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1 Introduction
Food safety has become a public concern that must be 

ensured by the food-related industry for their products. Food-
related industry play 2 roles in 17 sustainable development (SDG) 
goals, which are 2nd goal “Zero Hunger” that related to food 
production activity, and 3rd goal “Good health and wellbeing” 
that related to food safety. Adulteration is one of the food safety 
problems faced by society and food-based industries that are 
considered a violation of EU food law (Kucharska-Ambrożej & 
Karpinska, 2020). Adulteration is fraudulent practices by adding, 
replacing, or subtracting certain ingredients that are inferior or 
contain dangerous substances without the consumer’s conscious 
(Wang et al., 2014). Deliberate adulteration was usually driven 
by economic reasons. However, adulteration that is motivated 
to harm people can also happen (Heckman et al., 1967).

Yellow tofu is a colored product that is vulnerable to 
fraudulent practices. Yellow tofu is a rectangular-shaped soybean-
based product with a distinctive yellow color that is popular in 
Indonesia. The bright yellow color of tofu is the first parameter 
that interacts with consumers and affects consumer acceptability 
(Rathee & Rajain, 2019). Therefore, some parties use colorants 
to increase the attractiveness of the product (Zhu et al., 2015). 
However, not every colorant was permitted to be contained in 
a food product due to the chemical content or side effects that 
are harmful to health (Gukowsky et al., 2018). Moreover, public 

concern about food safety forces the food industries to use all-
natural coloring products.

Food colorants originally came from natural ingredients, 
such as plants, animals, or minerals. These types of colorants 
are called natural colorants. Another type of colorant, that is 
man-made from chemical material is called synthetic colorants 
(Mohamad et al., 2019). Natural colorants are mostly healthier 
than synthetic food colorants (Kamatar, 2013). However, 
natural colorants are not durable, unstable, and less attractive. 
On the other hand, synthetic food colorants, which are reliable 
and more attractive colorants also available in the market at a 
cheaper price. (Saleem et al., 2013). Based on food law, only 
food-grade synthetic colorants could be used for a food product. 
However, adulteration practice which is the counterfeiting of food 
colorants with a non-food-grade colorant that is dangerous for 
health has been reported (Nurkanti, 2009; Saleem et al., 2013; 
Ullah et al., 2022). Therefore, a method that can detect colorant 
type in food is requisite.

A method that has the potential to identify colorant 
adulteration is visible near-infrared (Vis-NIR) spectroscopy. Vis-
NIR spectroscopy is a branch of science that studies spectra or 
a set of interactions between electromagnetic waves and matter 
in visible light (400-700 nm) and near-infrared (700‑2500 nm) 
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region (Van Der Meer, 2018; Pahlawan & Masithoh, 2022). 
Vis-NIR spectroscopy is the potential to identify colorant 
type because color is a perception manifested in response to 
electromagnetic waves in the visible region (Mohamad et al., 
2019). Moreover, Vis-NIR spectroscopy also uses spectra in the 
near-infrared region that contained information related to C-H-
O-N molecules which compose organic material (Cortés et al., 
2019), including natural colorants.

Vis-NIR spectroscopy offers non-destructive measurement 
with minimal preparation without chemical material. Spectroscopy 
provides technology that can measure multiple parameters at 
once quickly and accurately (Pahlawan et al., 2021). Vis-NIR 
spectroscopy is normally combined with chemometric analysis 
to extract information in spectra and relate the spectra with 
desired variables. The chemometric analysis consists of two-step, 
which are spectra pre-processing and multivariate modeling. 
Spectra pre-processing is essential to reduce noise or unusable 
information that could reduce model prediction performance 
(Mishra et al., 2020). Multivariate modeling is a statistical method 
used to build a prediction model (Masithoh et al., 2020).

In this study, the type of food colorants used in yellow tofu 
was identified using a modular type spectrometer that consists of 
a Vis-NIR spectrometer and a NIR spectrometer. Three types of 
food colorants were applied deliberately such as natural colorant 
(NC), food-grade synthetic colorant (FGSC), and non-food-grade 
synthetic colorant (FGSC). Two multivariate modeling methods 
were compared in this study, i.e., partial least square combined 
with discriminant analysis (PLS-DA) and principal component 
analysis combined with linear discriminant analysis (PCA-LDA).

2 Materials and methods
2.1 Sample preparation

The tofu samples were bought from the local market in 
Sleman, Yogyakarta, Indonesia which has a food certificate for 
tofu making through soybean (Glycine max L) processing by 
means of protein deposition, with or without the addition of 
other permitted ingredients. All processes were followed by 
Indonesian National Standard (SNI) number 01-3142-1998 about 
tofu making and controlled by the local government. The critical 
process of tofu making consist of ten stages, include selecting 
the raw materials and food additives, soaking, milling, cooking, 
flitering, clumping, pressing, slicing/cutting, packaging, and 
tagging. The tofu samples were then colored with three common 
yellow dyes which are widely used in the market. The yellow dyes 
used in this research were 50 gr turmeric as natural colorant 
(NC), 5 gr food-grade synthetic colorant (FGSC) (Sepuhan Naga 
Berlian, BPOM Number MD 2777-1001-2193), and 25 gr non-
food-grade synthetic colorant (FGSC) (unknown colorant). Each 
yellow dyes treatment has three tofu which was soaked in 0.5 L 
warm water for 2 hrs then dried in room temperature (25-27 °C).

2.2 Spectra acquisition

Reflectance spectra were acquired by modular spectrometer 
that consists of 2 instrument spectrometers which are visible 
near-infrared spectrometer (400-1000 nm, Flame-T-VIS-NIR, 
Ocean Optics) and near-infrared spectrometer (1000-1700 nm, 

Flame-NIR+, ocean optics). Spectra of tofu samples were collected 
from below with sample perpendicular to the probe. The total 
number of spectra obtained was 3 types of colorant × 18 samples 
× 10 replication = 540 spectra.

2.3 Chemometrics

Vis-NIR reflectance spectra (400-1000 nm) and NIR reflectance 
spectra (1000-1600 nm) obtained were compiled separately in 
Ms. Excel and imported to Unscrambler® X software (CAMO, 
Oslo, Norway) for chemometric analysis. A total of 540 spectra 
of each Vis-NIR spectra and NIR spectra were obtained. Total 
data was divided into calibration sets (1/2 samples, 270 samples) 
that were used to build a multivariate model and prediction sets 
(1/2 samples, 270 samples) that were used to validate the model 
built. Pre-process methods were applied to the calibration set 
such as area normalization, 1st and 2nd order of Savitsky-Golay’s 
derivatives, standard normal variate, and multiple scatter 
correction. Two supervised multivariate modeling methods 
were used in this study, i.e., partial least square combined with 
discriminant analysis (PLS-DA) and principal component 
analysis combined with linear discriminant analysis (PCA-
LDA). Multivariate models were built for Vis-NIR spectra and 
NIR spectra separately.

PLS-DA is a qualitative analysis that is constructed with 
partial least squares (PLS) as the basis. To perform PLS analysis 
for qualitative data such as colorant type, dummy numeric 
variables were needed. Tofu samples with a natural colorant 
(NC) were labeled as 1, food-grade colorant (FGC) as 2, and non-
food-grade colorant (NFGC) as 3. PLS analyses were performed 
with spectra as independent variables (X) and colorant labels as 
the desired variable (Y). The predicted values between 0.5 and 
1.5 will be rounded as 1; 1.5 < Y < 2.5 will be classified as 2; 
2.5 < Y < 3.5 will be classified as 3. The remaining values will be 
classified as “Not classified” (Yangming et al., 2021).

PCA-LDA analyses were done using 7 PC scores and the 
Mahalanobis method. PCA-LDA is a qualitative analysis that 
consists of 2 steps. First, dimension reduction of spectra variables 
into 7 new variables called PC. Second, classification of the new 
variables into three types of colorants, which are NC, FGC, and 
NFGC. PCA-LDA was performed using spectra as the independent 
variable (X) and colorant type as the dependent variable (Y).

Model performance was judged by the accuracy and 
reliability values. Accuracy and reliability were calculated using 
Equation 1 and Equation 2, respectively. Accuracy and reliability 
equations were modified from accuracy and reliability from 
(Trullols et al., 2004; Vieira et al., 2021). Accuracy shows the 
ratio of the number of successful classifications from every class 
with the total samples. Reliability shows the ability of the model 
to predict each class correctly considering the total sample of 
each class independently (Saputro et al., 2022). Higher accuracy 
(max 100%) shows that the model has a better prediction.
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Description:
P
NCn  = the number of correct predictions of natural colorants 

sample

NCn  = Total sample of natural colorants
P
NFGCn  = the number of correct predictions of non-food-grade 

colorant sample

NFGCn  = Total sample of non-food-grade colorant
P
FGCn  = the number of correct predictions of food-grade colorant 

sample

FGCn  = Total sample of food-grade colorant

3 Results and discussion
3.1 Yellow tofu appearance

Yellow tofu samples colored using natural colorant (NC), 
non-food-grade colorant (NFGC), and food-grade colorant (FGC) 
are shown in Figure 1. The color parameters of tofu samples 
are shown in Table 1. Tofu samples in Figure 1 show that each 

colorant has a different yellow color result, especially tofu with 
FGC. Based on the redness color, tofu that was colored using 
FGC has the highest redness value compared to other colorants. 
However, FGC tofu has the lowest greenness compared to NC 
and NFGC.

3.2 Spectra of yellow tofu

Visible near Infrared Spectra (Vis-NIR)

The Vis-NIR average raw spectra and Savitsky-Golay’s 
preprocessed spectra of tofu were shown in Figure 2. Raw spectra 
of tofu with natural colorant show low reflectance at 400-500 nm, 
which is affected by yellow color pigment, and carotenoids 
(Cortés et al., 2016). Another valley was noticeable at around 
970-1000 nm, which related to 2nd overtones of O-H stretching 
in water (Golic et al., 2003). Raw spectra of Non-food-grade 

Figure 1. Yellow-colored tofu using a) natural colorant (NC), b) Food-grade colorant (FGC), c) Non-food-grade colorant (NFGC).

Figure 2. Visible-Near Infrared Average Spectra of Yellow Tofu, a) Raw and b) Savitsky-Golay’s 1st Derivative.

Table 1. Yellow tofu color.

Colorant type R
(Red)

G
(Green)

B 
(Blue)

Natural colorant (NC) 207 ± 13.3 165 ± 21.1 3 ± 0.5
Food-grade colorant (FGC) 214 ± 3.5 126 ± 0.6 5 ± 2.6

Non-Food-grade colorant (NFGC) 202 ± 4 172 ± 4.2 3 ± 1
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colorant (NFGC) showed an almost similar trend, the difference 
was that the NFGC reflectance after 500 nm was still low up to 
520 nm. Based on (Merzlyak et al., 2003), wavelength around 
520 nm is still correlated with carotenoid pigments. Raw spectra 
of tofu with a food-grade colorant (FGC) are also similar to 
raw spectra of tofu with NC, the difference is that there is the 
absorbance at around 620 nm, which might be correlated with 
anthocyanin or red color pigments.

After raw spectra were preprocessed using Savitsky-Golay’s 
1st derivative technique, several strong peaks were visible at 
each spectra (Figure  2b). Tofu with NC shows spectra peak 
at around 520 nm, which correlated with carotenoid content. 
Tofu with FGC shows spectra peaks at around 500 nm and 620, 
which correlated with Tofu with NFGC shows spectra peaks 
around 500 and 550 nm, which correlated with carotenoids and 
anthocyanin contents, respectively (Merzlyak et al., 2003). Based 
on these, it can be concluded that despite having the same color, 
each colorant type has a different fingerprint Vis-NIR spectra 
which correlated with color pigment and color characteristic.

Shortwave near-infrared spectra (SW-NIR)

The shortwave near infrared average raw spectra of tofu with 
three types of colorants is shown in Figure 3. Raw spectra of 
yellow-colored tofu (Figure 3a) show a similar pattern to the three 
types of colorants. A valley in around 970 nm is corresponding 
to 2nd overtones of O-H stretching (Fernández-Novales et al., 
2019). An absorbance at around 1150 nm is associated with 
2nd overtones of C-H stretching (Golic et al., 2003). A strong 
absorbance that is characterized by a deep valley of reflectance 
spectra at around 1390 nm is correlated with 1st overtones of C-H 
stretching (Golic et al., 2003). Absorbance at around 1690 nm 
might be affected by 1st overtones of CH3 (Wilson et al., 2015)

Pre-processed spectra of SW-NIR spectra using Savitsky-
Golay’s 1st derivative methods are shown in Figure 3b. Preprocessed 
spectra show similar peaks and valleys to raw spectra. However, 
a valley appears at around 1330 nm, which might be associated 
with O-H stretching in water and or C-H stretching in sugar 
(Rongtong et al., 2018). Based on the result obtained, it shows 
that tofu with three types of colorants has similar spectra.

3.3 PCA-LDA modeling

Principal component analysis (PCA) is a multivariate 
analysis that is used to reduce spectra dimension and create 
new variables called principal components (PCs) without losing 
important information (Sabzi & Arribas, 2018; Vasques et al., 
2008). In this study, 7 PCs were built from 3188 variables of 
spectra for Vis-NIR and 128 variables for SW-NIR. However, 
PCA is an unsupervised method. Therefore, to relate PCs with 
desired variables, LDA is used. Linear discriminant analysis 
(LDA) is a supervised method that was used to classify category 
variables such as colorant type. LDA can minimize the variance 
within the same colorant type while maximizing the variance 
between different colorant types. LDA began with building a set 
of orthogonal linear discriminant functions to differentiate each 
colorant type. Euclidean distances were calculated from the data 
point to each class centroid and projected to the subspace defined 
by a subset of the linear functions built. Then the samples were 
classified into the nearest class (Deng et al., 2018).

PCA-LDA using Vis-NIR spectra

Table 2 shows PCA-LDA model performance to identify 
the colorant type of yellow tofu. The result shows that raw 
spectra and all pre-processed spectra produce a model with very 
satisfactory performance. All models yielded a perfect model that 
has 100% accuracy and 100% reliability of calibration. Prediction 
performance also demonstrates that the model can classify each 
type of colorant perfectly, except for the raw spectra model. 
In the raw spectra model, there is only one miss classification, 
which identifies natural colorant tofu as food-grade colorant tofu.

The result obtained demonstrates that Vis-NIR spectroscopy 
can identify colorant type in tofu with a satisfying result. 
To explore which wavelength contributes the most to the model, 
the loading plot of the 7 PCs used is observed. Valleys and 
peaks in the loading plot show which wavelength contribute 
to each PC. Loading plots of the best PCA-LDA model using 
normalized Vis-NIR spectra were shown in Figure 4a. PCA’s 
loadings show that colorant fingerprint wavelength also appears 
in the loading plots. Loading plot spectra show that carotenoids 
greatly contributed to the model. Valley and peaks correlated 

Figure 3. Shortwave Near Infrared Average Spectra of Yellow Tofu, a) Raw and b) Savitsky-Golay’s 1st Derivative.
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Figure 4. PCA’s loading plots from the best PCA-LDA model of a) Vis-NIR using normalize spectra, b) SW-NIR using normalized spectra.

Table 2. PCA-LDA performance of Vis-NIR spectroscopy.

True 
Class

Predicted 
Class

Calibration Prediction

n
Predicted sample

n
Predicted sample

Raw Norm SGD1 SGD2 SNV MSC Raw Norm SGD1 SGD2 SNV MSC
NC NC 91 91 91 91 91 91 91 90 89 90 90 90 90 90
NC FGC 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NC NFGC 0 0 0 0 0 0 0 0 1 0 0 0 0 0

FGC NC 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FGC FGC 90 90 90 90 90 90 90 90 90 90 90 90 90 90
FGC NFGC 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFGC NC 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NFGC FGC 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NFGC NFGC 89 89 89 89 89 89 89 90 90 90 90 90 90 90

Acc (%) 100 100 100 100 100 100 100 100 100 100 100 100
Reliability (%) 100 100 100 100 100 100 99 100 100 100 100 100

Note: NC = natural colorant, NFGC = non-food-grade colorant, FGC = food-grade-colorant, n = number of sample, Acc = accuracy, Raw = raw data, Norm = normalized data, SGD1 
= Savitsky-Golay’s 1st derivative, SGD2 = Savitsky-Golay’s 2nd derivative, SNV = standard normal variate, MSC = multiple scatter correction.
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with carotenoids (480-520 nm) appear at every PC of the loading 
plot. In addition, anthocyanins also contribute to the model. This 
is evidenced by the anthocyanin wavelengths (550 & 620 nm) 
which can be seen in PC-4, PC-5, and PC-7.

PCA-LDA using SW-NIR spectra

PCA-LDA model performances using SW-NIR spectra 
are shown in Table 3. The result shows that PCA-LDA using 
SW-NIR spectra yielded in an inferior model compared to PCA-
LDA using Vis-NIR spectra. The best model performance was 
acquired using normalized spectra of SW-NIR with an accuracy 
of calibration and prediction were 92% and 90%, respectively. 
Based on the accuracy, the model can be considered a good 
model, since it has > 90% accuracy. Accuracy shows the model’s 
ability to correctly classify colorant type, considering the total 
data used (Vieira et al., 2021).

The model reliability does not show satisfactory results. 
Reliability indicates the ability of the model to classify each 
type of colorant accurately, by taking into account the total 
data from each class separately. To get high reliability, each class 
should have a minimal miss classification (Saputro et al., 2022). 
The best SW-NIR PCA-LDA obtained using normalized spectra 
has a reliability of calibration and prediction of 76% and 69%, 
respectively. A total of 22 missed classifications were generated 
from the calibration set and 28 missed classifications were 
generated from the prediction set. The most missed classification 
was produced by NC and the least missed classification was 
produced by NFGC, for both calibration and prediction. However, 
the most fatal miss classification is FGC which is classified as NC 
or NFGC, with a total of 12 miss classifications in the calibration 
and 11 miss classifications in the prediction.

Loading plots of the SW-NIR PCA-LDA model were shown 
in Figure  4b. Figure  4b also shows several absorbances that 
showed in the SW-NIR spectra. However, only a few strong 
peaks and valleys appear around those absorbances, such as 
970 nm at PC-1 and PC-2, and 1390 nm valley at PC-5. Instead, 
new valleys and peaks appeared on the loading plots. Valley at 
1000 nm appeared at PC-4 and PC-5, which might be related 
to 3rd overtone of the C-H bond (Correia et al., 2018). Strong 

peaks were visible at around 1200-1210 nm on PC-6, which was 
affected by 2nd overtone of C-H bond stretching (Wilson et al., 
2015). Peaks and valleys at around 1460 nm were associated 
with 1st overtone of O-H bonds (Nasir et al., 2019).

3.4 PLS-DA Modeling

Partial least square (PLS) is a well-known multivariate 
analysis method that is used in spectroscopy. As a supervised 
method, PLS can be used to relate spectra variables with desired 
variables. However, PLS is limited to quantitative parameters. 
Hence, the desired variable in a form of qualitative parameters 
should be converted to quantitative variables using labels. In this 
study, the desired variable is colorant types which is a qualitative 
variable. Therefore, natural colorant, non-food-grade colorant, 
and food-grade colorant were labeled as 1, 2, and 3, respectively.

The PLS-DA model was constructed with important 3 steps 
from a combination of PLS modeling and discriminant analysis. 
The first step was dimension reduction of spectra variables 
considering the desired variables. This step was performed 
to reduce spectra dimension, noise, and computation time 
(Vasques et al., 2008). The second step was the regression step 
where the orthogonalized PLSR algorithm were performed using 
the calibration set, with colorant label as the Y-variable (Abdi, 
2010). The third step was rounding the predicted values into 
each category. The predicted values between 0.5 and 1.5 will 
be rounded as 1; 1.5 < Y < 2.5 will be classified as 2; 2.5 < Y < 
3.5 will be classified as 3. The remaining values will be classified 
as “Not classified” (Yangming et al., 2021).

PLS-DA using Vis-NIR spectra

PLS-DA model performances using Vis-NIR spectra are 
shown in Table 4. Same as PCA-LDA, the PLS-DA model using 
Vis-NIR spectra produced perfect models with 100% accuracy 
and reliability. The best model. Two calibration models with 
maximum accuracy and reliability were yielded by raw spectra 
and SGD1 spectra produced the model with the highest accuracy 
and reliability. However, the SGD1 model was chosen as the best 
model because it has a better prediction performance compared to 
the raw spectra model. SGD1 model has 100% accuracy and 99% 

Table 3. PCA-LDA performance of SW-NIR spectroscopy.

True 
Class

Predicted 
Class

Calibration Prediction

n
Predicted sample

n
Predicted sample

Raw Norm SGD1 SGD2 SNV MSC Raw Norm SGD1 SGD2 SNV MSC
NC NC 90 76 81 58 71 67 66 90 67 74 53 71 67 67
NC FGC 0 7 5 3 16 1 1 0 11 9 5 16 6 6
NC NFGC 0 7 4 29 3 22 23 0 12 7 32 3 17 17

FGC NC 0 4 8 4 3 10 10 0 3 7 2 3 7 7
FGC FGC 90 77 78 78 82 77 77 90 75 79 78 80 75 75
FGC NFGC 0 9 4 8 5 3 3 0 12 4 10 7 8 8

NFGC NC 0 0 0 2 0 2 2 0 0 1 1 0 4 4
NFGC FGC 0 1 1 3 1 3 3 0 0 0 0 0 2 2
NFGC NFGC 90 89 89 85 89 85 85 90 90 89 89 90 84 84

Acc (%) 90 92 82 90 85 84 86 90 81 89 84 84
Reliability (%) 69 76 46 69 54 53 58 69 44 68 51 51

Note: NC = natural colorant, NFGC = non-food-grade colorant, FGC = food-grade-colorant, n = number of sample, Acc = accuracy, Raw = raw data, Norm = normalized data, SGD1 = 
Savitsky-Golay’s 1st derivative, SGD2 = Savitsky-Golay’s 2nd derivative, SNV = standard normal variate, MSC = multiple scatter correction.
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reliability with 1 misclassification, while the raw spectra model 
has 99% accuracy and 98% reliability with 2 misclassifications.

Important wavelengths that contribute to the model were 
shown in regression coefficient (B). The regression coefficient (B) 
or often called the beta coefficient shows the relationship between 
each wavelength to the desired variable (Kusumaningrum et al., 
2018). The beta coefficient of the best PLS-DA model using Vis-
NIR spectroscopy were shown in Figure 5. Similar to the loading 
plots in PCA-LDA, the beta coefficient shows that carotenoids and 
anthocyanins make big contributions to the model. Carotenoids’ 
peaks and valleys that are shown in the beta coefficient are 480 nm, 
500 nm, and 520 nm. Anthocyanin’s peaks and valleys that appear 
in the beta coefficient are 550 nm, 580 nm, and 610 nm.

PLS-DA using Vis-NIR spectra

Table  5 shows PLS-DA model performance to classify 
colorant type in yellow tofu using SW-NIR spectroscopy. 
The best performance of PLS-DA using SW-NIR was yielded by 
SNV spectra. However, the model had the worst performance 
compared to the PCA-LDA model using Vis-NIR and SW-
NIR, also the PLS-DA model using Vis-NIR spectra. Based 

Figure 5. Regression coefficient (B) from the best PLSR model of a) 
Vis-NIR using Savitsky-Golay’s 1st derivative spectra, and b) SW-NIR 
using standard normal variate spectra.

Table 4. PLS-DA performance of Vis-NIR spectroscopy.

True 
Class

Predicted 
Class

Calibration Prediction

n
Predicted sample

n
Predicted sample

Raw Norm SGD1 SGD2 SNV MSC Raw Norm SGD1 SGD2 SNV MSC
NC NC 91 91 90 91 91 91 90 90 89 89 89 90 90 89
NC FGC 0 0 0 0 0 0 0 0 1 0 1 0 0 0
NC NFGC 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FGC NC 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FGC FGC 90 90 90 90 90 90 90 90 90 90 90 90 90 90
FGC NFGC 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFGC NC 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NFGC FGC 0 0 0 0 1 0 0 0 0 0 0 1 0 0
NFGC NFGC 89 89 89 89 88 88 88 90 89 89 90 89 90 89

Not classified 0 0 1 0 0 1 2 0 1 2 0 0 0 2
Acc (%) 100 100 100 100 100 99 99 99 100 100 100 99

Reliability (%) 100 99 100 99 99 98 98 98 99 99 100 98
Note: NC = natural colorant, NFGC = non-food-grade colorant, FGC = food-grade-colorant, n = number of sample, Acc = accuracy, Raw = raw data, Norm = normalized data , SGD1 = 
Savitsky-Golay’s 1st derivative, SGD2 = Savitsky-Golay’s 2nd derivative, SNV = standard normal variate, MSC = multiple scatter correction.

Table 5. PLS-DA performance of SW-NIR spectroscopy.

True 
Class

Predicted 
Class

Calibration Prediction

n
Predicted sample

n
Predicted sample

Raw Norm SGD1 SGD2 SNV MSC Raw Norm SGD1 SGD2 SNV MSC
NC NC 91 51 55 57 61 60 60 90 51 53 57 53 63 63
NC FGC 0 40 35 34 30 29 29 0 38 35 31 34 24 24
NC NFGC 0 0 0 0 0 0 0 0 0 0 1 1 1 1

FGC NC 0 11 9 9 7 3 4 0 15 6 12 7 8 8
FGC FGC 90 79 78 78 83 86 85 90 74 82 77 82 81 80
FGC NFGC 0 0 3 3 0 1 1 0 1 2 1 1 1 2

NFGC NC 0 0 1 1 0 1 1 0 1 0 0 0 0 1
NFGC FGC 0 34 29 32 23 26 31 0 33 32 32 24 28 28
NFGC NFGC 89 52 57 55 61 59 55 90 52 55 56 62 59 58

Not classified 0 3 3 1 5 5 4 0 5 5 3 6 5 5
Acc (%) 67 70 70 76 76 74 66 70 70 73 75 74

Reliability (%) 2 11 11 28 28 22 -3 11 11 19 26 23
Note: NC = natural colorant, NFGC = non-food-grade colorant, FGC = food-grade-colorant, n = number of sample, Acc = accuracy, Raw = raw data, Norm = normalized data, SGD1 = 
Savitsky-Golay’s 1st derivative, SGD2 = Savitsky-Golay’s 2nd derivative, SNV = standard normal variate, MSC = multiple scatter correction.
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neural networks: a comparative study on the performance of 
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Pahlawan, M. F. R., & Masithoh, R. E. (2022). Vis-NIR Spectroscopy 
and PLS-Da model for classification of Arabica and robusta roasted 
coffee bean. Advances in Science and Technology (Owerri, Nigeria), 
115, 45-52. http://dx.doi.org/10.4028/p-60bbc9.

Pahlawan, M. F. R., Wati, R. K., & Masithoh, R. E. (2021). Development 
of a low-cost modular VIS/NIR spectroscopy for predicting 

on Figure 5b, several peaks and valleys were visible in the beta 
coefficient plot. Among all the valleys and peaks, the strongest 
valleys that have the lowest regression coefficient were 1150 nm 
and 1690 nm, which were affected by the 2nd overtone and 1st 
overtone of C-H stretching, respectively.

4 Conclusion
Food colorant adulteration is a dangerous practice that 

could harm human health. Colorant type in yellow tofu can be 
distinguished using spectroscopy combined with chemometrics 
analysis. The result showed that Vis-NIR spectroscopy yielded 
better performances compared to SW-NIR spectroscopy. 
Furthermore, the PCA-LDA model produces better performances 
compared to the PLS-DA model. The best model to classify 
colorant type in tofu obtained by Vis-NIR spectroscopy had 
calibration performances of 100% accuracy and 100% reliability 
for both the PLS-DA and PCA-LDA models. The best model 
obtained by SW-NIR spectroscopy had calibration accuracy 
of 76% and 28% reliability for PLS-DA, and 92% accuracy and 
76% reliability for the PCA-LDA model.

Conflict of interest
The authors declare that we have no conflict of interest.

Acknowledgements
We are very much thankful for the Vis-NIR miniature 

spectrometer facility, Flame-T-VIS-NIR Ocean Optics, Department 
of Agricultural and Biosystems Engineering, Faculty of Agricultural 
Technology, Universitas Gadjah Mada, Indonesia.

References
Abdi, H. (2010). Partial least squares regression and projection on 

latent structure regression (PLS Regression). Wiley Interdisciplinary 
Reviews: Computational Statistics, 2(1), 97-106. http://dx.doi.
org/10.1002/wics.51.

Correia, R. M., Tosato, F., Domingos, E., Rodrigues, R. R. T., Aquino, 
L. F. M., Filgueiras, P. R., Lacerda, V. Jr., & Romão, W. (2018). 
Portable near infrared spectroscopy applied to quality control of 
Brazilian coffee. Talanta, 176, 59-68. http://dx.doi.org/10.1016/j.
talanta.2017.08.009. PMid:28917795.

Cortés, V., Blasco, J., Aleixos, N., Cubero, S., & Talens, P. (2019). 
Monitoring strategies for quality control of agricultural products 
using visible and near-infrared spectroscopy: a review. Trends in 
Food Science & Technology, 85, 138-148. http://dx.doi.org/10.1016/j.
tifs.2019.01.015.

Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. 
(2016). A new internal quality index for mango and its prediction by 
external visible and near-infrared reflection spectroscopy. Postharvest 
Biology and Technology, 118, 148-158. http://dx.doi.org/10.1016/j.
postharvbio.2016.04.011.

Deng, F., Chen, W., Wang, J., & Wei, Z. (2018). Fabrication of a sensor 
array based on quartz crystal microbalance and the application in 
egg shelf life evaluation. Sensors and Actuators. B, Chemical, 265, 
394-402. http://dx.doi.org/10.1016/j.snb.2018.03.010.

Fernández-Novales, J., Garde-Cerdán, T., Tardáguila, J., Gutiérrez-Gamboa, 
G., Pérez-Álvarez, E. P., & Diago, M. P. (2019). Assessment of amino 
acids and total soluble solids in intact grape berries using contactless 

https://doi.org/10.1016/j.talanta.2019.02.037
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30952253&dopt=Abstract
https://doi.org/10.1366/000370203321535033
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14610949&dopt=Abstract
https://doi.org/10.1016/j.foodcont.2018.04.058
https://doi.org/10.1016/j.foodcont.2018.04.058
https://doi.org/10.1016/j.microc.2019.104278
https://doi.org/10.1002/jsfa.8646
https://doi.org/10.1002/jsfa.8646
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28858390&dopt=Abstract
https://doi.org/10.1016/j.heliyon.2020.e05099
https://doi.org/10.1016/j.heliyon.2020.e05099
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33134571&dopt=Abstract
https://doi.org/10.1016/S0925-5214(02)00066-2
https://doi.org/10.1016/S0925-5214(02)00066-2
https://doi.org/10.1016/j.trac.2020.116045
https://doi.org/10.1007/s00226-019-01120-0
https://doi.org/10.4028/p-60bbc9
https://doi.org/10.1002/wics.51
https://doi.org/10.1002/wics.51
https://doi.org/10.1016/j.talanta.2017.08.009
https://doi.org/10.1016/j.talanta.2017.08.009
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28917795&dopt=Abstract
https://doi.org/10.1016/j.tifs.2019.01.015
https://doi.org/10.1016/j.tifs.2019.01.015
https://doi.org/10.1016/j.postharvbio.2016.04.011
https://doi.org/10.1016/j.postharvbio.2016.04.011
https://doi.org/10.1016/j.snb.2018.03.010


Rahmawati et al.

Food Sci. Technol, Campinas, 43, e112422, 2023 9

spices available at markets in Karachi, Pakistan. Food Additives & 
Contaminants: Part B. In press.  PMid:35909386.

Van Der Meer, F. (2018). Near-infrared laboratory spectroscopy 
of mineral chemistry: a review. International Journal of Applied 
Earth Observation and Geoinformation, 65, 71-78. http://dx.doi.
org/10.1016/j.jag.2017.10.004.

Vasques, G. M., Grunwald, S., & Sickman, J. O. (2008). Comparison of 
multivariate methods for inferential modeling of soil carbon using 
visible/near-infrared spectra. Geoderma, 146(1–2), 14-25. http://
dx.doi.org/10.1016/j.geoderma.2008.04.007.

Vieira, L. S., Assis, C., Queiroz, M. E. L. R., Neves, A. A., & Oliveira, A. F. 
(2021). Building robust models for identification of adulteration in olive 
oil using FT-NIR, PLS-DA and variable selection. Food Chemistry, 345, 
128866. http://dx.doi.org/10.1016/j.foodchem.2020.128866. PMid:33348130.

Wang, N., Zhang, X., Yu, Z., Li, G., & Zhou, B. (2014). Quantitative 
analysis of adulterations in oat flour by FT-NIR spectroscopy, 
incomplete unbalanced randomized block design, and partial least 
squares. Journal of Analytical Methods in Chemistry, 2014, 393596. 
http://dx.doi.org/10.1155/2014/393596. PMid:25143857.

Wilson, R. H., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J., & Durkin, A. J. 
(2015). Review of short-wave infrared spectroscopy and imaging methods 
for biological tissue characterization. Journal of Biomedical Optics, 20(3), 
030901. http://dx.doi.org/10.1117/1.JBO.20.3.030901. PMid:25803186.

Yangming, H., Yue, H., Xiangzhong, S., Jingxian, G., Yanmei, X., & 
Shungeng, M. (2021). Comparison of a novel PLS1-DA, traditional 
PLS2-DA and assigned PLS1-DA for classification by molecular 
spectroscopy. Chemometrics and Intelligent Laboratory Systems, 
209, 104225. http://dx.doi.org/10.1016/j.chemolab.2020.104225.

Zhu, Y., Zhang, L., & Yang, L. (2015). Designing of the functional 
paper-based surface-enhanced Raman spectroscopy substrates for 
colorants detection. Materials Research Bulletin, 63, 199-204. http://
dx.doi.org/10.1016/j.materresbull.2014.12.004.

soluble solid content of banana. IOP Conference Series. Earth and 
Environmental Science, 644(1), 012047. http://dx.doi.org/10.1088/1755-
1315/644/1/012047.

Rathee, R., & Rajain, P. (2019). Role colour plays in influencing consumer 
behaviour. International Research Journal of Business Studies, 12(3), 
209-222. http://dx.doi.org/10.21632/irjbs.12.3.209-222.

Rongtong, B., Suwonsichon, T., Ritthiruangdej, P., & Kasemsumran, 
S. (2018). Determination of water activity, total soluble solids and 
moisture, sucrose, glucose and fructose contents in osmotically 
dehydrated papaya using near-infrared spectroscopy. Agriculture 
and Natural Resources (Bangkok), 52(6), 557-564. http://dx.doi.
org/10.1016/j.anres.2018.11.023.

Sabzi, S., & Arribas, J. I. (2018). A visible-range computer-vision 
system for automated, non-intrusive assessment of the pH value in 
Thomson oranges. Computers in Industry, 99, 69-82. http://dx.doi.
org/10.1016/j.compind.2018.03.016.

Saleem, N., Nasreen Umar, Z., & Ismat khan, S. (2013). Survey on the 
use of synthetic food colors in food samples procured from different 
educational institutes of Karachi city. Journal of Tropical Life Science, 
3(1), 1-7. http://dx.doi.org/10.11594/jtls.03.01.01.

Saputro, D., Priambodo, D. C., Pahlawan, M. F. R., & Masithoh, R. E. 
(2022). Classification of cocoa beans based on fermentation level 
using PLS-DA combined with Visible Near-infrared (VIS-NIR) 
spectroscopy. In 2nd International Conference on Smart and Innovative 
Agriculture (pp. 100-106). Yogyakarta: Atlantis Press. http://dx.doi.
org/10.2991/absr.k.220305.015.

Trullols, E., Ruisánchez, I., & Rius, F. X. (2004). Validation of qualitative 
analytical methods. Trends in Analytical Chemistry, 23(2), 137-145. 
http://dx.doi.org/10.1016/S0165-9936(04)00201-8.

Ullah, A., Chan, M. W. H., Aslam, S., Khan, A., Abbas, Q., Ali, S., Ali, 
M., Hussain, A., Mirani, Z. A., Sibt-E-Hassan, S., Kazmi, M. R., 
Ali, S., Hussain, S., & Khan, A. M. (2022). Banned Sudan dyes in 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35909386&dopt=Abstract
https://doi.org/10.1016/j.jag.2017.10.004
https://doi.org/10.1016/j.jag.2017.10.004
https://doi.org/10.1016/j.geoderma.2008.04.007
https://doi.org/10.1016/j.geoderma.2008.04.007
https://doi.org/10.1016/j.foodchem.2020.128866
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33348130&dopt=Abstract
https://doi.org/10.1155/2014/393596
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25143857&dopt=Abstract
https://doi.org/10.1117/1.JBO.20.3.030901
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25803186&dopt=Abstract
https://doi.org/10.1016/j.chemolab.2020.104225
https://doi.org/10.1016/j.materresbull.2014.12.004
https://doi.org/10.1016/j.materresbull.2014.12.004
https://doi.org/10.1088/1755-1315/644/1/012047
https://doi.org/10.1088/1755-1315/644/1/012047
https://doi.org/10.21632/irjbs.12.3.209-222
https://doi.org/10.1016/j.anres.2018.11.023
https://doi.org/10.1016/j.anres.2018.11.023
https://doi.org/10.1016/j.compind.2018.03.016
https://doi.org/10.1016/j.compind.2018.03.016
https://doi.org/10.11594/jtls.03.01.01
https://doi.org/10.2991/absr.k.220305.015
https://doi.org/10.2991/absr.k.220305.015
https://doi.org/10.1016/S0165-9936(04)00201-8

