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Abstract

Central a2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water

intake. Bilateral injections of moxonidine (a2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly

increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the

LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by

cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN

deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific a2-adrenoceptor antagonists
injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area,

suggesting that these effects depend on activation of LPBN a2-adrenoceptors. In fluid-depleted rats, the palatability of sodium

is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the

NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal

responses produced by activation of a2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin

secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how

activation of a2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal

sodium excretion.
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Introduction

Noradrenaline is an important neurotransmitter involved

in the essential control of body fluid balance. Its effects

depend on the area of the encephalon studied, the type of

treatment the animal receives, and the receptors involved

(for a review see Refs. 1,2). Early studies using mixed

a2-adrenergic and imidazoline receptor agonists, like

clonidine and moxonidine, injected into the lateral and third

cerebral ventricles, septal area, lateral preoptic area, and

lateral hypothalamus showed that they are effective in

inhibiting water and sodium intake induced by different

stimuli (1,3-10). The inhibition of either water or hypertonic

NaCl intake with forebrain injections of moxonidine or

clonidine was reduced by pretreatment with injections of a2-
adrenoceptor antagonists, like yohimbine or RX 821002

(1,9,11-13). Norepinephrine, the endogenous ligand with no

imidazoline characteristics, injected intracerebroventricu-

larly (icv), also inhibits water and NaCl intake, an effect

antagonized by pretreatment with idazoxan, an a2-adrener-
gic and imidazoline receptor antagonist (1). These results

suggest that a2-adrenoceptor activation in the forebrain

inhibits water and NaCl intake.

In the hindbrain, important inhibitory mechanisms for

the control of water and NaCl intake have been demon-

strated in the lateral parabrachial nucleus (LPBN) (14-20),

a pontine structure that lies dorsolateral to the superior

cerebellar peduncle. Evidence for involvement of LPBN in

the control of water intake arose from studies showing

that electrolytic or chemical (ibotenic acid) lesions of the

LPBN increased angiotensin II (ANG II)-induced water

intake (15,21,22). Similar to the effects of the LPBN

lesions, bilateral injections of lidocaine or methysergide

(serotonergic antagonist) into the LPBN increased ANG

II-induced water intake (19,23). Bilateral injections of

methysergide into the LPBN also increased 0.3 M NaCl

intake induced by ANG II, administered either icv or into

the subfornical organ, or by subcutaneous (sc) injection of

the diuretic furosemide (FURO) in combination with a

low dose of the angiotensin-converting enzyme inhibitor,
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captopril (CAP), whereas 2,5-dimethoxy-4-iodoampheta-

mine hydrobromide (a serotonergic 5-HT2A/2C receptor

agonist) injected into the LPBN reduced NaCl intake

induced by FURO++CAP (14,20). Treatment with

FURO++CAP elicited significant decreases in serotonin

and 5-hydroxyindoleacetic acid (5-HIAA) concentrations

in the LPBN, under the condition that 0.3 M NaCl and

water are not available for drinking, and enhanced

serotonin and 5-HIAA levels in the LPBN if rats had

ingested water and 0.3 M NaCl (24). These results

suggested that serotonergic mechanisms in the LPBN

play an important inhibitory role in modulation of sodium

appetite.

The LPBN is reciprocally connected to forebrain areas

implicated in the maintenance of blood pressure and body

fluid homeostasis, such as the paraventricular nucleus of

the hypothalamus, the central nucleus of the amygdala,

and the median preoptic nucleus. The LPBN is also richly

interconnected with medullary regions, which include the

area postrema (AP) and the medial portion of the nucleus

of the solitary tract (mNTS) (25-32). Therefore, the LPBN

may integrate and relay taste and visceral signals that

ascend from the AP/mNTS to the forebrain areas involv-

ed in the control of fluid and electrolyte balance

(16,17,20,33,34). Furthermore, a2-adrenoceptors are pre-

sent in the LPBN (35,36). Most a2-adrenoceptors are

located in neurons of the external LPBN and the waist

area of the parabrachial nucleus (35), which correlates

well with the pattern of ascending axons from the AP/

mNTS terminating in the parabrachial nucleus (26).

Injections of the a2-adrenoceptor antagonist yohimbine

into the LPBN resulted in a 77% inhibition of spontaneous

activity of visceral-responsive neurons in the ventral basal

thalamus (37), suggesting that a2-adrenoceptors in the

LPBN may modulate the visceral sensory information that

ascends from AP/mNTS to the visceral forebrain.

Contrary to a2-adrenoceptors located in the forebrain,

the activation of a2-adrenoceptors in the LPBN increases

sodium and water intake and reduces renal excretion,

without changing arterial pressure (2,38,39). The present

review summarizes the current state of knowledge about

the importance of a2-adrenergic mechanisms of the LPBN

in the control of body fluid and electrolyte balance. Such

control involves behavioral, endocrine, and renal

responses that converge for the acquisition and con-

servation of sodium in the body.

Role of LPBN a2-adrenoceptors on sodium
appetite

The activation of a2-adrenoceptors with bilateral

injections of moxonidine into the LPBN strongly increases

0.3 M NaCl intake induced by sc FURO++CAP treatment

(38). The enhancement produced by moxonidine (up to

10-fold the amount ingested by controls treated with

FURO++CAP sc and vehicle injected into the LPBN) was

completely suppressed by RX 821002, an a2-adrenocep-
tor antagonist (38). Furthermore, FURO++CAP-induced

0.3 M NaCl intake strongly increased after bilateral

injections of noradrenaline or the specific a2-adrenoceptor
agonist a-methylnoradrenaline into the LPBN. Bilateral

injections of RX 821002 into the LPBN abolished the

effects of noradrenaline and a-methylnoradrenaline in the

same area on 0.3 M NaCl (2,39). The increase in sodium

intake after LPBN moxonidine or noradrenaline injection

in fluid-depleted rats (2,38,39) sharply contrasts with the

inhibitory effect that a2-adrenoceptor activation in the

forebrain has on sodium appetite and thirst (1,9,11-13).

Therefore, forebrain and hindbrain (or more specifically

LPBN) a2-adrenergic mechanisms play opposite roles in

water and sodium intake (38,39).

In spite of the strong effect on FURO++CAP-induced

NaCl intake, moxonidine, like methysergide or the

cholecystokinin antagonist proglumide (20,40), produced

no effect on water or NaCl intake when injected alone

into the LPBN in satiated animals not treated with

FURO++CAP (38). Therefore, activation of a2-adrenocep-
tors in the LPBN increases NaCl intake if the excitatory

mechanisms are simultaneously activated by treatments

like FURO++CAP, whereas activation of only these

receptors in the LPBN induces no NaCl intake in satiated,

normohydrated rats.

Bilateral injections of moxonidine into the LPBN also

produced no change in the ingestion of 0.06M sucrose (38)

or food intake induced by 14 or 24 h of food deprivation

(41), suggesting that the activation of a2-adrenoceptors
in the LPBN modulates specifically sodium intake. This

specificity is reinforced by results showing that, without

changing food intake, moxonidine injected into the LPBN

increased meal-associated 0.3 M NaCl intake in rats

submitted to 14 or 24 h of food deprivation (41). Signals

produced by a meal, like ANG II and hyperosmolarity,

usually stimulate water intake (42), and some may also

facilitate hypertonic NaCl intake. However, some of these

signals, like hyperosmolarity, activate LPBN-inhibitory

mechanisms restraining sodium intake. Moxonidine deac-

tivates LPBN-inhibitory mechanisms and releases the

influence of facilitatory signals activated by a meal to

induce hypertonic NaCl intake. According to these results,

activation of LPBN-inhibitory mechanisms seems neces-

sary to curb sodium intake during a meal.

LPBN a2-adrenoceptor activation facilitates
sodium intake in hyperosmotic rats

Although moxonidine injected into the LPBN of

satiated rats produces no effect on water or 0.3 M NaCl

intake (38), a2-adrenoceptor activation with moxonidine

injections into the LPBN induces an unexpectedly strong

ingestion of 0.3 M NaCl in addition to water in a two-bottle

test in rats with an increase in plasma osmolarity [induced

by intragastric (ig) load of 2 M NaCl as 2 mL/rat] (43).
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Prior injections of the a2-adrenoceptor antagonist RX

821002 into the LPBN almost abolished the effects of

moxonidine on 0.3 M NaCl intake in hyperosmotic rats

(43). Ingestion of hypertonic NaCl occurred in spite of

hyperosmolality, hypernatremia, reduction of plasma

renin activity, and normovolemia present in animals that

received an ig load of 2 M NaCl (44).

The effects of a2-adrenoceptor activation with moxoni-

dine injections into the LPBN on sodium intake in

hyperosmotic rats are similar to those of a previous study

(45) that showed that bilateral injections of the serotonergic

receptor antagonist methysergide into the LPBN, com-

bined with an increase in plasma osmolarity, also induced

ingestion of hypertonic NaCl in a two-bottle test. According

to De Luca Jr. et al. (45), these results suggest that the

increase in plasma osmolarity may also be an excitatory

stimulus for sodium intake, activating brain circuits that

facilitate sodium appetite, in addition to those subserving

thirst. However, simultaneously with the activation of

facilitatory mechanisms, increased activity of osmorecep-

tors produced by hyperosmolarity also activates LPBN-

inhibitory mechanisms, which strongly curb sodium appe-

tite (43,45) (Figure 1). Activation of a2-adrenoceptors in the

LPBN, similar to the blockade of serotonergic receptors in

this area, deactivates inhibitory mechanisms and releases

sodium appetite in a condition of high osmolarity.

Sodium taste reactivity in rats treated with
moxonidine injected into the LPBN

In order to test if LPBN-inhibitory mechanisms restrain

sodium intake during the consumatory phase of the

behavior, we investigated whether moxonidine injected

into the LPBN alters the hedonic value or palatability of

sodium during a taste reactivity test.

Using a taste reactivity test that determines the

frequency of ingestive and aversive behavioral reactions

in response to intraorally delivered solutions (46,47), it

was demonstrated that sodium depletion (induced by

furosemide followed by 18 to 24 h of restricted dietary

sodium) increases the palatability of sodium, producing a

strong enhancement of ingestive reactions, and reduced

aversive reactions, to a concentrated salty taste, in rats

(48,49). FURO++CAP-treated rats that received injections

of vehicle or moxonidine into the LPBN showed similar

enhanced ingestive responses and decreased aversive

responses to intraoral 0.3 M NaCl if they have no access

to water and saline (50). These responses are consistent

with previous results demonstrating that animals with an

experimentally induced salt appetite show enhanced

ingestive and reduced negative orofacial and body

behaviors (48,49). Although LPBN moxonidine treatment

failed to change taste reactivity in FURO++CAP-treated

rats that had no access to water and NaCl, taste reactivity

to intraoral 0.3 M NaCl in FURO++CAP-treated rats after

fixed periods of 0.3 M NaCl and water consumption

was totally different if rats were treated with vehicle or

moxonidine injected into the LPBN. Vehicle-treated rats

that ingested water and 0.3 M NaCl showed a progressive

reduction in ingestive responses and an increase in

aversive behaviors over the course of a 1-h test period. In

contrast, rats treated with moxonidine injections into the

LPBN maintained a high level of ingestive responses and

a low level of aversive reactions to 0.3 M NaCl throughout

the entire course of the 60-min test period of free access

to water and sodium, in spite of ingesting significant

amounts of 0.3 M NaCl and water (50). These results

suggest that moxonidine injected into the LPBN possibly

reduces some type of inhibitory signals produced as a

consequence of the ingestion of NaCl and water. The

interactions of taste and inhibitory signals that normally

limit excess salt and water consumption may occur at one

or more central nervous system sites where information

from gustatory and visceral sensory systems converge.

The parabrachial nucleus is potentially one of these

places.

As sodium is ingested, neural and humoral postinges-

tive signals from the gut and the blood reach the NTS and

AP (for a review see Ref. 51). Viscerosensory afferent

fibers in the vagus nerve are stimulated by gut distention

or hypertonicity and activate neurons in the NTS, whereas

cells in the AP may directly detect plasma osmolarity (52).

The AP/mNTS also receives afferent projections from

volume receptors (arterial baroreceptors and cardiopul-

monary receptors), and these receptors can influence the

ingestion of water and sodium (31,33,34). Many neurons

in the caudal or mNTS and AP project to nuclei within the

LPBN (26). In turn, neurons in these LPBN nuclei release

Figure 1. Diagram showing the possible involvement of the

lateral parabrachial nucleus (LPBN) in the control of thirst and

sodium appetite during cell dehydration. Osmoreceptors or

sodium receptors activate circuits that subserve thirst and sodium

appetite, and a parallel inhibitory circuit of sodium appetite

involves the LPBN. The a2-adrenoceptor activation in the LPBN

blocks this LPBN-inhibitory mechanism. ICF: intracellular fluid;

[Na+]e: extracellular sodium concentration. Adapted from Ref. 45,

with permission.
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this information to limbic and hypothalamic targets in the

forebrain (53,54), providing negative feedback signals

that inhibit ingestive behaviors (17,20,33,38,40,43,55,56).

Moxonidine injections into the LPBN change the pattern of

taste reactivity to 0.3 M NaCl by maintaining ingestive

reactions and reducing aversive responses after free

access to water and 0.3 M NaCl intake. Therefore, it

seems that moxonidine, acting in the LPBN, reduces

activity of the pathways that convey signals produced by

sodium ingestion, which are important for controlling taste

reactivity to sodium and, consequently, the amount of

sodium ingested (50).

Role of LPBN a2-adrenoceptors on sodium
balance

Besides increasing water and sodium intake, bilateral

injections of moxonidine into the LPBN reduce the diuretic

and natriuretic responses to increased plasma osmolality

produced by ig 2 M NaCl. These effects were also

abolished by pretreatment of the LPBN with the

a2-adrenoceptor antagonist RX 821002, suggesting that

a2-adrenoceptor activation in the LPBN also reduces

renal responses to increases in plasma osmolarity (57),

producing a positive sodium balance in hyperosmotic rats

that have free access to water and NaCl (57).

Bilateral injections of moxonidine into the LPBN also

reduce the increase in plasma oxytocin (OT) and arginine

vasopressin levels produced by ig 2 M NaCl, without

changing plasma levels of these hormones in rats that

receive an ig isotonic NaCl load (57). Oxytocin facilitates

renal sodium excretion (for a review, see Ref. 58) and,

therefore, reduction in plasma levels of this hormone

might be the reason for reduced natriuresis to ig 2 M NaCl

in rats treated with moxonidine injected into the LPBN

(57). In spite of some controversies (59,60), OT centrally

may also activate inhibitory mechanisms for sodium

intake (61,62). Therefore, reduction in OT secretion by

LPBN moxonidine injections may also contribute to the

release of sodium intake.

Concluding remarks

Table 1 summarizes the effects of a2-adrenoceptor
activation in the LPBN on behavioral, renal, and hormonal

responses, showing that this activation in the LPBN

increases hypertonic NaCl intake and reduces urinary

sodium and water excretion causing positive sodium and

water balance, suggesting that a2-adrenoceptor activation in

the LPBN deactivates mechanisms that restrain body fluid

volume expansion. Figure 2 presents a schematic model

showing the control of sodium appetite, sodium palatability,

and renal and hormonal responses by a2-adrenergic

mechanisms in the LPBN. Ingestion of water and sodium

is affected by signals from baroreceptors, cardiopulmonary

receptors, and taste and other visceral receptors, as well as

humoral signals that reach the central nervous system

through the NTS/AP (31,33,34). The LPBN is richly

interconnected with medullary regions, including the AP

and mNTS, and with forebrain areas implicated in the

maintenance of blood pressure and body fluid homeostasis,

such as the paraventricular nucleus of the hypothalamus,

the central nucleus of the amygdala (CeA), and the median

preoptic nucleus (25-32). Therefore, the LPBN may

integrate and relay taste and visceral signals that ascend

from AP/mNTS to the forebrain areas involved in the control

of fluid and electrolyte balance (16,17,20,33,34). At least

one forebrain area that is directly or indirectly inhibited by the

Table 1. Effects of a2-adrenoceptor activation in the LPBN on different ingestive, behavioral, renal and hormonal responses.

Responses Effect References

0.3 M NaCl intake in fluid-depleted rats q (38)

Water intake in fluid-depleted rats (when only water is available) no change (38)

2% sucrose intake (‘‘dessert test’’) no change (38)

0.3 M NaCl intake in satiated rats no change (38)

Mean arterial pressure in satiated or fluid-depleted rats no change (38)

0.3 M NaCl intake in cell-dehydrated rats q (43)

Water intake associated with food intake in food-deprivated rats no change (41)

Food intake in food-deprivated rats no change (41)

0.3 M NaCl intake associated with food intake in food-deprivated rats q (41)

Ingestive reactions to an intraoral infusion of 0.3 M NaCl Maintenance in high levels (50)

Aversive responses to an intraoral infusion of 0.3 M NaCl Maintenance in low levels (50)

Diuresis in cell-dehydrated rats Q (57)

Natriuresis in cell-dehydrated rats Q (57)

Oxytocin plasma levels in cell-dehydrated rats Q (57)

Sodium and water balance in cell-dehydrated rats q (57)

q: increase; Q: decrease.
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LPBN is the CeA. Bilateral electrolytic lesions of the CeA

blocked the increase in sodium intake produced by

moxonidine injections into the LPBN of fluid-depleted rats,

suggesting that LPBN mechanisms inhibit CeA-facilitatory

mechanisms for sodium intake (63,64).

The taste reactivity test clearly showed that activation of

a2-adrenoceptors in the LPBN removes inhibitory signals

that affect the palatability of NaCl. As a fluid-depleted animal

ingests sodium, signals activated as a consequence of the

ingestion of hypertonic NaCl solution increase the activity of

LPBN-inhibitory mechanisms, which reduces the palatability

of NaCl, limiting the amount of sodium ingested. Activation

of a2-adrenoceptors in the LPBN in this condition impairs the

action of the LPBN-inhibitory mechanisms, keeping high

the palatability of sodium and increasing sodium intake.

Therefore, an increased activity of a2-adrenergic mechan-

isms in the LPBN in fluid-depleted animals might be one of

the mechanisms that act to release sodium intake. On the

other hand, deactivation of a2-adrenergic mechanisms in the

LPBN as the animal ingests sodium produces opposite

effects. Future studies are necessary to investigate changes

in neurotransmission in the LPBN under different physiolo-

gical conditions, to determine the relative importance of

a2-adrenergic mechanisms for the control of LPBN-inhibitory

mechanisms. It is also important to remember that, besides

a2-adrenergic mechanisms, different neurotransmitters like

serotonin, cholecystokinin, glutamate, and corticotrophin-

releasing factor activate LPBN-inhibitory mechanisms,

whereas GABAergic, opioid, or purinergic receptors deac-

tivate LPBN-inhibitory mechanisms for water and NaCl

intake (14,16-20,65-70). Serotonin was included in Figure 2

as an example of a neurotransmitter that, contrary to

a2-adrenoceptors, activates LPBN-inhibitory mechanisms

reducing sodium and water intake and increasing renal

excretion (14,16-20,71). The relative importance of each

one of these neurotransmitters/receptors, or how they

interact with each other in the LPBN to control the

inhibitory mechanisms for sodium and water intake, is

still unknown and should be investigated in future

studies. Parallel to control of sodium intake by affecting

sodium palatability, signals from the LPBN modulated by

a2-adrenergic mechanisms probably reach forebrain

areas, like the paraventricular nucleus and supra-optic

nucleus, reducing the release of OT, and thus reducing

sodium excretion. Increased sodium and water intake

and reduced renal excretion produced by a2-adrenocep-
tor activation in the LPBN are all responses to expand

body fluid volume, which suggests that a2-adrenergic

mechanisms in the LPBN are important for the control of

behavioral, renal, and hormonal responses that affect

body fluid volume.

Increased sodium and water intake and reduced renal

excretion produced by activation of a2-adrenergic
mechanisms in the LPBN suggest an important hindbrain

system for the control of behavioral, renal, and hormonal

responses that expand body fluid volume.
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