evolution of pathogens. This enhances
their overall diversity and virulence, thereby reducing
spillover. The subtle effect of competing factors in individual
ecosystems (including host-pathogen ecophysiology, the
composition of reformed communities, and the study scale)
affects all findings in this area of study. This complicates
the process of pinpointing causality.

3. Overview of Emergence Timeline

The Human Immunodeficiency Virus has persisted in
Africa for centuries, where it existed amongst primates
(Chimpanzees and Gorillas) as Simian Immunodeficiency
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Virus (SIV) (Sharp and Hahn, 2011). This intra-specie
transfer eventually led to the outbreak from 1938 to
1960 (Sharp and Hahn, 2011; Sousa et al., 2017). HIV-1-M
and HIV-1-N, in particular, can be traced from south-central
and southeast Cameroonian Chimpanzees, while HIV-1-O
HIV-1-P from gorillas in Western lowlands (Sousa et al.,
2017). HIV 2 has been generally linked to independent
transmission from Mangabey monkeys in West Africa.
Significant overlap between HIV and SIV geographic
distribution strongly indicates multiple subspecies
transfer (Baral and Phaswana-Mafuya, 2012). Some studies
have suggested that these transfers began in the Congo
Basin River in Africa (Barboza et al., 2018; Everard, 2020;
Everard et al., 2020)

Monkeypox is an Orthopoxvirus first clinically
documented in 1958 from skin lesions believed to have
originated from non-human primates (Everard et al.,
2020). The first clinical report was of an infant in the
Demographic Republic of Congo in 1970, and the disease
subsequently spread sporadically around the country, as
well as many others in Central and West Africa (Gottwalt,
2013; Golin et al., 2020). Subsequent outbreaks occurred
in the US and globally in 2003. This was linked to a cross
mutation from the vaccine for smallpox, as both are of
the Poxviridae family and are closely related genetically
(Gould and Higgs, 2009). Reports state that smallpox
vaccination was at least 85% effective against monkeypox
(Gugnani and Muotoe-Okafor, 1997; Grace et al., 2012).
Before the 2010s, with more infections than seen in the
last half-century, monkeypox occurrences have been few
and far between (Guine et al., 2021). However, cases have
been repeatedly reported to show a gradual rise since
1970 (Hudson et al., 2002; Guzman et al., 2016). Within the
last decade, 98.5% of confirmed and reported monkeypox
cases occurred in the Demographic Republic of Congo,
with the rest distributed between Nigeria, Cameroon, the
Central African Republic, Congo and South Sudan (Shuman,
2010; Jaramillo et al., 2019; Sijtsma et al., 2020). The biggest
singular outbreak occurred in Nigeria in 2017 and Cameroon
in 2018, which were previously inhabited by the virus,
thus raising concerns about new mutations that might
have caused its re-emergence. The same strain, with a
few novel mutations, was identified earlier this year in
non-endemic locations like the United Kingdom and the
United States. Investigations regarding this development
are undergoing (Kaler et al., 2022).

The Coronaviruses were first isolated in 1966 from a
sample culture of invalids with the common cold. Over two
decades later, the first four cases of COVID-19 were relayed
in Wuhan City, Hubei Province, China, on 29 December
2019 (Saadat et al., 2020). Until recently, the four different
subfamilies identified include alpha-, beta-, gamma-,
and delta-coronaviruses (Johnson et al., 2015). The beta
coronaviruses result in profound diseases, including more
mortality than the other genotypes of this virus. In contrast,
alpha-coronaviruses cause mild symptoms and can even
be asymptomatic in some cases (Kularatne et al., 2018).
The B.1.1.529 variation, discovered in South Africa, was
fundamentally delineated by the World Health Organization
(WHO) on 24 November 2021. A detailed epidemiological
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characterisation of the South African situation showed three
distinct peaks, the latest predominantly the Delta variant.

The Ebola virus was first isolated in 1976 in the
Demographic Republic of Congo and Sudan, with its most
significant outbreak occurring in 2014 (Leroy et al., 2007).
A few weeks after initial isolation, the first outbreak, with
over 318 reported cases of 88% fatality, was documented in
Guinea. Over 20 outbreaks occurred in the interim, with
a spread of about 1740 confirmed cases (Loh et al., 2013).
In 2011, several instances of EBOV were reported in Uganda
following the death of one patient that endangered over
20 more (Londono-Renteria et al., 2016). Similar occurrences
were documented in Sierra Leone in 2014 through a
singular recorded event that led to a series of reported
cases (Kreuels et al., 2014). Sporadic cases of EBOV from
2011-2014 were common in West African countries.
Before the first quarter of 2014, 111 reported cases and
about 79 resulting deaths had been documented in Sub-
Saharan Africa, with over 23 total outbreaks (Baize et al.,
2014; Shultz et al., 2016). Believed to have been contracted
from Savannah forest, the 2014 outbreak is traced to a
single report in a Guinean village in December 2013.
With a spread of 28,600 confirmed cases in three central
African countries—Liberia, Sierra Leone and Guinea, it
quickly became a public health emergency several times
more severe than all other EBOV outbreaks (Shultz et al.,
2016). Since March 2016, when the outbreak was declared
curtailed, reports of annual cases have continued to trickle
in (Mabogunje, 1995; Strle and Stanek, 2009; Shapiro, 2017).

Lassa virus was popularised after its isolation from
infected patients in Borno State, Nigeria, in 1969 and
its clinical description in 1970. The outbreak occurred
minimally but consistently for 54 years, except from
1981 to 1988 (Agbonlahor et al., 2021). In the succeeding
decades, less than 10% of total disease cases were
discovered outside West Africa, predominant in several
other countries, including Sierra Leone, Liberia, Mali and
Guinea (Bonwitt et al., 2016). With a persistent hike since
early 2005, the largest outbreak occurred between 2017-
2020, affecting over 20 states in Nigeria. This outbreak
has been depicted with the lowest fatality of about 4.8%
compared to 49-86% of the rates in the epidemics of the
early 2000s (Agbonlahor et al., 2021).

Zika virus was isolated from a febrile rhesus monkey
in the Zika forest by scientists in 1947 (Schwartz, 2017).
The virus was neurotrophic and found to induce illness
and death in lab-tested mice (Dick et al., 1952). The first
documentation of the zika virus isolated from a human
occurred in Nigeria in 1954 (Macnamara, 1954; Tian et al.,
2018), where the malaria-like and yellow-fever-like
symptoms sparked debates about its validity. It has also
raised further questions about the prevailing misdiagnosis
of the virus within the continent (Gubler et al., 2017). Zika
virus is endemic to African countries but has also been
isolated in several parts of Asia (Musso and Gubler, 2016).
It was initially isolated outside Africa from Malaysian
mosquitos in 1966 and subsequent seroprevalence in Asia
between 1950 to 1970 likely indicates its presence. In 2007,
the first Zika virus outbreak was reported in Yap Island,
Micronesia, preceding the epidemics in Polynesia and
South Pacific in 2013-2014 (Duffy et al., 2009; Setti et al.,
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2020). Alongside its geographical migration, the virus has
evolved into two major lineages linked to numerous global
outbreaks in the last ten years (Musso and Gubler, 2016).

West Nile virus was initially isolated in 1937 in Uganda
during a Yellow Fever campaign and has since evolved
into several lineages discovered in Australia and various
European countries (Smithburn et al., 1940). It is a Flavivirus
endemic to several Sub-Saharan African, European, Asian
and Middle Eastern countries. As it is vector-borne, the virus
is greatly influenced by the geographical distribution and
migration of the Culex and Aedes mosquitoes (Calistri et al.,
2010). Of the nine known lineages of the West Nile virus,
only 3:L1,L2 and L8, are found in Botswana, Congo, Senegal,
South Africa, Madagascar, Uganda and the Central Republic
of Africa (Fall et al.,, 2017). Phylogenetic research has traced
a shared ancestry back to the 16th century (Pachler et al.,
2014). In 1960, L1 migrated through Northern and most
countries in Central Africa (Sule et al., 2018). Since then,
West Nile has caused outbreaks in Algeria (1994), Morocco
(1997), and Tunisia (2007). The second and largest outbreak
occurred in 2004 in Northern Africa and Hungary, chiefly
driven by L1 and L2 (Fall et al., 2017).

The first report of Rift Valley fever occurred following the
death of 4,700 livestock on a farm in the Great Rift Valley,
Kenya, in 1931 (Daubney et al., 1931), spreading slowly into
many countries in Southern Africa (Swanepoel and Coetzer,
2004). Over two decades later, the first outbreak occurred
in South Africa, killing over 100,000 livestock, which was
recognised after the death of several animal care doctors
(Mason, 2016). In 1977, the largest outbreak occurred in
Egypt, resulting in over 500 deaths and 200,000 human
infections (Meegan et al., 1981; Sambri et al., 2013; Roberts,
2018). In 1997, an outbreak occurred in Kenya and again
in Eastern Africa between 2007-2008, resulting in about
700 deaths (Bird et al., 2008). Subsequent episodes in
the continent have been few and far between, making
the first appearance outside Africa in 2000 (CDC, 2000;
Sampathkumar and Sanchez, 2016; Seah and Agrawal,
2020).

4. Drivers of Zoonosis in Africa

Direct and indirect drivers of African zoonoses can
be distinguished into three broad categories: A as “the
proximate drivers”, B as “the primary distal drivers”, and
C as “the secondary distal drivers” (Figure 1).

4.1. Viral scope

4.1.1. Viral transmission

From an anthropocentric perspective, three significant
players may be considered (excluding the virus) to be
involved in viral zoonoses transmission: primary host
(non-human species or reservoir), intermediate host
(vector) and secondary host (human population). Hence,
propagation within the secondary host population typically
occurs through four major pathways:

Pathway 1: Primary host to secondary host.

Pathway 2: Intermediate host to secondary host.

Pathway 3: Secondary host to secondary host.
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ZOONOTIC
DRIVERS

VIRAL SCOPE

EFFECIENCY OF VIRAL

TRANSMISSION EVOLUTION

Primary host to Primary host
Primary host to secondary host
Environmental media

VIRAL PLASTICITY OR

TIME SCALE OF EMERGENCE ~ VIRULENCE

scale or length of trade-off Immunomaniputation

Type of genetic material
Rate of mutation

PRIMARY, SECONDARY AND TERTIARY HOST SCOPE

Inter species host Interaction

B Proximity to wildlife
consumption of wildlife
geographic distribution of vector

ECOLOGICAL CHANGES

Climate change

C Agriculture/ Land Use
Deforestation/ Reforestation
Flood/drought
Famine
Pollution

Figure 1. Key primary and secondary drivers of zoonoses in Africa.

Pathway 4: Environmental media to a secondary host.

Since viruses are rarely constrained within any specific
population (Memish et al., 2013), there are likely as many
potential hosts as available hosts. Survival within new
populations generally requires an adequate infected host
interacting, primarily via body fluids, with a vulnerable
host. Viruses need efficiency in pathways 2 and 3 to emerge,
thus, an evolution to sustain pathway 3 ensures longevity
(Mishra et al., 2020). Pathway 3 sustaining viruses are
costly to contain and have been linked to lower death
rates, and acute infection (Visher et al., 2021). Transmission
has contributed significantly to the emergence of each
viral case study analysed - this includes both positive
and negative influences. The RO value is also used here
to characterise transmission efficiency, measuring the
average incidence following the introduction of a virus
into a new community.

HIV strains are known to infect humans in Africa
widely: HIV 1 and HIV 2, both of which have been traced
back to independent pathway 1 transmissions (Sharp and
Hahn, 2011; Baral and Phaswana-Mafuya, 2012; Jin et al.,
2021). The epidemic groups of HIV- 1 and 2 all successfully
maintain pathway 3, which accounts for 86% of incidences
(Royce et al., 1997; Jin et al., 2021). Consequently, HIV has
an RO value of 4.6, surviving for many centuries in human
society (Sousa et al., 2017). Viruses that operate through
pathway 2 are also dominant in Africa (Kilpatrick and
Randolph, 2012; Dzingirai et al., 2017). They are commonly
constrained to the geographical location of the vector or
reservoir host, but many studies indicate that common
arthropod vectors are adequately bred within the continent
(Venter, 2018; Mubemba et al., 2022). The success of Rift
Valley, West Nile and Zika virus is attributable to this factor
(Bird et al., 2008; Gubler et al., 2017; Sule et al., 2018).
However, these viruses are not exclusively transmitted
this way and often employ Pathways 1 and 4. Monkeypox,
Ebola and Lassa virus is commonly associated with pathway

Brazilian Journal of Biology, 2024, vol. 84, e270857

Type of Organism

Genetic susceptibility to virus
Phenotypic susceptibility to virus

Economic Constraints

Nutrition

Access to medication
Information dissemination
Living condition

1 and demonstrates higher virulence and lower longevity
(Shultz et al.,2016; Kamara et al., 2020; Peter et al., 2022).
Rift Valley virus is primarily transmitted via the Aedes
mosquitos, though it may also be maintained from man
to man by sexual transmission (Pienaar and Thompson,
2013; Mweya et al.,, 2013; Meegan and Bailey, 2019).
It has an RO value of 2.5 and may replicate continuously
in the cells of blood, eyes and sperm. It requires multiple
primate and non-primate hosts to complete its life cycle,
which severely constrains transmission (Meegan and
Bailey, 2019). West Nile and Zika viruses are primarily
transmitted through pathway 2, with various species
of the Culex and Aedes Mosquitoes. West Nile virus may
also be transmitted intravenously during pregnancy and
contact with infected body fluids (Cérdoba et al., 2007;
Watts et al., 2020). Birds are regarded as the reservoir
host, so that transition into a secondary host is likely to
occur after a mosquito bite a bird with West Nile disease.
Horses, birds and man are considered dead-end hosts,
as interspecies transmission within these populations
is inefficient (Bosco-Lauth and Bowen, 2019). Similarly,
the Zika virus undergoes sylvatic and enzootic phases,
circulating through primates and the arthropod vector that
bites them (Bonyah et al., 2017). The Ebola virus outbreak
of 2013-2014 was chiefly a function of pathway 2, which
is majorly linked to body fluids. This outbreak was largely
successful, with an RO rate of 1.5-2.5 (WHO, 2020). Lassa
fever Infection transmission is primarily through pathway
1, particularly from multimammate rodents (Mastomys spp.)
that carry and transmit the human-compatible LASV.
Pathway 3 transmission, though still plausible, is less
evident (Agbonlahor et al., 2021).

4.1.2. Virulence

This refers to the ability of a virus to successfully
circumvent the host immune system to induce disease
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and eventual death. Virulence will vary greatly depending
on independent pathogen adaptations and the response
of infected hosts (Bonneaud and Longdon, 2020). Several
studies suggest that viruses adapt towards virulence
optimal for longevity. However, this theory is subject to
the unique pathology of each virus (Pagan et al., 2014;
Jaderyan and Khotanlou, 2016; Cressler et al., 2016;
Bonneaud and Longdon, 2020). Greater virulence implies
higher mortality levels, which affects the availability of
hosts and limits proliferation (Mishra and Mishra, 2020).

Furthermore, higher virulence is likely to create
a socio-economic bias, leading to proactive societal
practices (Pagan et al., 2014; Bonneaud and Longdon,
2020). Alternatively, low virulence will strengthen host
immunity and significantly lead to extinction (Visher et al.,
2021). Optimal virulence requires enough stealth and
adaptability to manipulate host immunity and enhance
spread while limiting mortality. Several reports indicate
that viral zoonoses in Africa have corresponded to these
findings (Cressler et al., 2016; Grubaugh et al., 2020; Visher
and Boots, 2020). Diseases with more optimal fatality
rates and generic symptoms like Monkeypox, Rift Valley
and West Nile fever seem to be positively impacted, and
others with Ebola are negatively impacted (Bonneaud and
Longdon, 2020; Wang et al., 2020).

Ebola is a highly virulent RNA virus, with outbreaks
linked to pathogens of the genus Ebolavirus: the Sudan
Ebola virus and the Zaire Ebola virus (Changula et al., 2013;
White et al., 2019). The rates of mortality ranged between
49-70% in multiple outbreaks. This has been attributed to
its expert evasion of adaptive immunity (Mollentze and
Streicker, 2020). Thus, the disease has also experienced
more rigorous human interventions and shorter timescales
of circulation (Bonneaud and Longdon, 2020). Monkeypox
has a fatality rate of ~10%, a fair value that leans more to
<5% in current estimates. Each notable species varies in
virulence— the Congo Basin clade supersedes the West
African clade and all previously identified clades and
is responsible for the US outbreak of 2003. Monkeypox
manipulates the immune system by restricting T-cell
production and T-cell-mediated action by up to 80% (Wheat,
2006; Kaler et al., 2022). This immunomodulation has been
only discovered in the Congo variant (Kumar et al., 2022).
The Central African variant has also been seen to regulate
apoptosis and alleviate the transcription and expression
of immune-related genes. Unfortunately, their larger size
also limits immune system evasion, which is combated
with virulence proteins: viro-mimic, viro-stealth and viro-
transducer proteins (Harapan et al., 2022). These actions
produce a net negative effect on its virulence (Kumar et al.,
2022). There is evidence that sufficient immunity against
Lassa fever will be generated because of a single infection,
and chronic infection is rarely established. About 80%
of reported LASV infections are mild or asymptomatic
cases, with non-specific conditions such as common
fever and weakness. These individuals recover to total
health (Purushotham et al., 2019). This amount may
double if the likelihood of misdiagnosis in these areas
is considered (Olowookere et al., 2014; Mrema, 2020).
In patients already hospitalised, the mortality rate is 15-
25%, which rises to about 35% for non-endemic countries
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(Houlihan and Behrens, 2017; Buba et al., 2018). The LASV
attacks the macrophages and dendritic cells of the innate
immune system, and ser seroprevalence is associated
with a LASV-specific memory T-cell (Langwig et al., 2015;
Sullivan et al., 2020). HIV is particularly efficient in immune
manipulation. Reports have suggested that initial outbreak
success is due to its ability to transmit highly variant strains
between interspecies and work in tandem with other
pathogens to evolve (Sousa et al., 2017; Walker et al., 2018)
favourably. West Nile disease typically begins and remains
asymptomatic or produces mild febrile symptoms. It less
frequently progresses to the more virulent later phases,
when it attacks the central nervous system (Wilby, 2009;
Ciota et al., 2013; Witkowski et al., 2014; Prow et al., 2016).
Earlier symptoms of Rift Valley disease are non-specific,
including fever and nausea. Later symptoms include severe
hepatitis, abortion or malformations of the fetus, and
neural disorders (Meegan and Bailey, 2019). Zika virus is
symptomatic in 20% of infected cases and rarely leads to
death. The disease is considerably associated with poor
neurological development in infants (Schwartz, 2017).

4.1.3. Evolution

Viruses may initially possess traits that allow circulation
in new populations, but more often, they need to evolve
to improve propagation in a community. An interspecies
transfer is, therefore, more probable the closer the
organisms are genetically (WHO, 2003; Mullins et al.,
2010). The rate of evolution and the likelihood of success
depends mainly on the rate of mutation and the degree of
selective pressure towards those mutations (Visher et al.,
2021). The former is a function of the virus’s genetic
structure and the life cycle stage, while the latter is a
function of community structure, gene pool and several
infected individuals (Lion and Metz, 2018; Parsons et al.,
2018; Guth et al., 2019). Pathogens often develop functional
traits through low-impact mutations that precede an
outbreak (Bull and Ebert, 2008; Visher et al., 2021). Within
this trial stage, frequent failure is essential. Thus, RNA
viruses often evolve faster (Bull and Ebert, 2008; WHO,
2009; Acevedo et al., 2019). Reports on Monkeypox, Ebola
virus, and COVID-19 have implicated notable evolution as
key drivers of African outbreaks.

Monkeypox is a double-stranded DNA. Unlike other DNA
viruses that replicate in the nucleus, poxviruses like this
can utilise cell proteins to carry cytoplasmic replication.
The prevalence of monkeypox infection in individuals born
during the discontinuation of smallpox vaccination depicts
a corresponding decline in cross-protective immunity it
provided (Myers et al., 2013; Kaler et al., 2022; Kumar et al.,
2022). Comprehensive laboratory analysis of various Lassa
fever cases following this time also indicates a marked
heterogeneity in strains, even amongst individuals within
the same zone (Langwig et al., 2015; Hallam et al., 2018).
This implies rapid and multiple evolutions leading to
its outbreak (Hallam et al., 2018). The genetic material
of the Ebola virus is also a single RNA, thus undergoing
rapid and frequent mutations (Shoemaker et al., 2012;
Zinsstag et al., 2012). Some reports show strong genetic
similarities between samples collected during the outbreak
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that depict a singular source of infection (NCBI, 2021).
The time scale of viral evolution occurs differently than
the data may imply. Rates may spike within an outbreak
and slows down between or before an outbreak (Gire et al.,
2014).1tis more likely that lack of sampling is the point of
contention. Typically, EBOV RNA viruses evolve through
rapid transcription, creating multiple error-prone models,
which are often eradicated through natural selection
(Luetal,, 2015). It is unclear what advantage the Ebola virus
disease outbreak of 2013-2014 had, but it likely evolved
to improve transmissibility or virulence or migrated into
a peculiar, more suitable demographic. Alpha and beta
coronaviruses emanated from mammals, particularly bats,
while gamma and delta coronaviruses originated from birds
and pigs (Normile, 2008; Ceballos et al., 2015). The genome
of these viruses varies from 26 kb to 32 kb. Scientific
evidence shows that the newly isolated South African
variant, Omicron, has a colossal number of concerning
transmutations (Ceballos et al., 2015; Reed, 2018; WHO,
2020; NCBI, 2021). Empirical evidence from polymerase
chain reaction diagnostics suggests an increased risk of
reinfection with this variant compared to other variants of
concern (Saadat et al., 2020). Several studies are currently
in progress to evaluate the rate of mutations in this variant.
However, pieces of evidence gathered so far are indicative
of a detrimental transformation in COVID-19 epidemiology
(Novelli et al., 1998; Saadat et al., 2020). Consequently, the
WHO has designated it a global concern (WHO, 2020).

4.2. Host scope: primary

4.2.1. Interspecies host interaction

The interface between various organisms, particularly
wild ones, increases the risk of pathway 1 disease
transmission. Of the endemic regions, the seroprevalence
of viral zoonoses varies greatly, with West African forest
areas the most prominent zones (NCBI, 2021). It is believed
to be associated with the availability and proximity to
wildlife habitat, particularly rodents, i.e. the hypothesised
reservoir host (Ganjeer et al., 2021). The LASV rats are
asymptomatic and highly fertile. Therefore, they are
numerous in endemic regions and are unlikely to be
identified as diseased (Bonwitt et al., 2016; Wu et al.,
2017; Reed, 2018). This may facilitate consumption and,
thus, the spread of infection. Transmission routes may be
through the skin, gastrointestinal tract and respiratory
tract. In a study of 36 primary and secondary cases of
LASV, 36% of infection was linked to nosocomial and lack
of PPE by healthcare professionals and morticians, and
16% was traced to contact with peridomestic rodents
(Wolf et al., 2020). Another study indicated that areas
with infected individuals were multiple times more likely
to have arat infestation than areas without (Tambo et al.,
2018; WHO, 2018).

Four (4) formational genes encode the spike protein,
a small membrane protein, the nucleocapsid protein,
and the integument glycoprotein with an additional
membrane glycoprotein in the HCoV-0C43 and HKU1 beta-
coronaviruses (Saadat et al., 2020). The unexpurgated
genome of SARS-CoV-2 is 96% homogenous to the
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coronavirus in bats (Saadat et al., 2020; Obafemi et al., 2021).
This gives empirical justification that the covid-19 pandemic
might have originated from bats, although some scientists
suspect pangolin may be the source. For example, new
buildings constantly dislodge bats from their natural
habitats in the wild into the city. Other dislodged wild
animals have been frequently spotted on the streets (Li et al.,
2020). Their droppings and fluids in human societies may
be potential sources of new viral infections (Reed, 2018;
CDC, 2020; WHO, 2020).

4.2.2. Type of host

The role of host response is a significant component
of a viral outbreak. Though the exact reactions are not
yet accurately determined, it is well known that factors
like health, socio-economic status and type of treatment
are incredibly influential. Individuals with poor diets and
sanitary culture or immunocompromised are more at
risk and experience enhanced fatality (Grace et al., 2012;
Moretti et al., 2013; Matilla et al., 2018; Launay et al.,
2021). Healthcare workers are at the frontline of patient
care and are more vulnerable (Vonesch et al., 2019).
Similarly, individuals who have been vaccinated may
experience cross-immunity towards related viruses
(Le6n-Figueroa et al., 2022). Precise mapping of vulnerable
demographics may be determined case by case.

Monkeypox has notably affected individuals born after
monkeypox vaccination discontinuation (Kaler et al., 2022).
HIV transmission heavily relies on the viral load, which is
influenced by the type of variant, the stage of its lifecycle
and the presence of other pathogens, which help to boost
the load (Nguyen et al., 2019). Infections like genital ulcer
disease (GUD) and Syphilis, which cause inflammation and
amplify HIV load, likely contributed to the initial outbreak
(Maan et al., 2021). War-ranging areas, work associated
with frequent sexual practice, paternal transmission
and men without circumcision have been deemed more
vulnerable to the spread of the HIV-2 Disease in Western
Africa (Odilara et al., 2006). Inadequate use of PPE, lack
of proper safety protocol and sexual promiscuity are also
substantial risk factors associated with HIV (Vu et al.,
2018). Alternatively, the presence of CCR5 receptors and
vaginal lactobacilli diminishes HIV susceptibility (Wada,
2018; Nahui Palomino et al., 2019).

4.3. Host scope: secondary and tertiary

According to Conticini et al. (2020), increased pollution
could boost the propagation of zoonotic viruses. Thus,
countries with high air pollution levels have been
more significantly impacted by outbreaks than the less
polluted ones. It has been severally documented that
altering aquatic habitats through organic pollutants
enables the pathogens of water-borne diseases such as
diarrhoea, cholera, dysentery, and so forth, contributing
significantly to a sharp rise in infant mortality (UN, 2019;
Ong et al., 2020; Zhang et al., 2022). These challenges
have marked alterations in ecosystems, thus shaping the
behavioural evolution of wildlife, pathogens and viruses
(Markovchick-Nicholls et al., 2008). Consequently, these
impacts have influenced the emergence and dispersal
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of infectious diseases (Oladele et al., 2018), threatening
public health (Olival and Hayman, 2014). Viral zoonosis
initially penetrates the population from rural settlements.
They suggest that primary local hotspots are produced
when milder deforestation rates combine with proximity
to a fragmented society. Zhang et al. (2022) fault the
predominant poverty and corruption. The bioresource bases
of forest ecosystems and inland and coastal mangroves are
vital for the rural poor in developing nations. As agrarian
societies, African countries depend primarily on biodiversity
resources for nutrition and medicine (Langwig et al., 2015;
Reed, 2018). Biodiversity, therefore, supports 70-80% of
the food requirements of 70% of locales, while about 30-
50% of urban and peri-urban areas depend on natural
resources for their nutritional support (Parola and Raoult,
2001; Spencer et al., 2020). Impoverished African societies,
therefore, rely on illegal activities such as poaching, logging
for fuelwood, and abuse of land, air and water bodies for
survival (Root et al., 2003; Dilley et al., 2005; Parrish et al.,
2008; Schwarzenbach et al., 2010). Generally, poverty plays
a multifunctional role in the epidemiology of infectious
diseases. Poverty causes malnutrition which is responsible
for immunosuppression, hence the susceptibility of the
impoverished population (Kelt and Hafner, 2010). Poverty
thus increases the direct interactions of humans with the
habitats, thereby compromising the endemic barrier. Some
of the economic-motivated interactions of humans with
nature include hunting, domestication, transportation,
slaughter, and sale of wild animals. This may enable the
viruses in domesticated animals, fluids, or wastes to break
the ecological barrier and adapt to human societies (CSIS,
2020; NCBI, 2021; Zhang et al., 2022).

5. Approaches to Combating Viral Zoonoses

The planet is in a state of dynamic equilibrium as the
inherent life support systems continue to compensate for
the predominant anthropogenic perturbations to ensure
the continuity of essential ecological services (Powers,
2015). Viruses continue to evade prevention and control
measures by undergoing mutations that evolve new
variants with more significant morbidity. As the world
anticipates a new pandemic by the newly evolved virus
called Omicron, it becomes imperative to explore scientific
measures to mitigate the outbreak and possible ones in
the future (Richmond and Baglole, 2003; Real and Biek,
2007; Reperant, 2010).

5.1. The ecological barrier restoration approach

Drastic urbanisation encroaches on natural vegetation,
promotes human population clusters, and closes the gap
between humans and animals. These, in turn, increase the
likelihood of transmission through breeding, slaughter,
transportation, and sale of animals (Pearce-Duvet, 2006;
UNEP, 2007; Weaver and Lecuit, 2015; Steiner, 2020).
The prevalence of emerging viral variants crossing the
ecological barrier is strongly linked to ecological processes
that are intensively affected by the consequences of
anthropogenic activities, characterised by global climate
change, invasions of wildlife habitats, unsustainable
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agricultural practices, and dramatic urbanisation
(Daszak et al., 2013; Gao et al., 2013; Pike et al., 2014;
Zumla and Hui, 2019; NCBI, 2021). In this context, the
focus is to restore the potentiality of the ecological
barriers to impede viral transmission from innate hosts
to humans (NCBI, 2021). The burdens of viral mediation
in the wild, intermediate, and domesticated assemblages,
as well as the environmental media, are also to be put into
perspective (Parsons et al., 2018; Zhu et al., 2020; NCBI,
2021; Zhang et al., 2022).

A comparative assessment of the corona variants has
characterised Omicron as a coronavirus of concern with
enhanced transmissibility, acridness and inimical change
in COVID-19 epizootic, which may present a dramatic
transformation in clinical disease presentation, thus,
causing global health concerns of greater magnitude
than ever seen (UN DECADE, 2019; CDC, 2020; UNEP,
2020). This may impair the efficacy of diagnostics,
therapeutics, and vaccines; and the effectiveness of social
measures. Based on current zoonotic trends, this may
soon become common. Within the scope of this report,
we consider the viral outbreaks as a reaction of nature
(CDC COVID-19 Response Team, 2020; UNESCO, 2020).
We presuppose that the features of HIV, Lassa fever, Ebola
and COVID-19 relate to ecological indices. Applied ecology
could help solve critical problems that the global invasion
of SARS-CoV-2 has unravelled (CDC COVID-19 Response
Team, 2020; Li et al.,, 2020). Conscious efforts towards
restoring the endemic and cross-species barriers may
hold the hope for the safe and sustainable coexistence of
all species on earth. Ground-breaking success in applied
ecology and milestones in the strategic manipulation of
the endemic barriers, particularly cross-species barriers,
may proffer novel solutions and conquest against the
coronaviruses of concern, including the newly evolved
Omicron (Langwig et al., 2015). Therefore, it is imperative
to survey further the empirical upshots of anthropogenic
activities on the integrity of environmental barriers and
fill the knowledge gap on the transmission mechanisms of
emerging coronaviruses across the barriers (NCBI, 2021).

5.2. The viral surveillance approach

Peculiarities in viral behaviours are studied for disease
profiling and control (Petersen et al., 2013; Wille et al.,
2021). Several factors constrain these reports, resulting
in an exclusive representation of viral subpopulations of
socio-economic relevance (Wille et al., 2021). The issue is
compounded when we consider that even predominantly
employed surveillance techniques poorly capture the viral
richness of this subset of the virosphere (Childs et al.,
2007; CBD, 2017; Wille et al., 2021). Our understanding
of proximate causes may be insufficient, so our findings
on some distinct zoonotic outbreak episodes chronicle
commonalities that characterise successful outbreaks
(Ceballos et al., 2015). We recommend enhancing
surveillance and a detailed chronological investigation to
understand the dynamics of viral mutants better. For this
approach, the public availability of a database on complete
genome sequences and the associated metadata variances
of interest and concern is essential (Langwig et al., 2015).
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5.3. Further recommendations

The paucity of information on the epidemiology of the
variants of concern characterises the limitations of this
report. Hence, we recommend further field investigations,
improved diagnostic methods, and laboratory assessments
to revamp mastery of the potential impacts of Omicron on
COVID-19 epidemiology, morbidity, immune responses,
antibody neutralisation, or other vital characteristics.
We recommend rigorous studies to rejuvenate all cross-
species barriers discussed in this report. Restoration of
the endemic barrier is recommended to forestall future
epidemic outbreaks through more rigorous applied ecological
research paths. A detailed, comprehensive analysis of
the interconnections amongst viruses, their hosts, and
environmental media can ignite superior cognisance into
the effects of ecological barrier atrophy on the spread of
coronaviruses, as well as the influential prime factors. Policies
and strategies are required to encourage reforestation and
ecological restoration to re-establish lost forests, vegetation,
and other ecosystems. Mitigation of unregulated wildlife
trade and sanctions for dairy and wet handling is required
worldwide. Awareness creation, public sensitisation, and
protection of natural habitats are also necessary measures
to prevent future disease outbreaks.

5.4. Conclusion

The ecological barrier is an essential natural component
of the ecosystem which protects human society from
viral transmissions from natural or intermediate hosts.
The protective integrity of the ecological barrier determines
the emergence of infectious viruses in human society.
Future studies must fill the knowledge gap on dynamic
processes and ecophysiological conditions in crossing over
viruses beyond the ecological barrier. This knowledge is
critical to preventing and controlling emerging epidemics.
The dominant influential constituents affecting the
ecological barrier comprise virus-specificity, contact
probability and frequency, and transmission routes.
Ultimately, prevention of future viral outbreaks through
ecological restoration, integrated with other sustainable
mitigation measures such as wearing well-fitting masks,
hand hygiene, social distancing, enhanced indoor
ventilation, prohibiting crowds, and vaccination.

We propose two practical steps to alleviate, control and
perhaps, prevent future outbreaks within the continent.
Our contribution is valuable to prior attempts to redirect
zoonotic disease control efforts from reactive to pre-
emptive through a multidisciplinary “one health” approach
(Williams et al., 2021).
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