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The Cold Dark Matter Model with Cosmological Constant and the Flatness Constraint
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The Hubble parameter, a function of the cosmological redshift, is derived from the Friedmann-Robertson-
Walker equation. The three physical parameters H0, Ω0m and ΩΛ are determined fitting the Hubble parameter
to the data from measurements of redshift and luminosity distances of type-Ia supernovae. The best fit is not
consistent with the flatness constraint (k = 0). On the other hand, the flatness constraint is imposed on the Hubble
parameter and the physical parameters used are the published values of the standard model of cosmology. The
result is shown to be inconsistent with the data from type-Ia supernovae.
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1. THE HUBBLE PARAMETER FROM THE
FRIEDMANN EQUATION

From Einstein’s equations for the gravitational field in the
Robertson-Walker metric, one can derive the Friedmann dif-
ferential equation

Ṙ2

c2R2 +
k

R2 −
Λ

3
=

8πGρm

3c2 (1)

and the acceleration equation

R̈2

c2R
=−4πG

3c2

(
ρm +

3p
c2

)
+

1
3

Λ (2)

where R is the scale factor, k is the curvature index and Λ

the cosmological constant. The pressure p is related to the
matter density ρm by an equation of state,

p = wc2
ρm , (3)

with w = 0 for non-relativistic matter [1–4].
Using the vacuum energy density

ρΛ = c2
Λ/8πG , (4)

and introducing the Hubble parameter

H(R) =
Ṙ
R

, (5)

the Friedmann equation reads :

H2(R)+
c2k
R2 =

8πG
3

(ρm +ρΛ) . (6)

The scale factor R and the matter density ρm are related to
their present day values R0 and ρ0m by

ρmR3 = ρ0mR0
3 . (7)
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Defining an adimensional variable, the cosmological fre-
quency redshift,

x =
R0

R
= 1+ z , (8)

where z is the redshift, the equation above becomes

H2(x)+
c2k
R2

0
x2 =

8πG
3
(
ρ0m x3 +ρΛ

)
. (9)

For current values, corresponding to x = 1, this equation
gives

c2k
R2

0
=

8πG
3

(ρ0m +ρΛ−ρc) , (10)

where ρc =
(
3H2

0 /8πG
)

is the critical density and H0 is the
Hubble constant.

Now the Hubble parameter can be written explicitly as

H2(x) =
8πG

3
[
ρΛ− (ρ0m +ρΛ−ρc)x2 +ρ0mx3] . (11)

Introducing the relative densities Ω0m = ρ0m/ρc and ΩΛ =
ρΛ/ρc, the Hubble parameter reads

H2(x) = H2
0
[
ΩΛ− (Ω0m +ΩΛ−1)x2 +Ω0m x3] . (12)

The function containing the curvature index and the
present day scale factor becomes

c2k
R2

0
= H2

0 (Ω0m +ΩΛ−1) . (13)

The acceleration equation

R̈
R

=−4πG
3

(
ρm +

3p
c2

)
+

c2 Λ

3
(14)

can be rewritten as

R̈
R

= H2
0

[
ΩΛ−

1
2

(
Ω0mx3 +

3p
c2ρc

)]
. (15)
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The left-hand side can be written in terms of x = R0/R and
H(R) = Ṙ/R. Using

R
d

dR

(
H2)=−x

d
dx

(
H2) (16)

in

R̈
R

= H2(R)+
R
2

d
dR

(
H2 (R)

)
, (17)

we obtain

R̈
R

= H2(x)− x
2

d
dx

H2(x) . (18)

Performing the calculation of the right-hand side with

H2(x) = H2
0
[
ΩΛ− (Ω0m +ΩΛ−1)x2 +Ω0mx3] (19)

and equating to the above expression for R̈/R containing
(3p/c2ρc) we obtain p = 0. Thus, the acceleration equation
is finally reduced to

R̈
R

= H2
0

[
ΩΛ−

1
2

Ω0mx3
]

. (20)

This result permits to obtain the value of x at the equilib-
rium point corresponding to R̈ = 0:

xe = (2ΩΛ/Ω0m)1/3 . (21)

The dimensionless deceleration parameter

q =−RR̈
Ṙ2 =− R̈

RH2 (22)

can be calculated at the present day condition (x = 1):

q0 =− 1
H2

0

(
R̈
R

)
0
=−

(
ΩΛ−

1
2

Ω0m

)
(23)

The age of the universe (t0) can be obtained from the Hub-
ble parameter

H(R) =
Ṙ
R

=−1
x

dx
dt

, (24)

then

t0 =
∫

∞

1

dx
xH(x)

. (25)

With the above expression for H2(x) we have

H0t0 =
∫

∞

1

dx

x
√

ΩΛ− (Ω0m +ΩΛ−1)x2 +Ω0mx3
(26)

1.1. Determination of the parameters by fitting H(x) to
type-Ia supernovae data

Let H̃0= 65 km·s−1·Mpc−1 be a nominal value of the Hub-
ble constant; defining the function

y(x) =
H2(x)

H̃2
0

, (27)

with

y0 =
H2

0

H̃2
0

, (28)

and also the parameters

a1 = y0 ΩΛ , a2 =−y0 (Ω0m +ΩΛ−1) and a3 = y0 Ω0m ,
(29)

the above equation for the Hubble parameter gives

y(x) = a1 +a2 x2 +a3 x3 . (30)

The three parameters of this polynomial function can be de-
termined by fitting data from measurements of the luminosity
distances and the redshift of the type-Ia supernovae. These
parameters and their sum, y0 = a1 +a2 +a3, give the physical
parameters

Ω0m =
a3

y0
, ΩΛ =

a1

y0
, and H0 = H̃0

√
y0 . (31)

To fit the Hubble parameter to the data from redshift (z)
and luminosity distances (D) measurements of type-Ia super-
novae, some changes of variables are in order. The published
data set is[5]

{z j, v j = log(cz j), u j = log(H̃0 D j),
σu j ; j = 1, ..,N},

with N = 230.

The Hubble parameter is

H(x) = (cz/D) . (32)

As

y(x) =
(

H(x)/H̃0

)2
=
(

cz/H̃0D
)2

, (33)

and

log(y(x)) = 2 [log(cz)− log(H̃0D)] = 2(v−u), (34)

then

y(x) = 102(v−u) . (35)

The data set to be used in the fitting is

{x j,y j,σ j; j = 1, ..,n}

which is obtained from the first set using

x j = 1+ zi , y j = 102(v j−u j) , and σ j = 2.ln10.y jσu j .
(36)

Details of the fitting are presented in the appendix. The
results of the fitting give the following values for the physical
parameters:

H0 = (60.2±0.4)km.s−1.Mpc−1 (37)
Ω0m = 0.26±0.04 (38)
ΩΛ = 1.55±0.11 (39)
q0 = −1.42±0.02 (40)
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and the age of the universe

t0 = (30.0±1.3)×109 yr . (41)

The point of null acceleration is

xe =
(

2
ΩΛ

Ωom

)1/3

= 2.28 (42)

which corresponds to the redshift

ze = 1.28 (43)

2. THE FLATNESS CONSTRAINT

The cosmic microwave background (CMB) observations
suggest that the spacial geometry of the Universe is very
close to flat. According to equation (13) the zero curvature
corresponds to the condition Ωom +ΩΛ = 1. If this condition
is imposed on the Hubble parameter (see equation (12)), we
have

H2(x) = H2
0
[
ΩΛ +Ω0mx3] , (44)

with

ΩΛ = 1−Ω0m . (45)

The polynomial form, equation (26), becomes

y(x) = a1 +a3x3 (46)

where y(x) =
(

H(x)/H̃0

)2
, a1 = y0ΩΛ , a3 = y0Ω0m and

y0 =
(

H0/H̃0

)2
.

The accepted values for the physical parameters of the
cold dark matter model with cosmological constant (ΛCDM)
subjected to the flatness constraint (k = 0) are [6]:

H0 = 71±4km.s−1.Mpc−1 and ΩΛ = 0.73±0.004. (47)

So, the coefficients of the polynomial in equation (32) are
a1 = 0.87 and a3 = 0.32. The deceleration parameter is

q0 =−1
2

(3ΩΛ−1) =−0.6, (48)

and the point of null acceleration is

xe =
(

2ΩΛ

Ω0m

)1/3

= 1.8 , (49)

corresponding to the redshift ze = 0.8 . The age of the Uni-
verse is

t0 = 13.7Gyr . (50)

The sum of the weighted square deviations for this model,
as defined in the appendix, is

χ
2 = 16780.10. (51)

3. CONCLUSION

The cold dark matter model with cosmological constant
(ΛCDM) is expressed by the Hubble parameter as a function
of the cosmological redshift x = 1 + z. This function is de-
rived from the Friedmann equation in the Robertson-Walker
metric. The square of the Hubble parameter is an incomplete
third-degree polynomial function in the variable x = 1 + z.
This polynomial is least-squares fitted to data from the mea-
surements of the redshifts and luminosity distances of the
type-Ia supernovae, and the three non-null coefficients of the
polynomial and the uncertainties and covariances are then
computed. The physical parameters are obtained from the
three non-null coefficients, showing that these supernovae
data are sufficient to determine H0, Ω0m and ΩΛ, the three
fundamental parameters of the ΛCDM model. The results
of this model are compared with the published results of the
ΛCDM model with the flatness constraint (k = 0)[6](see Fig.
1).

In this second model, the ΛCDM (k = 0), the measure-
ments from the cosmic microwave background (CMB) are
also taken into account. The results of these models dis-
agree. The ΛCDM model fitted to the Ia supernovae data
implies a positive curvature index (k = +1) and a large age
for the Universe. This conflicts with the results of the CMB
measurements. On the other hand, the ΛCDM (k = 0) model
presents large deviations from the type-Ia supernovae data.
Both models are consistent with the evidences of an ac-
celerating expansion of the Universe [7–11]. However, in
any way there are clear disagreements between models and
data. Some observable measurements are model-dependent.
These observables are related to the parameters of the model.
The values of the parameters must be fixed so that these ob-
servables can be computed from other observable measure-
ments.

Thus, it is a contradictory result that the ΛCDM (k = 0)
model, which is used in the computation of the luminosity
distances of these Ia supernovae, be in disaccord with these
same data.

Appendix A

In this appendix we collect some formulas used in the fit-
ting of the polynomial function

f (x;a1,a2,a3) = a1 f1(x)+a2 f2(x)+a3 f3(x),
with f1(x) = 1,

f2(x) = x2 , and f3(x) = x3 , (52)

to the data set

{x j,y j,σ j; j = 1, ..,n} (53)

obtained from the published data[5] by the transformations

x j = 1+ zi y j = 102(v j−u j) σ j = 2 . ln10.y j.σu j .
(54)
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FIG. 1: A plot of the function y(x) = (H(x)/H̃0)2 for two models:
the best fit for the ΛCDM model with k = +1 (continuous line) and
the ΛCDM with k = 0 with the published values[6] for the physical
parameters (dashed line). For comparison, the experimental points
corresponding to {x j,y j}[5] are also depicted.

The least-squares method is used to determine the parameters
a1, a2 and a3 which minimize the function

χ
2(a1,a2,a3)=

N

∑
j=1

p j[y j− f (x j;a1,a2,a3) ]2 , where p j =
1
σ j

.

(55)
The minimum condition

∂χ2

∂a j
= 0 ( j = 1, 2, 3) (56)

gives a matricial equation

MA = B , (57)

where

A = (a1,a2,a3)
T ,

M j,k =
N

∑
i=1

pi f j(xi) fk(xi) ,

B j =
N

∑
i=1

pi yi f j(xi) , ( j,k = 1,2,3) .

Inverting the matricial equation above, the parameters are
given by

a j =
3

∑
k=1

(M−1) jk Bk . (58)

The uncertainties and covariances are respectively

σa j =
√

(M−1) j j (59)
and

σa jk = cov(a j,ak) = (M−1) jk . (60)

The results of the fitting are

a1 = 1.328±0.042 (61)
a2 = −0.690±0.061 (62)
a3 = 0.220±0.026 (63)

σa12 = −0.00242 (64)
σa13 = 0.00098 (65)
σa23 = −0.00155. (66)

The sum of the weighted square deviations (χ2) defined
above is

χ
2 = 989.4.

The physical parameters are given by

y0 = a1 +a2 +a3 , (67)
H0 = H̃0

√
y0 , (68)

Ω0m =
a3

y0
, (69)

ΩΛ =
a1

y0
(70)

and

q0 =
( 1

2 a3−a1)
y0

. (71)

The uncertainties in these parameters are respectively
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σy0 =
{

σ
2
a1

+σ
2
a2

+σ
2
a3

+2(σa12 +σa13 +σa23)
}1/2

, (72)

σH0 =
1
2

H̃0
σy0√

y0
(73)

σΩΛ
=

1
y2

0

{
(a2 +a3)2

σ
2
a1

+a2
1σ

2
a2

+a2
1σ

2
a3

+2a2
1σa23 −2a1(a2 +a3)(σa12 +σa13)

}1/2

(74)

σΩ0m =
1
y2

0

{
(a1 +a2)2

σ
2
a3

+a2
3σ

2
a1

+a2
3σ

2
a2

+2a2
3σa12 −2a3(a1 +a2)(σa13 +σa23)

}1/2

(75)

σq0 =
1

2y2
0

{
(2a2+3a3)2

σ
2
a1

+(a3−2a1)2
σ

2
a2

+(3a1+a2)2
σ

2
a3

+2(2a2 +3a3)(a3−2a1)σa12

−2(2a2 +3a3)(3a1 +a2)σa13 −2(a3−2a1)(3a1 +a2)σa23

}1/2

(76)

The integral that gives the age of the universe is

K(a1,a2,a3) = (t0 H̃0) =
∫

∞

1
[a1x2 +a2x4 +a3x5 ]−1/2 dx .

(77)
In order to obtain the uncertainty in K we must compute

the derivatives K′j = (∂K/∂a j) so that σK is given by

σK =
(
K′21 σ

2
a1

+K′22 σ
2
a2

+K′23 σ
2
a3

+2K′1 K′2 σa12+

+ 2K′1 K′3 σa13 +2K′2 K′3 σa23

)1/2 (78)

The numerical results are

K = 1.992, K′1 =−1.7204,
K′2 =−7.1717, K′3 =−16.652
and σK = 0.088. (79)

The uncertainty in t0 is

σt0 =
σK

H̃0
. (80)
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