
ABSTRACT: Due to the large extent of degraded areas in the Amazon, the use of conservation 

systems is very important to contain the advance of the agricultural frontier, and may favor the 

availability of nutrients such as phosphorus (P). This study evaluated effect of tillage systems 

on and cover plants distribution of organic P fractions (Po) in oxisol under soybean and 

grasses in crop successions. The experimental design was completely randomized with four 

replicates and five treatments: (i) conventional tillage (CT) with annual soil tillage; (ii) no-till 

(NT) in succession with Urochloa ruziziensis (NT1); (iii) NT in succession with U. brizantha 

(NT2); (iv) NT in succession with Panicum maximum (NT3); and (v) a control consisting of a 

fragment of native vegetation (NV). The Po fractions were quantified at depths of 0-5, 5-10, and 

10-20 cm, before and after soybean cultivation and the P fractions were analyzed. The samples 

at a depth 0-5 and 5-10 cm had increased levels of biomass P in the NT1 and NT2. In addition, 

at depths of 0-5 and 5-10 cm, the treatments in no-tillage systems accumulated the most of 

the Po labile fractions. These results showed that conservation systems tend to accumulate 

most of the P fractions in soil through decomposition of organic residues. Thus, no-tillage 

system was shown to be important for Po supply, where the use of U. brizantha ‘Piatã’ (NT2) 

favored higher levels of organic P in labile and moderately labile fractions in soil, which was 

considered the best alternative for Po supply among the species tested.
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INTRODUCTION

Oxisols cover 32% of the Brazilian territory and occur throughout the country under a variety of different edaphic and 
climatic conditions (Santos et al. 2011). They are the most widespread soil type in the Brazilian Amazon and extremely 
important for that region, where they are the most common soil type in agricultural lands. These soils are poor in nutrients 
mainly in available phosphorus (P) (Quesada et al. 2011).

Phosphorus added either as mineral or organic fertilizer tends to migrate out of the soil solution and into the solid 
phase, making these soils a P sink; however, they can be transformed from less to more labile forms and become a source 
of P in weathered tropical soils depending on the soil management system (Zamuner et al. 2008).

The tillage systems and the quantities of P applied and exported from soils determine which P forms accumulate within 
soils (Tiecher et al. 2012). Phosphorus accumulates in the surface layer (0 to 10 cm) when soils are cultivated over long 
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time periods using soil-conservation management strategies and tends to accumulate as organic fractions (Redel et al. 
2007). However, soils that are subject to conventional agriculture tend to accumulate inorganic poorly labile forms of P 
(Zamuner et al. 2008), due to ploughing and harrowing that facilitate oxidation and gradual reduction of organic matter 
(OM) contents. Rodrigues et al. (2016) confirmed that 70-85% of P added was bound in inorganic forms associated to Fe/Al 
oxyhydroxides. However, Rheinheimer et al. (2019) reported a significant increase in organic P fractions under no-tillage. 
This process depends on some factors such as pH, microbial activity (Jin et al. 2006; Wang et al. 2017) and the management 
of soil organic matter, and should be considered in adapted rotation systems to obtain better crop yields (Leithold et al. 2015).

The cover crops may change the P dynamics in soils due to the recycling of P mobilized as plant residue promoting microbial 
activity. Thus, Tiecher et al. (2012) analyzed the effect of some species (as oat, radish, wheat and fallow) under conventional 
tillage (CT) and no-tillage (NT), observing the accumulation of organic residues increasing the Po content in the soil.

Forage species are highly recommended as cover plants due to their ability to accumulate P and incorporate them into 
the soil; however, it is desirable that these species have a high capacity for root and biomass production (Damon et al. 
2014). Among forages widely used in agricultural production systems, Urochloa ruziziensis has been recommended as the 
main forage, because it has a deep rooting system and is highly productive, reaching a dry mass of 15 t·ha-1·year-1. The soil 
cover of Panicum maximum ‘Massai’ was analyzed by Valentim and Moreira (1994), who found 81-100% of cover and high 
adaptation in soils with low P and low moisture contents, while Urochloa brizantha c ‘Piatã’ has shown great potential in 
integrated production systems in addition to high growth (60 cm) as function as P fertilizing (Dan et al. 2011; Dias et al. 2015).

In some regions of Brazil (mainly south and southeast), conservation tillage and cover crops using forage species is well 
established using mainly Urochloa species (Ferreira et al. 2010). The soil cover promoted by forage species contributes to 
reducing erosion and leaching processes and improve the soil quality and productivity of crops (Sá et al. 2014). However, 
these systems have been recently introduced in the Brazilian Amazon, and their benefits are not well reported.

Fractionation or sequential extraction makes it possible to study P dynamics in soils by separating fractions with different 
extractants (Zhang and Kovar 2009). Understanding organic P fractions in no-tillage systems in the Amazon region based 
on plant cover crops in the early years of cultivation can be a tool that enables better use of P fertilization.

As highly weathered oxisols require high fertilizer application rates, the accumulation of P in the labile and moderately 
labile fractions, which are more accessible to the plants, may prevent excessive P in soils and reduces economic losses 
and environmental damage. Therefore, a detailed understanding of organic phosphorus (Po) fractions can help develop 
management strategies to maintain or increase crop productivity and to reduce the need for fertilization (Vincent et al. 
2010). The authors of this work hypothesized that conservations systems and the cultivation of the cover crops may be a 
way to increase Po fractions in the soil. Therefore, this study aims to assess the effect of tillage systems on distribution of 
Po fractions in oxisol under soybean and grasses in crop successions.

MATERIAL AND METHODS

Location and characterization of the experimental area

The study was performed in Paragominas, located in the northeastern portion of Pará state, Brazil (02°51’54’’S; 48°23’40’’W; 
elevation 88 m). Soils in the region have been classified as oxisols (Soil Survey Staff 2014). The topography varies from flat to 
softly rolling slopes. The climate is classified as Aw, according to the Köppen classification, that is, a rainy tropical with a well-
defined dry season, with an average annual temperature of 26.5 °C and an annual rainfall of 1800 mm (Rodrigues et al. 2003).

In 2008, before the experiment was established, the entire area was prepared using conventional methods (light plowing 
and leveling). The no-tillage treatments (NT) were not lightly plowed or leveled between 2009 and 2011. The soybean 
seeding consisted of 12 plants·m-1 with 45 cm row spacing. All treatments were fertilized receiving 350 kg·ha-1 of NPK 
(4-20-20 formula) annually applied superficially in the row planting. The experimental design was completely randomized 
with four tillage systems, one native area and four replicates: (i) a conventional tillage with one light plowing and two leveling 
annually in November (CT) of soybean (Glycine max) ‘Sambaíba’ cultivated three years in succession with rice (Oryza sativa) 
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and maize (Zea mays) ‘BRS 1030’; (ii) NT of soybean, cultivated three years in succession with Urochloa ruziziensis (NT1); 
(iii) NT of soybean, cultivated three years in succession with Urochloa brizantha ‘Piatã’ (NT2); (iv) NT of soybean, cultivated 
three years in succession with Panicum maximum ‘Massai’ (NT3) (Table 1); and (v) a fragment of native vegetation (NV). 
Soybean was always cultivated between February and May and the cover crops was grazed on August. The NV area was a 
20-year-old succession characterized by a complex association of woody-shrubby species.

Table 1. Evolution of treatments for evaluation.

Treatment 2008 2009 2010 2011

CT Soybean Soybean/Rice Soybean/Maize Soybean

NT1 Soybean Soybean/Ruziziensis Soybean/Ruziziensis Soybean

NT2 Soybean Soybean/‘Piatã’ Soybean/‘Piatã’ Soybean

NT3 Soybean Soybean/‘Massai’ Soybean/‘Massai’ Soybean

CT-Conventional tillage, NT1, No-till in succession with Urochloa ruziziensis/soybean, NT2, No-till in succession with Urochloa brizantha ‘Piatã’/soybean, NT3-
No-till in succession with Panicum maximum ‘Massai’/soybean.

Sampling and physical and chemical characterization

The plots measured 0.03 hectare (30 × 10 m). To determine how Po fractionation varied at different depths, soils were 
collected at depths of 0-5, 5-10, and 10-20 cm in two times: first in December (2010) prior to planting and fertilizing for the 
soybean crop, and second collected in May (2011) and subsequently at harvest. Soil samples were collected using a stainless 
auger along the plant rows. Five samples were combined into a composite sample, summing four composite samples per 
plot and 16 composite samples per treatment.

The soil pH was measured in water using a soil:solution ratio of 1:2.5. Calcium and Mg were extracted with 1 mol·L-1 KCl 
and determined using an atomic absorption spectrometry. Extractable K was extracted using the Mehlich-1 solution method and 
determined using a flame photometry. Available P was extracted using resin (van Raij et al. 1986) and Mehlich-1 solution 
0.05 mol·L-1 HCl and 0.0125 mol·L-1 H2SO4 both quantified by colorimetry. Exchangeable Al (Al3+) was extracted with a 
1 mol·L-1 KCl solution and determined using titration with 0.025 mol·L-1 NaOH. The potential acidity (H+Al) was determined 
via extraction with 0.5 mol·L-1 calcium acetate at pH 7.0 and quantified by titration with 0.025 mol·L-1 NaOH. Total cationic 
exchange capacity (CEC pH 7) was calculated as Ca2+ + Mg2+ + K + H + Al; bases saturation (V) = (Ca2+ + Mg2+ + K) × 100 / CEC; 
Al saturation (m) = Al3+ × 100 / (Ca2+ + Mg2+ + K+ + Al3+) and the organic matter content was estimated using the soil organic 
carbon concentration as measured by wet combustion (OM = OC × 1,724) (Donagema et al. 2011). Soil granulometric analysis 
was performed via the pipette method (Gee and Or 2002). Soil chemical and texture attributes are provided in Table 2.

Phosphorus analysis

Total P was determined from the acid digestion (HNO3 and HCl concentrated in the ratio 3:1 in microwave according 
to the EPA 3051a method (Leytem 2009). Total organic P (total Po) was determined using the method of ignition, in which 
Po was converted by oxidation into inorganic P at a temperature of 550 °C and extracted by 1 mol·L-1 H2SO4 which was 
determined by colorimetry (Kuo 1996).

Organic P was sequentially fractionated into the following pools by the respective extractants: labile Po, by 0.5 mol·L-1 
NaHCO3 shaking for 16 h; Po contained in biomass by 0.5 mol·L-1 NaHCO3 with previous fumigation with CHCl3 shaking 
for 16 h; moderately labile Po by 1 mol·L-1 HCl shaking for 3 h; Po bound to fulvic acid and Po bound to humic acid by 
0.5 mol·L-1 NaOH after shake (6 h) and acidification with HCl; for nonlabile Po the solid residue was heated at 550 °C and 
extracted in 1 mol·L-1 H2SO4 shaking for 1 h (Zhang and Kovar 2009).

For all extractions, an aliquot was taken for digestion with potassium persulfate for the determination of inorganic P (Pi). 
Thus, Po was determined as the difference between total P and Pi for each fraction. The analytical procedure described by 
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Zhang and Kovar (2009) was modified with the goal of extracting Pi from the fulvic acid and nonlabile organic P fractions 
(nonlabile Po), thereby avoiding an overestimate of Po values in these fractions. A new sequential extraction was performed 
to determine Pi in the acidified NaOH extract and to determine fulvic acid Po as the difference between P total and Pi. 
One sample of final residue of this extraction was subjected to incineration and other sample was not incinerated, this procedure 
was used to obtain the total nonlabile Po content as the difference between the incinerated and the nonincinerated samples.

Statistical analysis

All determinations were made in triplicate and the data were statistically treated in the R environment version 3.5.6 for 
Windows. The statistical procedure was performed differentiating samples of 0-5, 5-10, and 10-20 cm, comparing management 
systems and the two sampling periods. Analysis of variance was performed (ANOVA) as well as normality (Shapiro–Wilk) 
and variance homogeneity (Levene) tests. If homogeneity was observed, a least significant difference (LSD) was applied; and 
if there were no homogeneity, a Dunnett T3 as post hoc. Cluster and principal components analysis of phosphorus forms 
in the soils were performed considering all depths. All data were analyzed at a 95% confidence level (p < 0.05).

RESULTS AND DISCUSSION

The no-till systems (NT) showed higher levels of biomass P than in the samples collected in conventional tillage (CT) 
after cultivation (Table 3). Specifically, the contents of the biomass P fraction increased (p < 0.05), at a depth of 0-5 cm, in 

Table 2. Soil attributes before the primary agricultural crop (2008).

Depth pHa
OM Pb Pc Al3+ H+Al K Ca2+ Mg2+ CEC V m

%
Sand Clay

g·kg-1 mg·kg-1 mmolc·kg-1 g·kg-1

NT1d

0-5 cm 5.3 39.6 17.1 16.2 1.5 52.6 3.4 28.4 6.1 90.5 41.9 3.9 45 615

5-10 cm 5.0 29.0 13.5 13.3 2.7 50.5 1.1 18.2 11.0 80.8 37.5 8.1 43 638

10-20 cm 4.8 26.9 6.6 7.5 3.6 51.5 1.0 17.0 5.6 75.1 31.5 13.1 47 705

NT2e

0-5 cm 5.4 43.4 17.4 15.2 1.1 49.5 4.5 33.2 13.6 100.8 50.9 2.2 43 570

5-10 cm 5.6 35.8 15.2 17.3 1.9 54.3 1.8 24.2 8.1 88.4 38.6 5.2 43 590

10-20 cm 5.1 32.1 13.5 8.1 1.4 52.7 1.5 23.8 5.1 83.1 36.6 4.4 41 670

NT3f

0-5 cm 5.4 44.6 12.2 9.8 1.1 49.1 2.7 29.8 7.0 88.6 44.6 2.8 45 619

5-10 cm 5.3 36.7 9.9 16.4 1.9 57.1 1.4 27.5 6.1 92.1 38.0 5.2 46 610

10-20 cm 5.1 31.7 7.3 7.6 2.2 54.9 3.8 23.4 4.8 86.9 36.9 6.4 42 700

CTg

0-5 cm 5.6 44.1 11.4 14.1 1.4 56.3 4.0 36.3 10.0 106.6 47.2 2.7 47 600

5-10 cm 5.4 36.7 10.8 11.9 1.1 49.9 1.7 32.2 8.9 92.7 46.1 2.6 43 670

10-20 cm 5.2 36.4 8.1 7.2 2.0 45.3 1.5 26.1 8.2 81.1 44.1 5.4 38 690

NVh

0-5 cm 5.8 75.0 8.0 1.2 1.3 62.5 1.3 54.6 16.9 135.3 53.8 1.7 53 660

5-10 cm 5.2 52.6 10.6 0.6 2.8 58.5 0.8 23.0 8.0 90.3 35.2 8.1 49 667

10-20 cm 5.0 37.7 9.5 0.4 3.8 53.9 0.6 17.2 4.9 76.6 29.6 14.4 49 690

apH, Determined in water, bP, Extracted via Mehlich-1; cP, Extracted via Resin; dNT1 – No-till in succession with Urochloa ruziziensis/soybean; eNT2 – No-till 
in succession with Urochloa brizantha ‘Piatã’/soybean; fNT3 – No-till in succession with Panicum maximum ‘Massai’/soybean; gCT – Conventional tillage; 
hNV – fragment of native vegetation.



438

R. S. Guedes et al.

Bragantia, Campinas, v. 79, n. 3, p.434-446, 2020

the NT1 (no-till in succession with U. ruziziensis) and NT3 (no-till in succession with Panicum maximum ‘Massai’) systems, 
compared to the first sampling period (Table 3).

The microbial biomass is very dynamic to the P immobilization from the soil solution when its availability in the 
system is high and when it is gradually released as microorganisms die (Bünemann 2015). It is possible that these NT 
management systems increased biological activity in the surface layer and consequently increased biomass P content. 
The increase in biomass P may be associated with the breakdown of organic matter or by the specific mineralization 
of organic phosphate through the actions of phosphatase-type exoenzymes (McGill and Cole 1981). According to 
Pacheco et al. (2013), U. ruziziensis straw has shorter permanence when compared to U. Brizantha. An increase in the 
decomposition rates and the release of nutrients in the soil can stimulate of soil microbial biomass probably due to 
stimulation of biological activity promoted by cultivation of soybeans and the humidity and temperature conditions 
found in no-till systems (Costa et al. 2015).

The NT system was more efficient than the CT treatment at promoting the accumulation of P biomass. Even in deeper 
soil layers, the NT system provides a higher supply of P to soils over longer periods than the other systems. Alterations in 
the distribution of the organic P formed in soils depend on the quantity of P exported during harvests, on soil preparation 
techniques, and on the ability of plants to access reserves of less labile forms of P (Damon et al. 2014).

Table 3. Organic phosphorus fractions before (2010) and after soybean cultivation (2011) at varying depths under different soil management 
systems (conventional and no-tillage).

Treatment

Biomass Pπ Labile Poβ Mod. labile Poα Fulvic Poγ Humic Poφ Nonlabile Poθ

Before After Before After Before After Before After Before After Before After

mg·kg-1

0-5 cm

NVa* 22 19 37 40 20 13 50 53 38 20 146 231

NT1b 17 aB 25 aA 15 bB 34 bA 16 bA 9 bB 51 aB 71 aA 38 aB 50 aA 132 bB 189 aA

NT2c 17 aA 20 aA 28 aB 41 aA 29 aA 13 aB 45 aA 49 bA 30 bA 35 aA 140 bB 184 aA

NT3d 16 aB 27 aA 15 bB 23 cA 25 aA 11 abB 49 aA 55 abA 16 cB 43 aA 175 bA 165 aA

CTe 17 aA 10 bA 28 aA 24 cB 25 aA 13 aB 47 aA 46 bA 13 dB 39 aA 192aB 206 aA

CVf (%) 15 29 8 4 14 15 23 20 6 24 16 16

5-10 cm

NV 13 9 26 20 29 5 45 43 24 16 178 200

NT1 13 aB 22 aA 20 aB 28 bA 12 cA 14 bA 59 aA 51 aA 36 aA 33 aA 147 aB 232 aA

NT2 9 aB 18 abA 24 bB 33 aA 20 bA 10 cB 47 aB 65 aA 29 bA 18 bB 153 aB 229 abA

NT3 12 aA 16 bA 15 cB 31 aA 29 aA 17 aB 54 aA 48 aA 14 cA 17 bcA 132 aB 207 bA

CT 13 aA 8 cA 15 cB 22 cA 4 dB 7 dA 36 aA 45 aA 6 dB 15 bcA 175 aB 221 abA

CV (%) 30 24 6 5 6 18 31 14 12 19 21 10

10-20 cm

NV 3 6 17 22 4 6 30 34 7 13 199 221

NT1 7 abA 7 bA 19 bA 8 cB 15 bA 6 cB 39 aA 43 bA 21 aA 8 bB 172 aB 254 abA

NT2 10 aB 20 aA 24 aB 36 aA 4 cB 15 aA 40 aA 38 bcA 10 cA 10 aA 174 aB 229 abA

NT3 3 cA 7 bA 20 bA 9 cB 17 bA 10 bB 40 aA 33 bcA 14 bA 14 aA 157 aB 216 bA

CT 5 bcA 5 bA 25 aA 24 bA 21 aA 6 cB 39 aB 62 aA 6 dB 12 aA 115 bB 265 aA

CV (%) 36 68 5 7 16 14 23 36 17 30 10 11

*Values not considered in ANOVA, only used as a reference; aNV – Fragment of native vegetation; bNT1 – No-till in succession with Urochloa ruziziensis/soybean; 
cNT2 – No-till in succession with Urochloa brizantha ‘Piatã’/soybean; dNT3 – No-till in succession with Panicum maximum ‘Massai’/soybean; eCT – Conventional 
tillage; fCV – Coefficient of variation. πP in microbial biomass; βLabile Po; αModerately labile Po; γPo linked to fulvic acids; φPo linked to humic acids; θNonlabile 
Po. Within each P fraction, means followed by the same uppercase letter in a row (years) and lowercase letter in a column (tillage systems) are not significantly 
different (p ≤ 0.05) according to LSD test.
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Levels of labile Po in the soil samples from all layers of the NT2 treatment increased significantly after soybean crop. 
However, the levels of labile Po declined in the soil surface layer of the CT system (Table 3), which suggests that labile Po 
was consumed due to its high accessibility to the plants. The labile Po fraction reached a maximum of 12% of total Po in 
the surface layer of the NV and NT2 systems (Fig. S1).

The labile Po fraction is generally very changed in soils mainly when tillage systems to soil conservation such as no-till 
were applied generating an accumulation of P forms. As observed with the biomass P values, the decomposition of crop 
residue and the accumulation of organic residues stimulate microbial activity, thus favoring the accumulation of organic P 
in the upper layers of the soil (Sharpley and Smith 1985). On the other hand, conventional tillage systems expose the soil 
adsorption sites and increase the contact between ions P and soil colloids, thus increasing the fixation, especially in outer 
sphere complexes and subsequently for inner sphere complexes (Fink et al. 2014).

The concentration of labile Po decreased with increasing depth, particularly in the native area, as also observed by Dieter 
et al. (2010), who observed similar reduction by evaluating the Pi and Po extracted by 0.5 mol·L-1 NaHCO3 (equivalent to 
labile P). Amazonian soils in forested areas have low P levels and the main source for biomass decomposition is litter on 
the soil surface, so that the labile fraction of the Po considerably reduces with depth (Quesada et al. 2011).

All treatments showed declines in moderately labile Po levels superficially (0 to 5 cm layer) (Table 3, Fig. S1). 
The moderately labile Po fraction is highly soluble and reactive with the crystalline and low-crystalline forms of Fe and Al, 
generating an accumulation trend similar to the nonlabile fraction (Gérard 2016). Roots can also induce high phosphatase 
activity in the rhizosphere, which increases the amount of P available to plants via less available forms like moderately 
labile (Celi and Barberis 2005).

The Po fraction bonded to fulvic acids showed larger changes as a function of cultivation time in the 0 to 5 cm layer. 
Among tillage systems, only the NT1 system stored more of this fraction than the CT system in the 0 to 5 cm layer (Table 3). 
Moreover, fulvic organic P levels tended to increase in the 10 to 20 cm layer of the CT system after cultivation.

The highest values of Po bound to fulvic acid between N1 and CT reflect an improvement in protecting the soil using 
previous ground cover plants Urochloa ruziziensis has a prostrate growth that quickly covers the soil surface, as well as a 
stem that lasts a long time in the soil due to a high C/N ratio. This phenomenon may explain why the fulvic acid remained 
in the surface layer (Silva and Mendonça 2007). The Urochloa ruziziensis species has been used to avoid the effects of 
erosion and soil washing in newly established pastures and is also highly recommended for no-tillage methods, cover crops 
formation, and soil protection (Pariz et al. 2010). However, at deeper layer CT accumulate more of this fraction because 
fulvic acid is a humic substance with high total acidity, is soluble at all pH levels and can migrate to greater depths (Gonet 
et al. 2008). Therefore, the solubility of the fulvic Po fraction suggests that, when soils are unprotected, rainfall promotes 
its accumulation at greater depths. In the case of soil conservation tillage systems such as NT, however, the fraction tends 
to accumulate in the surface layer.

At a depth of 0 to 5 cm in both conventional and the no-till systems, levels of Po bonded to humic acids increased (Table 3). 
The Po bonded to humic acids is a stable fraction important to maintenance of organic matter in the soil, but in quantitative 
terms, the nonlabile Po fraction was more important than the other organic fractions at all depths studied (Table 3).

The patterns of humic Po observed in the systems highlight the stability of this fraction that tends to accumulate in 
the soil when there is entry of organic matter, so that in soils of the wet tropical region, humic acids become an important 
reserve of quickly available Po (He et al. 2011; Quesada et al. 2011). Other important source observed in large portion in 
this study, the nonlabile Po can assist with maintaining labile P fractions, and all P fractions may be available in the short, 
medium and long term, suggesting that much of the P applied as fertilizer or OM can be recovered (Guo et al. 2000). 
In highly weathered soils such as oxisols, which have high levels of iron and aluminum oxides, the OM levels can be a key 
to recovery P retained in the soil (Guedes et al. 2016).

The lower total P levels in the deeper layer of the soil in the NV (Table 4) are due to low P inputs to layer and the low 
mobility of P compared to the others systems studied. In forest soils, the nutrient source is mainly supplied by cycling 
organic materials on the soil surface, unlike other treatments that received phosphate fertilizer during the growing seasons 
of each year. The variations in levels of total P are smaller than the variations in labile, and this behavior is not reflected in 
the availability of labile fractions (Pavinato et al. 2010).
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With principal components analysis, it was possible to extract two components (PC1 and PC2), which explained 60% of the 
data variance (Table S1). The NT3 treatment was strongly correlated – above 0.70, according to Manly (1994) – with the values of 
m%, Al3+ and H+Al in PC1 (Table S1 and Fig. 1). These attributes were observed in greater proportion in NT3 and CT treatments.

The NT2 treatment have a higher contribution of the variables related to soil fertility, such as exchangeable bases, CEC, as 
well as pH and labile Po fraction. However, for NT1 and NT2 a higher contribution of available P levels was observed (extracted 
by resin and Mehlich-1), Total P, biomass P, labile Po, and moderately labile Po (Table S1, Fig. 1). Thus, NT2 supplied greater 
quantity of the main Po fractions to soil in relation to other treatments, showing also one of the higher fertility levels. Figure 1 
shows that most of the Po fractions were dependent on the available P levels as well as levels of m, Al3+ and potential acidity.

Cluster analysis (Fig. 2) shows that CT and NT1 treatments showed a higher level of similarity in relation to variables 
considered in the PCA, while NV showed greater dissimilarity due to lower P levels found in this soil.

The fractions obtained from the phosphorus fractionation scheme and fertility analysis were used to perform cluster 
and principal component analysis (PCA) in order to summarize information referring to set of variables and responses 
obtained in the experiment. Phosphorus and Al3+ levels in the soil are often related to acidity levels, which in Amazonian 
soils becomes a critical factor for the P fertilization management. The high soil acidity reduces P availability, promoting 
the increase of less labile P fractions due to protonation in the colloidal surface, stimulating retention of inorganic and 
organic P forms (Barrow et al. 2015).

Table 4. Contents of total P, total organic P (total Po) before soybean planting and after planting at different depths of samples from an oxisol 
under different management systems.

Treatment

Total P Total Po

Before After Before After

mg·kg-1

0-5 cm

NVa* 638 703 304 365

NT1b 644 bA 701 aA 261 bB 367 aA

NT2c 583 bB 793 aA 280 bB 332 bA

NT3d 474 cB 701 aA 287 bB 341 abA

CTe 751 aA 778 aA 312 aA 319 bA

CVf (%) 8 8 13 12

5-10 cm

NV 670 668 309 287

NT1 613 aA 675 abA 281 aB 372 aA

NT2 569 aB 657 bA 276 abB 366 aA

NT3 572 aB 728 aA 251 bB 329 abA

CT 598 aA 637 bA 244 bB 312 bB

CV (%) 10 6 19 15

10-20 cm

NV 324 320 256 297

NT1 562 aA 571 aA 269 aA 321 bA

NT2 532 aA 511 aA 249 aA 343 abA

NT3 493 aA 589 aA 247 aA 285 cA

CT 501 aA 542 aA 208 bB 368 abA

CV (%) 19 11 31 35

*Values not considered in ANOVA, only used as a reference; aNV – Fragment of native vegetation; bNT1 – No-till in succession with Urochloa ruziziensis/soybean; 
cNT2 – No-till in succession with Urochloa brizantha ‘Piatã’/soybean; dNT3 – No-till in succession with Panicum maximum ‘Massai’/soybean; eCT – Conventional 
tillage; fCV – Coefficient of variation. Within each P fraction, means followed by the same uppercase letter in a row (years) and lowercase letter in a column (tillage 
systems) are not significantly different (p ≤ 0.05) according to the LSD test.
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CONCLUSION

The distribution of organic P fractions varied between tillage systems, mainly in the surface soil layer, but did not alter the 
total P. Furthermore, the humic Po, fulvic Po, and nonlabile Po fractions were more expressive than the other organic fractions.

Among the evaluated systems, the tillage system using the Urochloa brizantha ‘Piatã’ (NT2) excels in providing increased 
the most of organic P fractions being considered the best alternative to cover crops formation and supply Po among the 
species tested. The use of this forage in no-tillage cultivation in Amazon region can be important for soil management.
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Figure 1. Principal component analysis biplot for treatments considering all depths: NT1 – No-till in succession with Urochloa 
ruziziensis/soybean; NT2 – No-till in succession with Urochloa brizantha ‘Piatã’/soybean; NT3 – No-till in succession with Panicum maximum 
‘Massai’/soybean; CT – Conventional tillage; NV – Fragment of native vegetation. Highlighted points represent the average of treatments.
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Figure 2. Cluster analysis for treatments considering all depths: NT1 – No-till in succession with Urochloa ruziziensis/soybean; NT2 – No-till in 
succession with Urochloa brizantha ‘Piatã’/soybean; NT3 – No-till in succession with Panicum maximum ‘Massai’/soybean; CT – Conventional 
tillage; NV – Fragment of native vegetation.
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SUPPLEMENTARY FILE

Table S1. Description of variance explained with factor loadings (unrotated) related to soils.

Component Eigenvalue Total variance (%) Cumulative Eigenvalue Cumulative (%)

1 8.84 44.22 8.84 44.22

2 3.25 15.23 12.09 59.45

Variables
Factor Loadings

Factor 1* Factor 2*

 
 

pH -0.85 0.21

OM -0.70 0.23

Resin P -0.40 -0.55

M1 P 0.03 -0.81

H+Al 0.65 -0.08

Al 0.70 -0.23

Mg -0.91 -0.24

K -0.70 0.01

Ca -0.94 0.16

CEC -0.76 0.16

CECe -0.94 -0.16

V -0.96 0.13

m 0.70 -0.33

Total Po -0.13 -0.64

Total P -0.47 -0.51

Biom P -0.54 -0.59

LPo -0.72 -0.22

MPo -0.38 -0.31

HPo -0.36 -0.71

FPo -0.36 0.31

NPo 0.13 0.66

*values > 0.70 (marked) are significant (Manly 1994).
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Figure S1. Distribution of organic P fractions before and after the soybean crop, at varying depths of an oxisol for the following tillage 
systems: NT1 – No-till in succession with Urochloa ruziziensis/soybean; NT2 – No-till in succession with Urochloa brizantha ‘Piatã’/soybean; 
NT3 – No-till in succession with Panicum maximum ‘Massai’/soybean; CT – Conventional tillage; NV – Fragment of native vegetation.
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