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Abstract

The cornea is a curved and transparent structure that provides the
initial focusing of a light image into the eye. It consists of a central
stroma that constitutes 90% of the corneal depth, covered anteriorly
with epithelium and posteriorly with endothelium. Its transparency is
the result of the regular spacing of collagen fibers with remarkably
uniform diameter and interfibrillar space. Corneal collagen is com-
posed of heterotypic fibrils consisting of type I and type V collagen
molecules. The cornea also contains unusually high amounts of type
VI collagen, which form microfibrillar structures, FACIT collagens
(XII and XIV), and other nonfibrillar collagens (XIII and XVIII).
FACIT collagens and other molecules, such as leucine-rich repeat
proteoglycans, play important roles in modifying the structure and
function of collagen fibrils. Proteoglycans are macromolecules com-
posed of a protein core with covalently linked glycosaminoglycan side
chains. Four leucine-rich repeat proteoglycans are present in the
extracellular matrix of corneal stroma: decorin, lumican, mimecan and
keratocan. The first is a dermatan sulfate proteoglycan, and the other
three are keratan sulfate proteoglycans. Experimental evidence indi-
cates that the keratan sulfate proteoglycans are involved in the regula-
tion of collagen fibril diameter, and dermatan sulfate proteoglycan
participates in the control of interfibrillar spacing and in the lamellar
adhesion properties of corneal collagens. Heparan sulfate proteogly-
cans are minor components of the cornea, and are synthesized mainly
by epithelial cells. The effect of injuries on proteoglycan synthesis is
discussed.
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Cornea

The cornea is a curved and transparent
structure that, together with the sclera, com-
poses the fibrous tunic of the eye. The fully
developed cornea consists of a thick central
portion known as the stroma, which consti-
tutes about 90% of the corneal depth, cov-
ered anteriorly with stratified epithelium and
posteriorly with endothelium. Both cell lay-

ers are separated from the stroma by base-
ment membranes (Figure 1). The corneal
curvature and transparency provide the ini-
tial focusing of light image into the eye.
Corneal transparency is a unique physical
property that results from the regular spacing
of collagen fibers with remarkably uniform
diameter and interfibrillar space. The specif-
ic fibrillar pattern appears in the cornea dur-
ing embryonic development. Although many
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relevant aspects of collagen biosynthesis have
been recognized in recent years, we are still
far from understanding the mechanisms un-
derlying this uniformly oriented and per-
fectly calibrated synthesis and deposition of
collagen fibers in the corneal matrix. Proteo-
glycans are thought to play an important role
in this process. The present review deals
with the most prominent macromolecules of
the corneal extracellular matrix: collagen
and proteoglycans.

Collagen

Collagen is the most abundant protein in
vertebrates. It is a major component of the
extracellular matrix and 26 different types of
collagen have been described in vertebrates
thus far (1,2). Table 1 summarizes the fami-
lies and types of collagen. The fibril-forming
collagens are the most abundant and include

types I, II, III, V, VI and XI (3). Other
collagens, known as FACIT collagens (fibril-
associated collagens with interrupted triple
helices), associate with the surface of col-
lagen fibrils and modify their interactive
properties (4,5). In addition, nonfibrillar col-
lagens such as types XIII, XVII and XXV
have been reported to be localized on the cell
surface (6,7).

Despite the differences among collagens,
all share a triple-helix structure composed of
three polypeptides, known as α chains, con-
sisting of Gly-X-Y repeats, where X is any
amino acid, and Y is frequently proline or
hydroxyproline. Each chain is a left-handed
helix, and the three chains wind around each
other in a right-handed superhelix.

Collagen biosynthesis

Collagen α chains are synthesized in the
rough endoplasmic reticulum (RER) as long
precursors named proα chains. For example,
type I procollagen is a heterotrimer that con-
tains two proα1(I) chains encoded by the
COL1A1 gene, and one proα2(I) chain en-
coded by the COL1A2 gene (Figure 2). The
preproα chains contain different structural
domains: a) a signal sequence of 20 amino
acids that is cleaved during RER transit, b)
the N-terminal propeptide, c) a short non-
triple-helix domain that contains the site of
proteolytic cleavage of N-terminal peptides,
d) the major triple-helix domain containing
1014 amino acid residues (each chain), char-
acterized by the Gly-X-Y repeats, e) a 28-
residue telopeptide, and f) the final 220 resi-
dues that form a globular structure contain-
ing disulfide bonds (C-terminal propeptide).

A large number of enzymes are involved
in the post-translation modifications of the α
chains (Figure 3). Some of these modifica-
tions, such as hydroxylation of proline to
form 3- or 4-hydroxyproline, hydroxylation
of lysine to hydroxylysine, and glycosyla-
tion of hydroxylysine, occur during the elon-
gation of the peptide in the RER, and are

Epithelium - 50 µm
Basement membrane - 0.5 µm
Bowman capsule - 12 µm

Stroma - 500 µm

Descemet membrane - 4 µm
Endothelium - 5 µm

Figure 1. Schematic representation of human corneal layers. Stroma comprises about 90%
of the corneal depth and is covered anteriorly with an epithelial layer and posteriorly with
endothelium. Both layers are separated from the stroma by basement membranes. Only
epithelial, stromal and endothelial layers are cellular.

Table 1. Types of collagens.

Collagen types

Fibril forming I, II, III, V, XI
FACIT IX, XII, XIV, XVI, XIX
Nonfibrillar

Short chain VIII, X
Basement membrane IV
Anchoring fibrils VII
Microfibrillar VI
Other collagens XIII, XV, XVII, XVIII, XX, XXI, XXII, XXIII, XXIV, XXV, XXVI

FACIT = fibril-associated collagens with interrupted triple helices.
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Figure 2. Genes that encode
type I preprocollagen α chains
(top) and domain structure of
procollagen molecule (bottom).
A, Signal sequence that is
cleaved during rough endoplas-
mic reticulum transit; B, N-ter-
minal propeptide; C, short non-
triple-helix domain that contains
the site of proteolytic cleavage
of N-terminal peptides; D, major
triple-helix domain, character-
ized by the Gly-X-Y repeats; E,
telopeptide; F, N-terminal pro-
peptides that contain disulfide
bonds.
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Figure 3. Biosynthesis of fibrillar
collagens. Modifications of the
procollagen peptide in the rough
endoplasmic reticulum (RER) in-
clude hydroxylation, glycosyla-
tion, and disulfide bond forma-
tion. Interchain disulfide bonds
between the C-terminal pep-
tides align the three chains and
initiate formation of the triple
helix. The process propagates
towards the N-terminus of the
molecule end. N-linked oligosac-
charides are transferred to the
propeptides in the RER and pro-
cessed in the Golgi apparatus.
Upon secretion, propeptides are
cleaved, allowing lateral align-
ment and crosslinking. See text
for details.
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followed by formation of the triple helix.
Prolyl 4-hydroxylase, located either in the
lumen or on the inner surface of the RER
membrane, is a tetramer containing two α
subunits (64 kDa) and two ß subunits (60
kDa) which are products of different genes
(8). The ß subunits contain the C-terminal
amino acid sequence Lys-Asp-Glu-Leu
(KDEL) that confers the ability to reside
permanently in the RER. Prolyl 3-hydroxy-
lase has a molecular mass of 160 kDa, and
details about the structure of this enzyme
have been recently reported (9). Lysyl hy-
droxylase is a homodimer, the monomer of
which has a molecular mass of 85 kDa (10,
see Ref. 11 for a review on these enzymes).

The extent of post-translation modifica-
tion of prolyl and lysyl residues in the di-
verse collagen types differs substantially.
For example, the relative extent of lysyl hy-
droxylation in type IV collagen is very high
(more than 90% of the residues at position Y
are hydroxylated), while in types I and III
only 15% are hydroxylated. The three col-
lagen hydroxylases require Fe2+, 2-oxogluta-
rate, molecular oxygen (O2) and ascorbate as
co-factors.

The hydroxylation of proline at the 4
position is essential to provide thermal sta-
bility to the triple helix. Hydroxylation of
lysyl residues provides a substrate for both
glycosylation and formation of stable cross-
links, important to the tissue tensile strength
(12).

The glycosylation of hydroxylysyl resi-
dues in collagen requires two enzymes:
hydroxylysyl galactosyltransferase and ga-
lactosylhydroxylysyl glucosyltransferase
(13). The former adds a galactose residue to
the 5-OH of hydroxylysine, and the latter
transfers glucose to the galactose residue.
The distribution of monosaccharides and di-
saccharides is influenced by the collagen
type and is carried out only on non-triple-
helix substrates.

Furthermore, asparagine-linked oligosac-
charides may be present in the propeptide

extensions (14). These oligosaccharides are
synthesized on a dolichol lipid intermediate
in the RER membrane and transferred intact
to the proα chain (15). There is initial cleav-
age of the oligosaccharide while the chain is
still in the RER, and further processing in the
Golgi apparatus (16).

After synthesis is completed, the globu-
lar domains of the proα chains fold and are
stabilized by disulfide bonds. The triple-
helix formation begins at the C-terminal end
of the molecule and is propagated towards
the N-terminal end. The propagation of the
triple-helix structure requires all peptide
bonds involving the prolyl residues to be in
the trans form, a configuration possibly pro-
duced by the enzyme peptidyl prolyl cis-
trans isomerase (17).

Procollagen molecules are translocated
to the Golgi apparatus and then packaged in
secretory vesicles that fuse with the cell
membrane and release their contents into the
extracellular environment. In the Golgi ap-
paratus, N-linked oligosaccharides are
trimmed and synthesis of a high-mannose
structure occurs. In addition, phosphoryla-
tion of certain serine residues and sulfation
of some tyrosine residues occur in some
collagens.

Once outside the cell, procollagens un-
dergo proteolytic conversion to collagen,
form fibrils, interact with other proteins, are
stabilized by intermolecular crosslinks, and
are eventually degraded. Propeptides are re-
moved by two enzymes: procollagen N-pro-
teinase and procollagen C-proteinase (18).
Once cleaved, collagen molecules rapidly
aggregate into ordered structures. Fibril for-
mation is a nonenzymatic process and the
nature of the interactions that govern fibril
diameter is not completely understood. In-
teractions with other types of collagen or
with proteoglycans are thought to control the
rate of fibrillogenesis and the fibril diameter
(19).

Collagen molecules in fibrillar array be-
come substrate for the enzyme lysyl oxidase
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that oxidatively deaminates certain lysyl and
hydroxylysyl residues (20), forming reactive
aldehydes that condense with lysyl or
hydroxylysyl residues in adjacent molecules
to form divalent crosslinks (Figure 3). Lysyl
oxidase is a monomeric enzyme of 32 kDa
(21) and requires pyridoxyl and copper as
co-factors.

Corneal collagens

Table 2 summarizes the different col-
lagen types described in vertebrate corneas,
as well as the relative amounts of the most
abundant ones. Normal human corneal
stroma is rich in type I collagen, but also
contains relatively large amounts of type V
(22) and type VI collagens (23). Type III is
present at low proportions but increases dur-
ing wound healing, inflammation and sev-
eral pathological conditions.

Corneal collagen fibrils are composed of
type I collagen molecules incorporated to-
gether with those of type V collagen into
heterotypic fibrils (24). Type VI collagen
forms microfibrillar structures by lateral ag-
gregation, and types XII and XIV collagens
are FACIT collagens (25). By analogy with
type IX collagen in cartilage, the N-terminal
domains of type XII and XIV collagens might
be expected to protrude from the surface of
corneal collagen fibrils where they would be
able to interact with proteins in the corneal
stroma.

Collagen XIII, a nonfibrillar collagen that
is bound to the cell membrane through a
single transmembrane domain, is widely ex-
pressed in the human eye and has been found
in the posterior two thirds of the corneal
stroma (7).

Collagen XVIII is a proteoglycan local-
ized in the basement membrane of epithelia
and vascular endothelium. Collagen XVIII
is the only currently known collagen that
carries heparan sulfate glycosaminoglycan
side chains (26). Collagen XVIII gained pub-
lic attention when it was discovered that part

of its C-terminal non-triple-helix domain is
endostatin, a potent inhibitor of angiogene-
sis and tumor growth released by cleavage of
an Ala-His peptide bound (27). The process-
ing of collagen XVIII to endostatin may
represent a local control mechanism for the
regulation of angiogenesis. In the cornea,
collagen XVIII was immunolocalized to the
human corneal epithelium, epithelial base-
ment membrane, and Descemet membrane
(28), and lack of collagen XVIII was shown
to cause eye abnormalities (29).

Proteoglycans

In addition to FACIT collagens, other
molecules have important roles in modify-
ing the structure and function of collagen
fibrils. These include some leucine-rich re-
peat proteoglycans (for a review, see Ref. 30).

Proteoglycans are macromolecules com-
posed of a protein core with covalently linked
glycosaminoglycan side chains (31). Studies
of the glycosaminoglycans from bovine (32),
rabbit (33), chicken (34), monkey (35) and
human (36) corneas have shown that derma-
tan sulfate and keratan sulfate are the pre-
dominant components, with smaller amounts
of heparan sulfate. The keratan sulfate chain

Table 2. Corneal collagens.

Type Localization % of total

I Stroma 75
II Developing stroma (epithelium)
III Inflammation, wound healing
IV Basement membranes
V Stroma 2
VI Stroma 17
VII Basement membrane

(epithelium)
VIII Basement membrane

(Descemet)
IX Developing stroma (epithelium)
XII Stroma (endothelial origin)
XIII Stroma (posterior two thirds)
XIV Stroma
XVII Developing stroma (hemi-

desmosomes)
XVIII Basement membrane (epithelium)
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Figure 4. Structure of corneal
matrix glycosaminoglycans
showing the polysaccharide-pro-
tein linkage region and the main
disaccharide units. Gal, galac-
tose; Fuc, fucose; Man, man-
nose; Xyl, xylose; GluA, ß-D-glu-
curonic acid; IduA, α-L-iduronic
acid; GalNAc, N-acetylgalactos-
amine; GalNAc4S, N-acetylgalac-
tosamine 4-sulfate; GlcNAc, N-
acetylglucosamine; GlcNAc6S,
N-acetylglucosamine 6-sulfate;
Asp, asparagine; Ser, serine.

is attached to the proteoglycan core protein
by an N-acetylglucosamine of a mannose-
containing linkage oligosaccharide, which is
N-linked to an asparagine residue of the
protein (37). The linkage oligosaccharide is
similar to biantennary complex-type N-linked
oligosaccharides found in glycoproteins, with
the keratan sulfate extending one branch and
sialic acid terminating the second branch
(38) (Figure 4).

In 1992, Blochberger et al. (39) isolated a
cDNA clone encoding the core protein of a
chick corneal keratan sulfate proteoglycan,
which they named lumican. Three keratan
sulfate proteoglycan core proteins with dif-
ferent primary structures, named 37A, 37B
and 25, were isolated from bovine cornea.
These proteins were also cloned, and 37B
was identified as the bovine lumican (40),
with 68% identity to chicken lumican. The
keratan sulfate proteoglycans containing the
37A and the 25 cores were named keratocan
and mimecan (or osteoglycin), respectively
(41,42) (Figure 5). It seems that although
expressed in other tissues, only in the cornea

are lumican, keratocan, and mimecan glyco-
sylated with sulfated keratan sulfate chains.

The corneal proteoglycans are thought to
play a role in collagen fibrillogenesis and
matrix assembly. Morphological studies have
shown both dermatan sulfate and keratan
sulfate proteoglycans to be associated with
specific bands of corneal collagen fibrils
(43,44), suggesting that proteoglycan-col-
lagen interactions may play a role in corneal
fibril assembly, matrix organization and ulti-
mately corneal transparency.

The crucial role of lumican in the regula-
tion of collagen assembly into fibrils has
been established by studies on mice homozy-
gous for a null mutation in lumican. These
animals presented skin laxity and fragility
and bilateral corneal opacity (45). In addi-
tion, it was shown that people who have
mutations in KERA, the gene encoding kera-
tocan, have cornea plana (46), in which the
forward convex curvature is flattened lead-
ing to a decrease in refraction. Furthermore,
it was recently shown that mimecan-defi-
cient mice have thicker collagen fibrils in

COO-SO3
-
CH2OH SO3

-
CH2OH COO- CH2OH CH2OH
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both corneal and skin preparations (47).
The non-glycosylated core protein of lu-

mican is as effective as the intact proteogly-
can in inhibiting fibrillogenesis in vitro (48).
Nevertheless, studies on chick embryo cor-
neal development suggest that the glycosyla-
tion is very important for the corneal trans-
parency process (49). Lumican with non-
sulfated keratan sulfate side chains was de-
tected as early as on day 7 of embryonic
development of chicken, but sulfated gly-
cosaminoglycan side chains were detected
only on day 15, when transparency starts to
increase. Also in embryonic mouse, sulfated
keratan sulfate proteoglycans appeared only
after the eyes opened (50). It was also shown
that alterations in sulfation or in the fine
structure of the keratan sulfate chains occur
during chick corneal maturation for these
three keratan sulfate proteoglycans (51).
These findings suggest that the structure of
glycosaminoglycan chains in keratan sulfate
proteoglycans may be important for the de-
velopment of corneal transparency, possibly
leading to organization and optimal hydra-
tion of the corneal tissue.

The fourth leucine-rich repeat proteogly-
can of the cornea is a dermatan sulfate pro-
teoglycan (Figure 4). The corneal dermatan
sulfate chains are linked to a 40-kDa protein,
forming a proteoglycan of 100-150 kDa con-
taining one or two glycosaminoglycan side
chains (52). The core protein was originally
characterized by its antigenic properties as
decorin (Figure 5), a proteoglycan present in
most connective tissues and structurally re-
lated to other small interstitial proteogly-
cans. Later, Li et al. (53) confirmed this
identity by cloning and sequencing a cDNA
encoding the core protein of chick corneal
dermatan sulfate proteoglycan.

Hahn and Birk (54) studied the effects of
ß-D-xyloside on the fibril organization of
avian cornea. This compound interferes with
xylose-mediated O-linked proteoglycan syn-
thesis and thus disturbs dermatan sulfate
proteoglycan synthesis, but does not modify
the keratan sulfate proteoglycan formation.
The collagen fibril diameters were unaltered,
but a disruption in lamellar organization oc-
curred, suggesting that dermatan sulfate pro-
teoglycans are not involved in the regulation

Decorin
Signal peptide

Propeptide

Cysteine-rich domain

Leucine-rich repeats

Dermatan/chondroitin
sulfate chain

N-linked oligosaccharide

Proteoglycan Core protein (kDa) Glycosaminoglycan
(number of chains)

Class I
Decorin 40 Dermatan/chondroitin sulfate (1)
Biglycan 40 Dermatan/chondroitin sulfate (2)

Fibromodulin 42 Keratan sulfate (2-3)
Lumican 38 Keratan sulfate (3-4)

Class II
Keratocan 38 Keratan sulfate (4-5)
Osteoadherin 42 Keratan sulfate (2-3)

Class III
Epiphycan (PG-Lb) 35 Dermatan/chondroitin sulfate (2-3)
Mimecan (osteoglycin) 35 Keratan sulfate (2-3)

Figure 5. Domain structure of
decorin, a prototype member of
the leucine-rich repeat proteo-
glycan family, and classification
of the leucine-rich repeat proteo-
glycans based on amino acid se-
quence homology. Roman nu-
merals indicate decorin do-
mains. In addition to the gly-
cosaminoglycan chain (derma-
tan sulfate or chondroitin sul-
fate), N-linked oligosaccharides
are also present.

Cx2-3CxCx6-9C LxxLxLxxNxLSxL Cx32C
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of collagen fibril diameter, but are important
to fibril-fibril spacing and lamellar cohe-
siveness. In corneal explants from embry-
onic chicken, an increased synthesis of kera-
tan sulfate proteoglycan and a decreased
synthesis of dermatan sulfate proteoglycan
coincide with the onset of tissue transpar-
ency, again suggesting a correlation between
proteoglycan composition and corneal trans-
parency (55).

Although several groups have studied
the glycosaminoglycan composition of bo-
vine, rabbit, chicken, and monkey cornea, as
well as the biosynthesis of proteoglycans by
rabbit and embryonic chicken corneal ex-
plants (56), only a few reports concerning
human corneal glycosaminoglycans have
appeared (57). The glycosaminoglycan (36)
and proteoglycan (58) composition of hu-
man cornea, as well as the glycosaminogly-
cans synthesized by human cornea explants
under tissue culture conditions have been
recently described.

Corneal explants submitted to tissue cul-
ture conditions for three days presented the
same glycosaminoglycan composition as the
fresh cornea (dermatan sulfate and keratan
sulfate, about 50% each, 1.5 mg/g tissue wet
weight). The glycosaminoglycan synthesis
was maintained in vitro for weeks under
these tissue culture conditions, as indicated
by the metabolic incorporation of [35S]-sul-
fate. Nevertheless, during a 24-h incubation

the corneal explants synthesized glycosami-
noglycans which varied in relative propor-
tions from those present in intact corneas.
The labeling of dermatan sulfate was higher
than that of keratan sulfate. Furthermore,
[35S]-heparan sulfate also appeared, suggest-
ing a higher synthesis rate for dermatan sul-
fate and heparan sulfate.

The main glycosaminoglycan synthesized
by epithelial cells isolated from human cor-
nea is heparan sulfate. Conversely, stromal
cells synthesize mainly dermatan sulfate and
keratan sulfate when both epithelial and en-
dothelial cell layers are removed (36).

The quantitative and qualitative patterns
of proteoglycan synthesis, and possibly of
collagen fibril deposition, change when the
cornea is submitted to injuries, such as epi-
thelial debridement (36,58) and laser refrac-
tive surgery (59), suggesting that the kerato-
cyte program for synthesis and deposition of
extracellular matrix, which was followed dur-
ing normal development leading to corneal
transparency, is hardly recovered after in-
jury.

Thus, studies to determine the structure
of corneal fibrils and to identify in three
dimensions the binding of FACIT collagens,
leucine-rich repeat proteoglycans, and other
macromolecules, are directly relevant to un-
derstanding the assembly of the corneal
stroma in health and disease.
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