ISSN 0103-8478 FITOTECNIA

Dimensionamento amostral para a estimação da média de precipitação pluvial mensal em locais do Estado do Mato Grosso do Sul

Sample size for estimating the means monthly rainfall in locations of Mato Grosso do Sul State, Brazil

Francisco Eduardo Torres^{1*} Alberto Cargnelutti Filho^{II} Paulo Eduardo Teodoro^I Caio Cezar Guedes Corrêa^I Larissa Pereira Ribeiro^I Elias Rodrigues da Cunha^{III}

RESUMO

O objetivo deste trabalho foi determinar o tamanho de amostra, em número de anos, para a estimação da média de precipitação pluvial mensal em locais do Estado de Mato Grosso do Sul e verificar sua variabilidade espaçotemporal. Utilizaram-se os dados de precipitação pluvial do período de 1954 a 2013, coletados do Sistema de Informações Hidrológicas da Agência Nacional de Águas - ANA. Em cada uma das 384 séries temporais (12 meses × 32 locais), calcularam-se a média e o desvio padrão e testaram-se a aleatoriedade e a normalidade dos dados. Verificou-se a homogeneidade de variâncias entre os meses em cada local e entre os locais em cada mês. Calculou-se o tamanho de amostra em cada mês e local. O tamanho de amostra (número de anos) para a estimação da média de precipitação pluvial mensal é dependente do mês e do local. Para os meses e locais estudados, 63 anos de observações são suficientes para estimar a média de precipitação pluvial mensal, para um erro de estimação igual a 45% da média estimada, com grau de confiança de 95%.

Palavras-chave: série temporal, erro de estimação, amostragem.

ABSTRACT

The aim of this study was to determine the sample size, in number of years, to estimate the means monthly rainfall in locations of Mato Grosso do Sul and verify its space-

temporal variability. It was used the rainfall data for the period 1954-2013, collected from the Hydrological Information System of the National Water Agency - ANA. The means and standard deviation were calculated for each of the 384 time series (12 months × 32 locations) and the aleatory and normality data were tested. Then it was verified the homogeneity of variance among months in each locality and among locality in each month and it was determined the sample size to estimate the means monthly rainfall in each month and locality. The sample size (number of years) to estimate the means monthly rainfall is dependent on the month and locality. One concluded that 63 years of data are enough to predict the average monthly rainfall, with an estimation error equal to 45% of estimated average, with a degree confidence of 95%.

Key words: time series, error of estimation, sampling.

INTRODUCÃO

O Estado de Mato Grosso do Sul tem na agropecuária a sua principal atividade econômica, com destaque para a produção de soja e bovinocultura, que se distribuem de forma distinta em dois biomas de atributos climáticos peculiares: Pantanal e Cerrado (CORREA et al.,

¹Curso de Agronomia, Departamento de Fitotecnia, Universidade Estadual de Mato Grosso do Sul (UEMS), 79210-000, Aquidauana, MS, Brasil. E-mail: eduteodoro@hotmail.com. *Autor para correspondência.

^{II}Departamento de Fitotecnia, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil.

III Curso de Geografia, Departamento de Geoprocessamento, Universidade Federal de Mato Grosso do Sul (UFMS), Aquidauana, MS, Brasil.

2014). MINUZZI & LOPEZ (2014) apontam a precipitação como uma das variáveis climáticas de maior influência no meio ambiente, na economia e na sociedade. Nesse contexto, é importante estimar sua disponibilidade, com a máxima precisão possível, em um determinado local e período do ano, para que, no planejamento de atividades, os riscos climáticos sejam minimizados.

De acordo com MARTIN et al. (2008), por meio da série histórica dos atributos do clima de uma região, é possível predizer as características do local, pois medidas de tendência central (média, mediana e moda), medidas de variabilidade dos dados (amplitude, desvio padrão, variância e coeficiente de variação) e medidas de assimetria e de curtose, descrevem o comportamento passado e podem ser usadas para previsões do clima.

Para estudos de variabilidade e de mudança climática, a World Meteorological Organization (WMO) preconiza que o número mínimo de anos de dados climáticos para a análise é de 30 anos, além de recomendar a utilização do Run Test (para indicar a aleatoriedade) (THOM, 1966). Entretanto, diversas pesquisas demonstram que o número mínimo de anos para determinação da média de um elemento meteorológico é estimado em função da variabilidade dos dados de cada local e da época do ano (CAMARGO & HUBBARD, 1994; VERNICH & ZUANNI, 1996; MARTIN et al., 2008; CARGNELUTTI FILHO et al., 2009b). Isso ocorre porque a estimativa obtida a partir de uma amostra está associada a um erro em razão da variabilidade das observações. Assim, um conjunto de dados com pouca variabilidade (homogêneo) necessitará de um menor tamanho de amostra para representá-los, quando comparado a um conjunto de dados heterogêneos (CARGNELUTTI FILHO et al., 2006).

Estudos sobre o dimensionamento amostral para estimativa da precipitação mensal são escassos no Brasil. Assim, o objetivo do trabalho foi determinar o tamanho de amostra, em número de anos, para a estimação da média de precipitação pluvial mensal, em locais do Estado de Mato Grosso do Sul, e verificar sua variabilidade espaço-temporal.

MATERIAL E MÉTODOS

Os dados de precipitação pluvial de 32 estações (locais) do Estado do Mato Grosso

do Sul foram obtidos do Banco de Dados da Agência Nacional de Águas – ANA, coletados do período de 1954 a 2013 (Tabela 1). Em cada local e ano, somaram-se os dados diários de precipitação pluvial, obtendo-se a precipitação pluvial mensal, em mm mês⁻¹, de cada um dos 12 meses do ano. Assim, formaram-se 384 séries temporais (12 meses × 32 locais), com número diferenciado de anos de observações em cada série, definidas em função da disponibilidade de dados meteorológicos.

Em cada uma das 384 séries temporais de precipitação pluvial mensal, foram calculadas a média (\overline{X}) e o desvio padrão (s). A fim de identificar possíveis tendências de acréscimo ou decréscimo da precipitação pluvial mensal no período estudado, verificou-se a aleatoriedade dos dados em cada série temporal, por meio do teste de sequência (*Run Test*) (THOM, 1966; SIEGEL & CASTELLAN JÚNIOR, 2006).

Foi aplicado um teste bilateral à hipótese H_0 : a série é aleatória (sem tendência) versus a hipótese H_1 : a série não é aleatória (com tendência). No teste, os dados de precipitação pluvial mensal foram utilizados em ordem cronológica, e o número de sequências foi calculado com base em valores menores e maiores que a mediana. A seguir, foi verificada a normalidade dos dados de cada série temporal, por meio do teste de Kolmogorov-Smirnov (SIEGEL & CASTELLAN JÚNIOR, 2006).

Aplicou-se o teste de Bartlett (STEEL et al., 1997) aos dados de precipitação pluvial mensal, para verificar a homogeneidade de variâncias entre os meses do ano (12 variâncias variabilidade temporal), em cada local (32 testes), e entre os locais (32 variâncias variabilidade espacial), em cada um dos 12 meses do ano (12 testes). Para cada série temporal de precipitação pluvial mensal, foi calculado o tamanho de amostra (n) para as semiamplitudes do intervalo de confiança (erros de estimação), fixadas em 25%, 35% e 45% da média (\overline{X}) de precipitação pluvial mensal, em mm mes-1, ou seja, $0.25 \, \overline{X}$ (maior precisão), $0.35 \, \overline{X}$ (precisão moderada) e $0.45 \,\overline{\mathrm{X}}$ (menor precisão), com grau de confiança (1-a) de 95%, por meio da expressão n = $[(t_{\alpha/2}s)/(erro de estimação)]^2$ (BUSSAB & MORETTIN, 2011), na qual t_{a/2} é o valor crítico da distribuição t de Student, tal que P(t>t_{$\alpha/2$})= $\alpha/2$, com $\alpha=5\%$ de probabilidade de erro e (n-1) graus de liberdade, sabendo que s é a estimativa do desvio-padrão. O tamanho de

Tabela 1 - Altitude (em metros), latitude e longitude, período de observação da precipitação pluvial mensal e valor calculado da estatística do teste de Bartlett (χ^2_{calc}) das variâncias entre os meses, em cada local, e das variâncias entre os locais, em cada mês.

Local	Altitude (m)	Latitude (S)	Longitude (W)	Período	χ^2_{calc}	Mês	χ^2_{calc}
Água Clara	376	-20°6'7''	-52°55'33"	1975-2013	169,0*	JAN	40,9 ^{ns}
Amambai	395	-22°55'59''	-55°13'0''	1973-2013	37,1*	FEV	60,4*
Anastácio	106	-19°34'0''	-56°12'0''	1960-2000	40,6*	MAR	59,5*
Anaurilândia	284	-22°11'11''	-52°42'48''	1975-2013	51,6*	ABR	118,2*
Aparecida do Taboado	375	-20°1'6''	-51°6'13''	1983-2013	161,8*	MAI	242,7*
Aquidauana	155	-20°27'24''	-55°40'17''	1960-2000	91,7*	JUN	265,4*
Bataguassu	293	-21°43'33''	-52°20'3''	1975-2013	58,8*	JUL	230,0*
Bodoquena	133	-19°52'15''	-56°59'1''	1954-2013	290,6*	AGO	280,0*
Caarapó	454	-22°37'28''	-54°49'29''	1973-2013	48,0*	SET	135,4*
Camapuã	404	-19°29'48''	-53°59'48''	1973-2013	115,0*	OUT	123,7*
Campo Grande	559	-20°28'0''	-54°40'0''	1975-2013	82,5*	NOV	74,3*
Chapadão do Sul	570	-18°59'52''	-52°35'17''	1983-2013	131,2*	DEZ	75,8*
Corumbá	101	-17°37'24''	-56°57'54''	1983-2013	95,8*		
Costa Rica	635	-18°32'50''	-53°8'7''	1983-2013	85,5*		
Coxim	250	-18°38'57''	-54°21'26''	1973-2013	171,5*		
Dourados	293	-22°23'53''	-54°47'30''	1973-2013	86,8*		
Glória de Dourados	422	-22°24'21''	-54°14'7''	1973-2013	25,5*		
Iguatemi	333	-23°40'55''	-54°33'42''	1975-2013	49,3*		
Inocência	502	-19°44'11''	-51°56'1''	1983-2013	119,5*		
Maracaju	356	-21°37'7''	-55°8'13''	1973-2013	52,6*		
Miranda	140	-20°6'7''	-56°47'43''	1960-2000	236,3*		
Navirai	366	-23°3'28''	-54°11'38''	1975-2013	36,6*		
Nova Andradina	271	-21°36'55''	-53°3'8''	1975-2013	49,3*		
Paranaíba	458	-19°23'27''	-51°36'32''	1983-2013	168,6*		
Ponta Porã	650	-22°32'0''	-55°43'0''	1973-2013	79,1*		
Porto Murtinho	83	-21°42'5''	-57°53'30''	1983-2013	54,5*		
Ribas do Rio Pardo	373	-20°26'41''	-53°45'29''	1975-2013	62,9*		
Rio Brilhante	287	-21°38'50''	-54°25'31''	1973-2013	70,3*		
Rio Negro	233	-19°26'23''	-54°59'0''	1975-2013	109,5*		
Santa Rita do Pardo	393	-21°17'43''	-52°48'38''	1975-2013	47,6*		
Selviria	348	-20°21'49''	-51°25'26''	1983-2013	107,5*		
Três Lagoas	313	-20°47'41''	-51°42'46''	1975-2013	106,0*		

^{*}Significativo a 5% de probabilidade de erro pelo teste de Bartlett. ns = Não-significativo.

amostra foi calculado iterativamente até a sua convergência.

Em seguida, fixando-se n igual ao número de anos de observações utilizadas no estudo, foi calculado o erro de estimação (semiamplitude do intervalo de confiança), em percentagem da estimativa da média (\overline{X}) de precipitação pluvial mensal, para cada mês e local, por meio da expressão erro de estimação = $100 \left[\frac{(t\alpha/2s)}{\sqrt{n}} \overline{x} \right]$. As análises estatísticas foram realizadas com os aplicativos GENES (CRUZ, 2013) e Microsoft Office Excel®.

RESULTADOS E DISCUSSÃO

Por meio do teste de Bartlett (STEEL et al., 1997), aplicado entre as variâncias dos 12 meses em cada local, constatou-se que estas foram heterogêneas nos 32 locais, o que indica tamanho de amostra diferenciado entre os 12 meses (Tabela 1). Entre as variâncias dos 32 locais, em cada mês, o teste de Bartlett revelou variância homogênea apenas para o mês de janeiro, o que pressupõe que o tamanho de amostra para estimar a precipitação média

mensal, neste mês, pode ser o mesmo para os 32 locais. No entanto, para os demais 11 meses, as variâncias foram heterogêneas e, com isso, o tamanho de amostra, para mesma precisão, difere entre os locais. Assim, diante desses resultados, pode-se inferir que há variabilidade espacial e temporal do tamanho de amostra para determinação da precipitação média mensal.

A média da precipitação pluvial mensal, em mm mês⁻¹, variou entre 11mm (mês de julho em Aparecida do Taboado) e 305mm (mês de janeiro em Inocência), sendo a média

das 384 séries de 116mm mês-1 (Tabela 2). As maiores e menores precipitações verificadas, que foram em janeiro e julho, respectivamente, são justificadas pelo clima do Estado, que, segundo a classificação de Köppen-Geiger, é do tipo Aw (tropical subúmido), caracterizado por chuvas no verão e períodos secos durante o inverno (CORRÊA et al., 2014). De maneira geral, nos 32 locais, maiores médias de precipitação pluvial mensal ocorreram nos primeiros e nos últimos meses do ano, com decréscimos gradativos em direção aos meses centrais do ano (Tabela 2).

Tabela 2 - Média da precipitação pluvial mensal, em mm mês¹, em locais do Estado do Mato Grosso do Sul, com dados meteorológicos disponíveis até 2013.

Local	Mês													
Local	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ		
Água Clara	273	230	186	77	70	24	22	30	68	124	178	239		
Amambai	164	163	149	144	136	110	51	66	116	206	191	202		
Anastácio	194	144	126	77	72	53	33	41	70	126	125	162		
Anaurilândia	185	172	139	99	89	62	41	44	114	128	128	163		
Aparecida do Taboado	238	169	155	74	55	24	11	19	58	92	112	188		
Aquidauana	178	153	123	101	97	46	20	29	85	108	162	175		
Bataguassu	203	171	131	90	86	53	36	32	84	106	135	186		
Bodoquena	199	137	131	79	56	37	21	19	48	93	130	165		
Caarapó	158	147	133	110	98	77	35	51	100	154	164	147		
Camapuã	258	193	189	84	85	32	22	27	83	129	165	216		
Campo Grande	208	181	147	87	91	43	33	40	84	134	158	209		
Chapadão do Sul	273	240	229	119	63	23	14	29	75	145	209	242		
Corumbá	181	157	143	70	43	30	16	18	42	69	148	170		
Costa Rica	300	229	245	142	68	20	14	22	67	149	195	242		
Coxim	244	208	148	77	55	26	16	17	56	122	171	216		
Dourados	185	174	141	85	90	78	38	48	103	138	174	167		
Glória de Dourados	181	166	156	117	109	87	49	60	124	155	154	158		
Iguatemi	166	147	119	120	132	93	62	68	119	173	163	181		
Inocência	305	258	206	97	57	23	14	30	71	103	152	231		
Maracaju	158	144	132	83	90	71	38	30	72	124	150	176		
Miranda	213	134	143	72	54	23	13	15	52	98	126	163		
Navirai	151	155	127	114	119	83	46	56	114	175	163	167		
Nova Andradina	218	203	163	97	104	61	41	45	92	134	162	192		
Paranaíba	281	201	208	90	52	24	14	17	52	113	138	238		
Ponta Porã	206	180	131	139	133	82	43	48	107	164	201	183		
Porto Murtinho	192	160	139	144	93	45	33	33	74	129	162	187		
Ribas do Rio Pardo	228	171	155	95	83	38	30	31	82	141	155	197		
Rio Brilhante	190	157	148	88	113	64	40	39	97	128	148	174		
Rio Negro	208	169	130	81	82	45	19	23	74	128	138	228		
Santa Rita do Pardo	217	163	142	86	86	53	36	34	86	124	141	180		
Selviria	238	198	162	78	54	30	14	23	64	96	124	176		
Três Lagoas	225	164	153	96	75	36	29	31	80	128	152	189		

O desvio padrão da precipitação pluvial mensal oscilou entre 12mm (mês de julho em Miranda) e 120mm (mês de dezembro em Água Clara) e a média dos 384 desvios foi de 62mm mês-1 (Tabela 3). Resultados em magnitude superior (77mm mês-1) foram observados por CARGNELUTTI FILHO et al. (2009a) em pesquisa acerca do dimensionamento amostral para a estimação da média de precipitação mensal, em locais do Estado do Rio Grande do Sul. Nos 32 locais, de maneira geral, menores escores de desvio padrão ocorreram nos meses centrais do ano, com acréscimo gradativo em direção aos meses iniciais e finais do ano (Tabela 3).

Portanto, tanto as médias como o desvio padrão da precipitação pluvial mensal foram de elevada magnitude e, no mês de janeiro, diminuíram gradativamente até os meses de junho, julho e agosto e apresentaram aumento gradativo até o mês de dezembro (Tabelas 2 e 3).

De acordo com o teste de aleatoriedade (Run Test), a distribuição de 381 séries temporais de precipitação mensal (99,22%) foi aleatória (P>0,01). Isso indica que, durante o período estudado, não houve tendência de acréscimo ou decréscimo da precipitação mensal nos 32 locais do Estado do Mato Grosso do Sul. O teste de normalidade (Kolmogorov-Smirnov)

Tabela 3 - Desvio padrão da precipitação pluvial mensal, em mm mês-1, em locais do Estado do Mato Grosso do Sul, com dados meteorológicos disponíveis até 2013.

Local						Mé	ês					
Local	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
Água Clara	101	86	99	50	45	29	31	45	47	59	67	120
Amambai	78	72	71	80	92	81	40	62	70	99	76	83
Anastácio	68	57	66	48	43	48	32	41	49	63	53	64
Anaurilândia	101	93	76	55	65	69	40	52	79	64	65	58
Aparecida do Taboado	103	92	56	49	40	40	16	22	43	42	55	80
Aquidauana	80	65	63	47	60	41	24	36	59	46	66	82
Bataguassu	106	95	79	64	74	64	40	45	68	59	72	67
Bodoquena	86	67	91	41	30	39	21	20	35	56	69	71
Caarapó	69	62	78	67	68	70	28	47	65	71	74	65
Camapuã	87	69	89	51	49	34	29	40	47	43	60	85
Campo Grande	97	82	60	50	59	40	33	41	55	71	73	80
Chapadão do Sul	78	95	99	58	42	38	19	42	56	46	92	98
Corumbá	80	76	68	49	36	42	28	29	41	45	75	86
Costa Rica	86	71	81	74	50	36	25	37	55	57	74	90
Coxim	85	78	58	44	49	36	18	25	36	57	72	88
Dourados	92	79	70	48	53	78	25	57	99	64	75	69
Glória de Dourados	90	81	84	68	76	78	46	70	68	67	63	61
Iguatemi	103	75	65	85	95	64	41	62	76	100	79	96
Inocência	90	107	92	69	36	34	20	49	73	75	85	82
Maracaju	75	72	77	54	73	66	35	38	56	64	72	81
Miranda	76	55	56	31	33	17	12	14	36	56	49	61
Navirai	72	79	76	72	100	76	41	55	73	87	84	71
Nova Andradina	107	96	90	62	83	65	43	69	59	80	85	97
Paranaíba	81	90	97	50	34	26	17	20	49	50	57	61
Ponta Porã	80	76	62	60	78	56	27	34	62	60	42	58
Porto Murtinho	84	70	76	80	80	46	31	48	63	82	62	95
Ribas do Rio Pardo	87	60	73	55	56	49	32	37	67	60	71	77
Rio Brilhante	90	66	77	42	59	50	32	43	61	48	45	58
Rio Negro	82	72	75	52	72	50	20	29	59	47	53	77
Santa Rita do Pardo	89	63	65	49	59	57	37	46	62	59	58	86
Selviria	80	81	87	53	41	50	16	30	51	49	58	76
Três Lagoas	115	81	72	74	60	34	31	42	59	64	64	82

revelou que os dados de 359 séries temporais de precipitação mensal (93,49%) se ajustaram à distribuição normal (P>0,01). Em face desses elevados percentuais de séries aleatórias e com ajuste à distribuição normal, pode-se inferir que os dados destas séries temporais de precipitação mensal tem credibilidade para o estudo do tamanho de amostra (SIEGEL & CASTELLAN JÚNIOR, 2006).

O tamanho de amostra (número de anos), para a estimação da média de precipitação mensal, em cada mês e local, com semiamplitude do intervalo de confiança igual a 25% da média estimada, em mm mês⁻¹, e grau de confiança de 95%, oscilou entre 200 (mês de junho em Costa Rica) e 3 anos (mês de novembro em Ponta Porã) (Tabela 4). Para a estimação da média de precipitação mensal,

em cada mês e local, com semiamplitude do intervalo de confiança igual a 35% da média estimada, em mm mês-1, e grau de confiança de 95%, o tamanho da amostra variou entre 103 (mês de junho em Costa Rica) e um ano (mês de novembro em Ponta Porã) (Tabela 5). Esses resultados reforçam a hipótese de variabilidade do tamanho de amostra entre meses dentro dos locais (temporal) e entre locais dentro de meses (espacial). Em termos práticos, existem dificuldades de obter séries históricas de atributos do clima com, no mínimo, 103 anos de observações para uma determinada região. Dessa forma, menor tamanho de amostra foi dimensionado com base em semiamplitudes do intervalo de confiança igual a 45% (Tabela 6) da estimativa da média (\overline{X}) de precipitação mensal. Assim, tomando-se como referência o

Tabela 4 - Tamanho de amostra (número de anos) para a estimação da média de precipitação pluvial mensal em locais do Estado do Mato Grosso do Sul, para a semiamplitude do intervalo de confiança (erro de estimação) igual 25% da média (\overline{X}), ou seja, 0,25 \overline{X} .

Local						M	ês						Máximo
	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Maximo
Água Clara	11	11	20	28	28	86	120	136	31	17	11	18	136
Amambai	16	14	16	21	30	35	41	57	25	17	12	13	57
Anastácio	10	12	19	26	24	53	63	64	33	18	13	12	64
Anaurilândia	21	20	21	22	35	79	62	89	32	18	18	10	89
Aparecida do Taboado	14	21	11	29	35	168	133	82	37	16	17	14	168
Aquidauana	15	14	19	16	26	51	88	95	31	14	13	16	95
Bataguassu	19	22	25	34	48	92	77	120	43	22	20	11	120
Bodoquena	14	17	32	19	20	72	64	74	35	24	20	14	74
Caarapó	14	13	24	25	32	53	41	54	28	16	15	14	54
Camapuã	10	10	16	25	23	73	109	143	23	9	11	12	143
Campo Grande	16	15	13	23	28	56	60	67	28	19	16	12	67
Chapadão do Sul	7	12	14	17	30	168	107	126	37	9	14	13	168
Corumbá	15	17	17	33	47	123	197	157	60	29	18	18	197
Costa Rica	7	8	9	19	37	200	197	169	44	12	11	11	200
Coxim	10	11	12	23	50	124	78	128	29	16	13	13	128
Dourados	18	15	18	22	24	64	29	89	59	16	14	13	89
Glória de Dourados	18	17	20	23	32	51	56	86	21	14	13	12	86
Iguatemi	26	19	21	33	34	31	29	53	28	23	17	20	53
Inocência	8	13	15	34	26	141	130	169	68	36	22	10	169
Maracaju	16	18	23	29	44	55	56	96	40	19	17	15	96
Miranda	10	13	12	14	25	37	57	57	32	23	12	11	57
Navirai	17	18	25	27	46	53	51	61	28	18	19	14	61
Nova Andradina	17	16	21	28	41	72	70	144	28	25	20	18	144
Paranaíba	7	15	16	21	29	77	94	89	57	14	13	6	94
Ponta Porã	12	13	16	14	24	31	26	33	23	11	3	9	33
Porto Murtinho	14	14	21	21	48	66	57	128	47	27	11	18	128
Ribas do Rio Pardo	12	10	16	23	30	104	72	89	43	14	15	12	104
Rio Brilhante	16	13	19	17	19	41	41	77	26	11	8	9	77
Rio Negro	12	14	23	28	50	79	71	98	41	11	12	10	98
Santa Rita do Pardo	13	12	15	22	32	74	66	119	35	16	13	16	119
Selviria	10	13	20	31	38	172	85	109	41	19	16	14	172
Três Lagoas	19	18	16	39	42	57	73	117	35	18	14	14	117
Máximo	26	22	32	39	50	200	197	169	68	36	22	20	200

Tabela 5 - Tamanho de amostra (número de anos) para a estimação da média de precipitação pluvial mensal em locais do Estado do Mato Grosso do Sul, para a semiamplitude do intervalo de confiança (erro de estimação) igual 35% da média (\overline{X}), ou seja, 0,35 \overline{X} .

Y 1						M	[ês						M(:
Local	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Máximo
Água Clara	6	6	12	16	16	45	62	71	17	10	6	10	71
Amambai	10	9	10	12	17	19	22	30	14	10	7	7	30
Anastácio	6	7	11	15	13	28	33	34	18	10	8	7	34
Anaurilândia	12	12	12	12	19	41	33	46	18	11	11	6	46
Aparecida do Taboado	8	12	6	16	19	87	69	43	20	9	10	8	87
Aquidauana	9	8	11	10	14	27	46	50	17	8	8	10	50
Bataguassu	11	12	14	19	26	48	40	62	23	12	12	6	62
Bodoquena	8	10	18	11	11	38	34	39	19	14	12	8	39
Caarapó	8	8	13	14	18	28	22	29	16	9	9	9	29
Camapuã	5	6	10	14	13	38	57	74	13	5	6	7	74
Campo Grande	10	9	8	13	16	30	32	35	16	11	9	6	35
Chapadão do Sul	3	7	8	10	16	87	56	66	20	4	9	7	87
Corumbá	9	10	10	18	25	64	102	81	32	16	11	11	102
Costa Rica	3	4	5	11	20	103	102	87	24	7	6	6	103
Coxim	6	6	7	13	27	64	41	66	16	9	8	8	66
Dourados	10	9	10	13	14	34	16	47	31	9	8	8	47
Glória de Dourados	10	10	12	13	18	27	30	45	12	8	8	6	45
Iguatemi	15	11	12	18	19	17	16	28	15	13	10	11	28
Inocência	3	8	9	19	15	73	68	87	36	19	12	6	87
Maracaju	10	10	13	16	23	29	30	50	22	11	10	9	50
Miranda	6	8	7	8	14	20	30	30	18	13	7	6	30
Navirai	10	11	14	15	25	28	27	32	16	10	11	8	32
Nova Andradina	10	10	12	15	22	38	37	75	15	14	11	11	75
Paranaíba	3	9	9	12	16	40	49	47	30	9	8	2	49
Ponta Porã	6	8	10	8	13	17	14	18	13	6	1	4	18
Porto Murtinho	9	8	12	12	26	35	30	67	25	15	6	11	67
Ribas do Rio Pardo	6	6	10	13	16	54	38	47	23	8	9	7	54
Rio Brilhante	10	8	11	10	11	22	22	40	15	6	4	5	40
Rio Negro	7	8	13	15	27	41	38	51	22	6	6	5	51
Santa Rita do Pardo	8	6	9	13	17	39	35	62	19	10	8	10	62
Selviria	5	8	12	17	21	89	45	57	22	11	9	8	89
Três Lagoas	11	10	10	21	23	31	38	61	19	10	8	8	61
Máximo	15	12	18	21	27	103	102	87	36	19	12	11	103

maior tamanho de amostra (mês de junho em Costa Rica e mês de julho em Corumbá e Costa Rica), pode-se inferir, com 95% de confiança, que, com o uso de 63 anos de observações, o erro máximo na estimativa da média (X) de precipitação pluvial mensal será de ±45% de \overline{X} , independentemente do mês e local.

Estes resultados corroboram os obtidos por CAMARGO & HUBBARD (1994), MARTIN et al. (2008) e CARGNELUTTI FILHO et al. (2009b), que constataram variabilidade temporal

e espacial do número de anos para estimativas da média de elementos meteorológicos para o estado de Minas Gerais, São Paulo e Rio Grande do Sul, respectivamente. Com isso, o uso de séries temporais de 30 anos, de forma generalizada, para estimar a média de um elemento meteorológico, pode não contemplar a variabilidade dos dados de cada local e em cada época do ano, o que pode gerar estimativas com precisões diferenciadas.

os anos de observações utilizados neste estudo, o erro de estimação

Tabela 6 - Tamanho de amostra (número de anos) para a estimação da média de precipitação pluvial mensal em locais do Estado do Mato Grosso do Sul, para a semiamplitude do intervalo de confiança (erro de estimação) igual 45% da média (\overline{X}), ou seja, 0,45 \overline{X} .

Local	Mês													
Local	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Máximo	
Água Clara	3	3	8	11	11	28	39	44	11	6	3	7	44	
Amambai	6	5	6	8	11	13	14	19	10	6	4	4	19	
Anastácio	2	4	8	10	9	18	21	21	12	7	4	4	21	
Anaurilândia	8	8	8	8	13	26	21	29	12	7	7	2	29	
Aparecida do Taboado	5	8	2	11	13	54	43	27	13	6	6	5	54	
Aquidauana	6	5	7	6	10	17	29	31	12	5	4	6	31	
Bataguassu	8	8	10	12	17	30	25	39	15	8	8	3	39	
Bodoquena	5	6	12	7	8	24	21	25	13	9	8	5	25	
Caarapó	5	4	9	10	12	18	14	19	11	6	6	5	19	
Camapuã	2	2	6	9	9	24	35	46	9	2	3	4	46	
Campo Grande	6	6	4	9	11	19	20	22	11	8	6	3	22	
Chapadão do Sul	2	4	5	6	11	54	35	41	13	2	5	4	54	
Corumbá	6	6	6	12	16	40	63	50	20	11	7	7	63	
Costa Rica	2	2	2	8	13	63	63	54	15	3	3	3	63	
Coxim	2	3	4	9	17	40	26	41	11	6	4	4	41	
Dourados	7	6	7	9	9	21	11	29	20	6	5	4	29	
Glória de Dourados	7	6	8	9	12	18	19	28	8	5	4	3	28	
Iguatemi	10	7	8	12	12	11	11	18	10	9	6	8	18	
Inocência	2	4	6	12	10	45	42	54	23	13	8	2	54	
Maracaju	6	7	9	11	15	19	19	31	14	7	6	6	31	
Miranda	2	4	4	5	10	13	19	19	12	9	4	3	19	
Navirai	6	7	9	10	16	18	18	21	10	7	7	5	21	
Nova Andradina	6	6	8	10	15	24	23	46	10	9	7	7	46	
Paranaíba	2	6	6	8	11	25	31	29	19	5	4	1	31	
Ponta Porã	3	4	6	5	9	11	10	12	9	3	1	2	12	
Porto Murtinho	5	5	8	8	17	22	19	41	16	10	3	7	41	
Ribas do Rio Pardo	3	2	6	9	11	34	24	29	15	5	6	4	34	
Rio Brilhante	6	4	7	6	7	14	15	25	10	3	2	2	25	
Rio Negro	4	5	9	10	17	26	24	32	15	3	4	2	32	
Santa Rita do Pardo	4	3	6	9	12	25	22	38	13	6	4	6	38	
Selviria	2	4	8	12	13	55	28	35	15	7	6	5	55	
Três Lagoas	7	6	6	14	15	19	24	38	13	7	4	5	38	
Máximo	10	8	12	14	17	63	63	54	23	13	8	8	63	

(semiamplitude do intervalo de confiança), em percentagem da estimativa da média (\overline{X}) de precipitação pluvial mensal, oscilou entre 65,8% (mês de junho em Costa Rica) e 6,5% (mês de novembro em Ponta Porã) (Tabela 7). De maneira geral, com as séries históricas dos locais utilizados neste trabalho, menor precisão é obtida nos meses centrais do ano (junho, julho e agosto), com aumento gradativo da precisão (diminuição do erro de estimação) em direção aos meses iniciais e finais do ano.

CONCLUSÃO

O tamanho de amostra, em número de anos, para a estimação da média de precipitação pluvial mensal, no Estado do Mato Grosso do Sul, é dependente do mês e do local. Para os meses e locais estudados, 63 anos de observações são suficientes para estimar a média de precipitação pluvial mensal, para um erro de estimação igual a 45% da média estimada, com grau de confiança de 95%.

Tabela 7 - Número de anos de observações utilizadas no estudo (n) e erro de estimação (semiamplitude do intervalo de confiança), em percentagem da estimativa da média (\overline{X}) de precipitação pluvial mensal, em cada mês e local do Estado do Mato Grosso do Sul.

Local	n		Mês											
Local	11	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Média
Água Clara	39	12,0	12,2	17,3	21,0	20,9	37,8	44,8	47,8	22,2	15,5	12,3	16,2	23,3
Amambai	41	15,0	13,9	15,0	17,5	21,3	23,1	24,9	29,6	19,3	15,2	12,5	12,9	18,4
Anastácio	41	11,1	12,6	16,6	19,6	18,6	28,5	31,3	31,6	22,3	15,7	13,3	12,5	19,5
Anaurilândia	39	17,8	17,4	17,8	18,1	23,6	36,1	32,0	38,4	22,6	16,3	16,5	11,5	22,3
Aparecida do Taboado	31	15,8	20,0	13,1	24,1	26,9	60,2	53,5	41,8	27,3	16,9	17,9	15,6	27,8
Aquidauana	41	14,2	13,4	16,3	14,9	19,4	28,0	37,3	38,8	21,6	13,4	12,9	14,8	20,4
Bataguassu	39	17,0	18,0	19,5	23,2	27,9	39,1	35,7	44,8	26,2	18,0	17,3	11,7	24,9
Bodoquena	60	11,2	12,6	17,9	13,4	13,7	27,6	25,8	27,8	18,8	15,4	13,8	11,1	17,4
Caarapó	41	13,8	13,3	18,5	19,3	21,8	28,6	25,0	29,0	20,5	14,5	14,3	13,8	19,4
Camapuã	41	10,6	11,2	14,8	19,0	18,1	33,7	41,6	47,8	18,0	10,5	11,5	12,4	20,8
Campo Grande	39	15,2	14,6	13,1	18,6	21,1	30,3	31,5	33,2	21,1	17,0	15,0	12,5	20,3
Chapadão do Sul	31	10,5	14,5	15,9	18,0	24,4	60,3	47,8	52,1	27,5	11,7	16,1	14,8	26,1
Corumbá	31	16,2	17,8	17,5	25,8	31,2	51,4	65,3	58,2	35,5	24,1	18,6	18,5	31,7
Costa Rica	31	10,6	11,3	12,2	19,2	27,3	65,8	65,3	60,3	30,2	14,1	13,9	13,7	28,7
Coxim	41	11,0	11,9	12,4	18,2	27,7	44,3	35,0	45,1	20,6	14,6	13,2	12,8	22,2
Dourados	41	15,7	14,3	15,7	17,9	18,7	31,6	20,6	37,5	30,2	14,5	13,7	13,1	20,3
Glória de Dourados	41	15,7	15,5	17,0	18,3	22,0	28,1	29,4	36,7	17,4	13,7	12,9	12,1	19,9
Iguatemi	39	20,1	16,7	17,7	22,8	23,4	22,2	21,5	29,4	20,8	18,7	15,7	17,1	20,5
Inocência	31	10,8	15,2	16,4	26,4	22,8	55,0	52,8	60,3	37,9	26,9	20,5	13,0	29,8
Maracaju	41	15,0	15,8	18,4	20,6	25,8	29,3	29,5	38,9	24,6	16,4	15,1	14,5	22,0
Miranda	41	11,2	12,9	12,4	13,5	19,3	23,5	29,7	29,7	21,9	18,1	12,2	11,8	18,0
Navirai	39	15,5	16,5	19,5	20,6	27,3	29,4	28,8	31,6	20,9	16,2	16,7	13,9	21,4
Nova Andradina	39	15,9	15,3	17,9	20,8	25,8	34,6	34,0	49,2	20,8	19,4	17,1	16,5	23,9
Paranaíba	31	10,5	16,4	17,0	20,3	24,3	40,3	44,9	43,5	34,5	16,1	15,1	9,4	24,4
Ponta Porã	41	12,2	13,3	14,9	13,7	18,5	21,5	19,4	22,2	18,3	11,5	6,5	10,0	15,2
Porto Murtinho	31	16,1	16,0	20,0	20,3	31,6	37,4	34,4	52,5	31,2	23,2	13,9	18,6	26,3
Ribas do Rio Pardo	39	12,4	11,5	15,3	18,6	21,6	41,6	34,4	38,5	26,4	13,9	14,8	12,7	21,8
Rio Brilhante	41	15,0	13,2	16,4	15,1	16,6	24,9	25,1	34,7	19,7	11,8	9,7	10,5	17,7
Rio Negro	39	12,8	13,7	18,8	20,7	28,5	36,1	34,3	40,5	25,8	11,9	12,5	10,9	22,2
Santa Rita do Pardo	39	13,3	12,5	14,8	18,3	22,3	35,1	33,1	44,6	23,6	15,3	13,4	15,4	21,8
Selviria	31	12,3	14,9	19,7	25,2	27,8	60,9	42,5	48,3	29,1	18,7	17,1	15,8	27,7
Três Lagoas	39	16,6	16,0	15,3	25,0	25,9	30,6	34,7	44,2	23,6	16,2	13,7	14,0	23,0
Média		13,8	14,5	16,4	19,6	23,3	36,8	35,8	40,9	24,4	16,1	14,4	13,6	22,5

AGRADECIMENTOS

À Agência Nacional de Águas (ANA), pelo fornecimento de dados para a presente pesquisa. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelas bolsas concedidas.

REFERÊNCIAS

BUSSAB, W.O.; MORETTIN, P.A. Estatística básica. 7.ed. São Paulo: Saraiva, 2011. 540p.

CAMARGO, M.B.P.; HUBBARD, K.G. Spatial and temporal variability of daily weather variables in sub-humid and semi-arid

areas of the united states high plains. **Agricultural and Forest Meteorology**, v.68, p.29-41, 1994. Disponível em: http://dx.doi.org/10.1016/S0168-1923(98)00122-1. Acesso em: 25 jun. 2014. doi: 10.1016/S0168-1923(98)00122-1.

CARGNELUTTI FILHO, A. et al. Variabilidade temporal e espacial do tamanho de amostra para estimativa das médias mensais de temperatura máxima do ar no Estado do Rio Grande do Sul. **Revista Brasileira de Agrometeorologia**, v.14, p.87-95, 2006.

CARGNELUTTI FILHO, A. et al. Dimensionamento da amostra para a estimação da média de precipitação pluvial mensal em diferentes locais do Estado do Rio Grande do Sul. **Ciência Rural**, v.40, p.12-19, 2009a. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782010000100003. Acesso em: 20 jun. 2014. doi: 10.1590/S0103-84782009005000226.

Ciência Rural, v.46, n.1, jan, 2016.

CARGNELUTTI FILHO, A. et al. Variabilidade temporal e espacial da precisão das estimativas de elementos meteorológicos no Rio Grande do Sul. **Ciência Rural**, v.39, p.962-970, 2009b. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-8478200900400002>. Acesso em: 19 jun. 2014. doi: 10.1590/S0103-84782009005000051.

CORREA, C.C.G. et al. Spatial interpolation of annual rainfall in the State Mato Grosso do Sul (Brazil) using different transitive theoretical mathematical models. **International Journal of Innovative Research in Science, Engineering and Technology**, v.3, p.16618-16625, 2014. Disponível em: http://www.rroij.com/open-access/spatial-interpolation-of-annual-rainfall-in-thestate-mato-grosso-do-sul-brazil-usingdifferent-transitive-theoretical-mathematicalmodels.pdf. Acesso em: 15 jun. 2014. doi: 10.15680/IJIRSET.2014.0310006.

CRUZ, C.D. GENES - a software package for analysis in experimental statistics and quantitative genetics. **Acta Scientiarum Agronomy**, v.35, p.271-276, 2013. Disponível em: http://dx.doi.org/10.4025/actasciagron.v35i3.21251. Acesso em: 22 mai. 2014. doi: 10.4025/actasciagron.v35i3.21251.

MARTIN, T.N. et al. Regiões homogêneas e tamanho de amostra para atributos do clima no Estado de São Paulo,

Brasil. **Ciência Rural**, v.38, p.690-697, 2008. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782008000300015. Acesso em: 13 jun. 2014. doi: 10.1590/S0103-84782008000300015.

MINUZZI, R.B.; LOPEZ, R.Z. Variabilidade de índices de chuva nos estados de Santa Catarina e Rio Grande do Sul. **Bioscience Journal**, v.30, p.697-706, 2014.

SIEGEL, S.; CASTELLAN JÚNIOR, N.J. **Estatística nãoparamétrica para ciências do comportamento**. 2.ed. Porto Alegre: Artmed, 2006. 448p.

STEEL, R.G.D. et al. **Principles and procedures of statistics a biometrical approach**. 3.ed. Nova York: McGraw-Hill, 1997. 666p.

THOM, H.C.S. **Some methods of climatological analysis**. Genève: World Meteorological Organization, 1966. 54p.

VERNICH, L.; ZUANNI, F. About the minimum number of years required to stabilize the solar irradiation statistical estimates. **Solar Energy**, v.57, p.445-447, 1996. Disponível em: http://dx.doi.org/10.1016/S0038-092X(96)00121-1. Acesso em: 14 jun. 2014. doi: 10.1016/S0038-092X(96)00121-1.