
Food Sci. Technol, Campinas, 43, e65122, 2023 1

Food Science and Technology

OI: D https://doi.org/10.1590/fst.65122

ISSN 0101-2061 (Print)
ISSN 1678-457X (Online)

Original Article

1 Introduction
Meat is an essential part of human diet and is processed into 

various food commodities, such as meat patties, nuggets, and 
meatballs all around the world (Kang & Tanaka, 2018). Moreover, 
all the development that has taken place in the meat industry 
has also increased the incidents of meat adulteration and fraud 
for economical gain (Sheikha et al., 2017; Sheikha, 2019). Two of 
such meat adulteration incidents include horse meat scandal of 
UK (2013) and China’s fake meat scandal of 2013 (Premanandh, 
2013). Now days, food fraud has emerged as one of the major 
global issues (Mansouri et al., 2020). As a result, the search for 
rapid and more efficient meat species detection methods has 
quickened. Some of the recently developed techniques for meat 
species identification include high resolution melting curve 
analysis (Njaramba  et  al., 2021), single-tube multiplex PCR 
(Iqbal et al., 2020), digital droplet PCR (Yu et al., 2021), two‑tube 
hexaplex PCR (Cai et al., 2022) and real-time quantitative PCR 
(qPCR) (Taniguchi et al., 2022).

It is well-acknowledged that extraction of genomic DNA 
is an imperative step to ensure amplifiable DNA template 
(Mokhtar et al., 2020). However, conventional DNA extraction 
protocols for molecular meat testing are complicated, 
labor‑intensive, time‑consuming and expensive (Besbes et al., 
2022; Sajali  et  al., 2018; Yue & Orban, 2001). An alternative 

approach to increase the efficiency of meat speciation is by 
eliminating laborious and time-consuming DNA extraction steps 
and directly allowing the samples for amplification, termed as 
direct PCR (Schnepf et al., 2013). Direct PCR is rapid, eliminates 
the need for purification steps, and proves more sensitive than 
conventional PCR (Linacre et al., 2010; Swaran & Welch, 2012). 
Although previously reported, these methods either require 
special and expensive polymerases and extraction kits or have 
limited efficiency for amplification (Ben-Amar  et  al., 2017; 
Guan et al., 2019; Thanakiatkrai et al., 2019).

DNA extraction methods that use brief boiling of samples 
at high temperatures reduce time, labor and cost and have been 
demonstrated as an efficient DNA extraction technique in many 
studies (Kieleczawa, 2006; Alasaad et al., 2012; Kitpipit et al., 
2014b). DNA extraction by boiling samples in alkaline lysis (AL) 
buffers has been successfully applied to amplify DNA samples 
from blood, feathers and many other tissues (Truett  et  al., 
2000; Haunshi et al., 2008; Girish et al., 2013), but the different 
modifications/compositions of AL buffers have never been 
compared for their DNA extraction potential to identify 
vertebrate species in meat and meat products. The AL technique 
holds advantage over conventional DNA extraction methods 
as it is a simple, and rapid (10-30 min) procedure that requires 
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minimum laboratory equipment and reagents (Ali et al., 2017; 
Zieritz  et  al., 2018; Girish  et  al., 2020; Mounika  et  al., 2021; 
Zhao et al., 2021). Moreover, scientists have also utilized distilled 
water and PBS as boiling buffers for DNA extraction (Sepp et al., 
1994; Truett  et  al., 2000). With the escalating cases of food 
mislabeling and adulteration, the need for an easy, effortless 
and cost-effective DNA extraction method has intensified. It is 
thus imperative to compare and optimize these DNA extraction 
protocols to identify the most potent, rapid, less laborious, and 
cost-effective method that could make meat speciation from 
raw and cooked food easy and affordable.

Therefore, in the first step of this study we investigated the 
potential of five previously reported boiling DNA extraction 
methods for a direct PCR approach. These methods mainly differ 
in the buffer used for sample processing i.e. PBS, distilled water, 
alkaline lysis buffers 1, 2 and 3. Upon initial screening we found 
that PBS and distilled water do not provide detectable results 
at 10 min boiling duration and thus, alkaline lysis buffers 1, 
2 and 3 were selected for further testing. The selected protocols 
were tested on the basis of their sensitivity, specificity, and 
reproducibility using meat samples from eight species including 
five most commonly consumed meat species (cattle, buffalo, 
sheep, goat and chicken) and three possible adulterant species 
(camel, horse and dog).

As the main goal of this study was to identify a simple 
workflow that would make meat speciation easier and 
affordable, in a second step, we developed a simple PCR-RFLP 
assay to discriminate the eight targeted meat species because 
it distinguishes different species from meat mixtures with the 
help of a single pair of universal primers and a restriction 
endonuclease (Murugaiah  et  al., 2009), without the need of 
sequencing. To the best of our knowledge, no previous study has 
compared the performance of different crude DNA extraction 
methods for the development of a direct PCR-RFLP analysis for 
identification of meat origin in food products.

2 Materials and methods
2.1 Sample collection and preparation

Raw authenticated muscle tissue samples of eight species: Cow 
(Bos indicus Linnaeus, 1758), Buffalo (Bubalus bubalis Linnaeus, 

1758), Sheep (Ovis aries Linnaeus, 1758), Goat (Capra hircus 
Linnaeus, 1758), Chicken (Gallus gallus Linnaeus, 1758), Camel 
(Camelus dromedarius), Horse (Equus caballus Linnaeus, 1758), 
and Dog (Canis lupus familiaris Linnaeus, 1758), were collected 
from the postmortem section of Department of Pathology, 
University of Veterinary and Animal Sciences Lahore (Punjab, 
Pakistan). Additionally, samples of whole, ground, processed, and 
uncooked beef and mutton were collected from the local markets 
of Lahore for the validation of the proposed assay. Commercially 
cooked food samples were also purchased from local restaurants 
to test the applicability of the developed procedure.

Meat pieces from each collected sample were washed with 
distilled water to remove blood and visible impurities in clean 
petri plates. Sterile blades were fixed every time on the scalpel 
for each specimen to avoid cross contamination while cutting 
the meat into small pieces. 70% ethanol was sprayed, left for 1 to 
2 min and then decanted to remove any type of contamination. 
Small cut portions of meat were again washed by distilled water 
to remove the ethanol residues which may act as an inhibitor 
in the amplification step. The decontaminated and washed 
portions were further homogenized with the help of blade in 
the petri plate and all the homogenized samples were preserved 
at -20 oC immediately to avoid DNA degradation until needed 
for DNA extractions.

2.2 DNA preparation

Reference meat samples were subjected to DNA preparatory 
methods for direct PCR by boiling with five different buffers i.e. 
water (Sepp et al., 1994), PBS (Kitpipit et al., 2014b), alkaline lysis 
buffer 1 (Girish et al., 2013), alkaline lysis buffer 2 (Tagliavia et al., 
2016) and alkaline lysis buffer 3 (Truett et al., 2000). To achieve 
maximum positive results the recipe of each buffer was followed 
as described by the reported protocols. The steps followed for 
DNA preparation by each buffer are shown in Table 1.

For comparison of the DNA extraction efficiency of each 
buffer, three types of experiments were conducted:

•	 	By varying the amount of meat sample taken for extraction 
(10 mg, 25 mg, 50 mg)

Table 1. Scheme for DNA preparation for direct PCR using five different boiling methods.

Sr. 
No.

Step 1 Step 2 Step 3 Step 4
ReferencesEppendorf tube 

labeling Boiling solution Volume Boiling duration at 
100 oC

Neutralization 
buffer Volume Centrifugation at 

4 oC & 4000 rpm
1 A (10 mg meat 

sample)
Phosphate Buffer 

Saline (1×)
150 μL 10 minutes None None 5 minutes Kitpipit et al. 

(2014b)
2 B (10 mg meat 

sample)
Distilled water 150 μL 10 minutes None None 5 minutes Sepp et al. 

(1994)
3 C (10 mg meat 

sample)
0.2N NaOH 75 μL 10 minutes 0.04M Tris-HCl 

(pH = 7.75)
75 μL 5 minutes Girish et al. 

(2013)
4 D (10 mg meat 

sample)
200 mM KOH, 2 mM 

Na2EDTA, 0.2% Triton 
X-100

75 μL 10 minutes 100 mM Tris-HCl 75 μL 5 minutes Tagliavia et al. 
(2016)

5 E (10 mg meat 
sample)

25 mM NaOH, 0.2 mM 
Na2EDTA (disodium 

EDTA)
75 μL 10 minutes 40 mM Tris-HCl 

pH (5) 75 μL 5 minutes Truett et al. 
(2000)
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•	 	By varying the boiling (100 oC) durations at which a sample 
was boiled in buffer (2.5 min, 5 min, 7.5 min, 10 min, 
20  min and 30 min)

•	 	By varying the overall volume of the buffer added to the 
sample (150 μL, 200 μL and 500 μL)

After initial comparison, alkaline lysis buffers 1, 2, and 
3 were selected for further studies on the basis of their efficiency. 
The comparison and optimization of alkaline lysis buffers 1, 2 and 
3 were conducted in three sets of experiments. Firstly, 50 mg 
sample was boiled in 500 μL buffer, second was 25 mg sample 
boiled in 200 μL buffer and third was 10 mg sample boiled in 
150 μL buffer. All three experimental sets were subjected to four 
different boiling durations (10 min, 7.5 min, 5 min, 2.5 min) and 
DNA template used for direct PCR was varied to four different 
volumes (2 μL, 1 μL, 0.5 μL and 0.25 μL).

2.3 Primer designing

Already reported nucleotide sequences for mitochondrial 16S 
rRNA gene were downloaded from NCBI nucleotide database 
and aligned using Clustal platform in MEGA X (Kumar et al., 
2018) for designing primers. A novel universal set of primers 
(Fd: 5’- AAGACGAGAAGACCCTGTGGAGCTT-3’; RC1: 
5’-CGGTCTGAACTCAGATCACGTAGG-3’) enclosing a 
fragment of ⁓317 bp was selected from highly conserved regions 
of the 16S rRNA gene sequences. Primers were picked arbitrarily 
according to the conditions described by Riaz et al. (2011) and 
were validated by OligoCalc: an online Oligonucleotide Properties 
Calculator (Kibbe, 2007).

2.4 PCR amplification

The parameters for PCR amplification were optimized by varying 
the concentration of MgCl2, primers, Taq DNA polymerase and 
the temperature for primer annealing. The finalized PCR reagents 
recipe was followed by mixing a range (0.5 μL, 1 μL and 2 μL) of 
template DNA, 2.5 μL (10×) Taq buffer, 1.5 μL (25 mM) MgCl2, 
2 μL (2.5 mM) dNTPs, 0.5 μL (10 pmoles) forward primer, 
0.5 μL (10 pmoles) reverse primer, 0.25 μL (1.25 U) Taq DNA 
polymerase (Thermo Fisher Scientific, Waltham, MA, USA) and 
water to maintain the final volume of 25 μL. The touch down 
PCR was performed for all reactions with following conditions: 
an initial denaturation at 95 ºC for 5 min, followed by 10 cycles 
of denaturation at 94 ºC for 30 secs, annealing at 63 ºC for 30 secs 
(1 ºC reduction in annealing temperature per cycle), extension 
at 72 ºC for 30 secs, then another 25 cycles of denaturation at 
94 ºC for 30 secs, annealing at 53 ºC for 30 secs, extension at 
72 ºC for 30 secs and a final extension step at 72 ºC for 10 min. 
All the amplified products were run on 2% agarose gel (formed 
in 1× TAE buffer and ethidium bromide stain). The agarose gel 
electrophoresis was performed at 110 volts for 30 min. The results 
were visualized on gel documentation system under UV light 
(Voytas, 2000).

2.5 The restriction fragment length polymorphism assay

The developed direct PCR was followed by an RFLP assay 
(Meyer et al., 1995) to discriminate species in meat samples without 
the need of sequencing the amplified products. This reduced the 

time and cost of confirmation of meat origin substantially. TasI 
restriction endonuclease was used to generate species-specific 
fragments. Restriction digestion reaction mixture was prepared 
by mixing 10 μL PCR product, 2 μL buffer B (10×), 0.5 μL TasI 
enzyme (5 U) and 7.5 μL of water in the PCR tube to maintain 
the final volume of 20 μL. The mixture was short spun and tubes 
were placed in an incubator for 2 hrs at 65 oC. The restricted 
products were then confirmed by running on 3% agarose gel.

2.6 Sensitivity test

The sensitivity test was performed to estimate the minimum 
volume of DNA template that could yield detectable amplicons 
using each selected buffer and the developed direct PCR approach. 
So, cow and buffalo meat was subjected to DNA extraction 
by alkaline lysis buffers 1, 2 and 3 at 10 min boiling duration. 
The amount of meat and the overall volume of the buffer were 
10 mg and 150 μL, respectively. Amplification was performed by 
taking 0.25 μL, 0.5 μL, 1 μL and 2 μL of the supernatant from each 
extracted sample as DNA template in 25 μL of reaction mixture 
and subjected to direct PCR. All reactions were carried out in 
duplicates along with positive and negative control reactions.

2.7 Specificity test

Specificity test was conducted to assess the extraction 
capability of each buffer for meat samples from different species. 
The test also analyzed the capacity of the established direct PCR 
assay for specific amplification of the targeted region of the eight 
different species that are mostly consumed (buffalo, cow, goat, 
sheep and chicken) or likely to be adulterated with (horse, camel 
and dog). DNA was extracted from meat tissues by boiling them 
for 10 min in alkaline buffers 1, 2 and 3. The amount of meat 
and the overall volume of the buffer were 10 mg and 150 μL, 
respectively. Amplification was performed by taking 0.5 μL of the 
template DNA in 25 μL of reaction mixture. All PCR reactions 
were carried out in duplicates along with positive and negative 
control reactions.

2.8 Repeatability test

The repeatability test was conducted to assess the capability of 
each buffer to provide positive results repeatedly under the same 
conditions. The test was also applied to ascertain the robustness 
and applicability of the developed direct PCR protocol. Total 
forty different commercial mutton and beef samples (10 cooked 
and 10 uncooked beef; 10 cooked and 10 uncooked mutton 
samples) were collected from the local markets and restaurants 
of Lahore (Punjab, Pakistan). Crude DNA was extracted from 
all samples by boiling them in alkaline lysis buffers 1, 2 and 3 for 
10 min. The amount of meat and the overall volume of the buffer 
were 10 mg and 150 μL, respectively. PCR amplifications were 
performed by taking 0.5 μL of the template DNA in 25 μL of 
reaction mixture and subjected to direct PCR according to the 
conditions mentioned above. All PCR reactions were carried out 
in duplicates along with positive and negative control reactions.

2.9 Application for commercial food products

A total of 53 different types of commercially prepared meat 
products (cooked and uncooked mutton and beef food items) 
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were collected from the local markets and restaurants of Lahore 
(Punjab, Pakistan) and stored at -20 oC until needed for DNA 
extraction. These samples were tested by the developed direct 
PCR-RFLP workflow to assess its applicability and effectiveness 
in such circumstances. Crude DNA was extracted from meat 
samples by boiling them in alkaline lysis buffer 3 for 10 min. 
The amount of meat and the volume of the buffer were 10 mg 
and 150 μL, respectively. PCR amplifications were performed 
by taking 0.5 μL of the template DNA in 25 μL of reaction 
mixture. Direct PCR and RFLP were performed according to the 
conditions mentioned above. All PCR reactions were carried out 
in duplicates along with positive and negative control reactions.

3 Results 
3.1 Comparison of five boiling DNA preparation methods

The initial comparison to assess overall DNA yield of the 
boiling methods revealed that PBS and distilled water produced 
zero results (See Figure 1A). For that reason, further experiments 
for comparison and optimization of suitable buffer were carried 
out with alkaline lysis buffers 1, 2 and 3 only (See Figure 1B). 
In order to evaluate their efficiency, the sample weight (10 mg, 
25 mg, 50 mg), buffer volume (150 μL, 200 μL, 500 μL) and boiling 
durations (10 min, 20 min, 30 min) were varied. The experiments 
led to the conclusion that 10 mg tissue sample in 150 μL buffer 
volume, boiled for 10 min duration, provides sufficient amount 
of crude DNA while being economical, less laborious, and time-
efficient, simultaneously.

3.2 Restriction fragment length polymorphism assay

The direct PCR-RFLP assay was carried out for the identification 
of eight species i.e. buffalo, cow, sheep, goat, chicken, camel, 
horse and dog. All species were clearly distinguishable after 
running the restricted products on a 3% agarose gel, by forming 
species-specific patterns (See Figure 2). Table 2 provides details 
of specific banding patterns of all eight species understudy.

3.3 Specificity test

Eight species including buffalo, cow, goat, sheep, horse, 
camel, chicken and dog were targeted for evaluating the 
specificity of the developed direct PCR approach. Detectable PCR 
products were obtained for each of the eight species. The most 
consistent results were obtained with direct PCR using alkaline 

Figure 1. Comparison of PCR amplification of DNA prepared by different boiling methods. A): Amplification of DNA prepared by five different 
boiling DNA extraction methods and three different boiling times (10 min, 20 min and 30 min). B): Comparison of amplification for selected 
boiling DNA preparation methods using 50 mg sample and 500 μL buffer for three different boiling times (10 min, 20 min, 30 min).

Table 2. Species-specific DNA banding pattern of the PCR-amplified 
16S rRNA gene region restricted by TasI restriction endonuclease.

Lane Species Banding pattern in base pairs
1 Cow 319 49 -- -- --
2 Buffalo 190 180 -- -- --
3 Camel 276 65 26 -- --
4 Chicken 179 162 26 -- --
5 Dog 181 72 50 49 26
6 Horse 163 113 72 -- --
7 Sheep 319 49 -- -- --
8 Goat 202 118 49 -- --
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lysis buffer 3. The only exception observed was chicken meat. 
Amplification results with chicken meat were not consistently 
positive. The reason might be that chicken meat has less DNA 
to be extracted than its organs (Buntjer et al., 1999; Ballin et al., 
2009). Direct PCR amplification of crude DNA extracted by 
alkaline lysis buffer 1 and 2 was unsuccessful to produce any 
results for horse meat sample even after repeated experiments 
with the same conditions.

3.4 Sensitivity test

For sensitivity test varying amounts of DNA template 
(prepared using the three selected buffers) were taken for 
direct PCR. The minimum amount of DNA template with 
which detectable PCR products were obtained was 0.25 μL, 
but the results were not consistently positive with this amount. 
However, it was observed that PCR amplifications with 0.5 μL 
DNA template gave consistently positive results and thus was 
determined as the optimum amount of DNA template for the 
developed direct PCR-RFLP workflow.

3.5 Repeatability test

The standardized assay was validated on a total of 40 beef and 
mutton (raw and cooked) samples for its repeatability, robustness 
and applicability (as shown in Table 3). It was observed that 
highest amplification success rates were achieved with alkaline 
lysis buffer 3, while alkaline lysis buffer 1 and 2 were slightly less 
efficient in providing positive amplifications. This could either 
be due to the presence of PCR inhibitors or due to the possible 

variability of each alkaline lysis buffer to lyse different types of 
meat tissues and/or cells.

3.6 Application for confirmation of meat origin

Fifty-three commercial food samples were tested including 
cooked and uncooked meat samples, the details of which are 
provided in Table S1. All samples were successfully amplified 
and restricted. The samples were assigned to their relevant 
species according to the species-specific banding patterns given 
in Table 2. The details of each sample and the results for RFLP 
are described in Table S1. The most promising results were 
obtained for samples boiled in alkaline lysis buffer 3. Three out 
of 53 samples were found to be adulterated with undeclared meat 
species. The falsifications were detected only in processed meat 
products, containing minced or shredded mutton. No horse 
and/or dog species were detected in commercial samples. 
Figure 3A-3B show the restriction patterns of different cooked 
and uncooked beef and mutton samples.

4 Discussion
The efficiency of species identification assays mostly relies 

on two main components; first, the extracted genomic DNA 
and second, the selected genomic region for identification. With 
time several methods have been developed either by following 
different PCR approaches (Song et al., 2018; Skouridou et al., 
2019; Mokhtar et al., 2020; Batule et al., 2020; Yan et al., 2022) 
or by varying the genomic regions (Marchetti  et  al., 2020; 
Suryawan et al., 2020; Li et al., 2021; Tao et al., 2022) or both. 
Among such attempts, the direct PCR approach allows PCR 

Figure 2. Restriction fragment length polymorphism for cow, buffalo, camel, chicken, dog, horse, sheep and goat.

Table 3. Amplification success rates for repeatability test of the developed direct PCR-RFLP workflow in different samples.

S# Type of sample Sample size Cooked/ Uncooked
Amplification success rate

Alkaline lysis 
buffer 1

Alkaline lysis 
buffer 2

Alkaline lysis 
buffer 3

1. Beef samples 10 Uncooked 100% 80% 100%
1. 10 Cooked 90% 100% 90%
2. Mutton samples 10 Uncooked 90% 100% 100%
1. 10 Cooked 100% 90% 100%
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amplification without prior DNA extraction. This method 
efficiently reduces the time and cost of a developed assay for 
confirmation of meat origin (Guan et al., 2019). The said method 
has been successfully exploited for medical diagnostics, forensic 
purposes, meat origin identification, and DNA barcoding of insects, 
microbial and fungal fauna as well as for certain invertebrates 
(Kitpipit et al., 2014a; Tjhie et al., 1994; Thanakiatkrai et al., 
2019; Werblow et al., 2016; Wu et al., 2020).

The quality, quantity and purity of extracted genomic DNA 
play a critical role in its further molecular processing (Martincová 
& Aghová, 2020). The most commonly used conventional DNA 
extraction with Phenol/Chloroform/Isoamyl alcohol (PCI) 
(Sambrook & Russell, 2001) requires harmful reagents and a lot 
of additional steps such as multiple centrifugations, which are 
laborious and time-consuming. On the other hand, commercial 
kits although provide fine quality of genomic DNA, are expensive 
and often replaceable by easier methods for meat identification 
(Mounika et al., 2021). Therefore, we first compared five different 
boiling DNA extraction methods and then optimized the most 
efficient boiling method to extract DNA from 10 mg meat tissue 
samples by boiling them in 150 μL lysis buffer for 10 min. This 
crude DNA extraction was coupled with a newly developed direct 
PCR-RFLP workflow for simple, time-saving and cost-effective 
analysis of meat origin in food products. The direct PCR-RFLP 
workflow was more economical and rapid as compared to Sanger 
sequencing. Moreover, meat samples of eight species (buffalo, 
cow, goat, sheep, camel, horse, chicken and dog) were successfully 
discriminated by this workflow with high specificity, sensitivity, 
and repeatability.

Commercially available meat and meat products are most 
susceptible to adulteration, being difficult to tease apart if mixing 
of two or more species under a single label is done (Kane & 
Hellberg, 2016; Fengou et al., 2021). Comparably, cooked food 

items that contain meat are even more difficult to authenticate as 
extensive heat and mixing complicates the identifying process to 
the next level (Perestam et al., 2017; Xing et al., 2020). Therefore, 
we also successfully analyzed fifty-three commercially cooked 
and uncooked, mutton and beef samples (from local markets 
and restaurants of Lahore (Punjab, Pakistan)) for the validation 
of the developed direct PCR-RFLP assay.

The boiling DNA preparation methods have been previously 
applied to shorten the labor intensive DNA extraction protocols, 
reducing the time to 10-30 min (Labrador et al., 2019; Girish et al., 
2020; Narushima et al., 2020; Mounika et al., 2021; Girish et al., 
2022). The developed procedure has several special aspects 
that make it desirable for species identification especially for 
confirmation of meat origin. First, the lengthy 2-3 days DNA 
extraction protocol is shortened to only 10 min of boiling the 
sample in a buffer and then directly proceeding it to PCR, 
hence the term ‘direct PCR’ (Guan  et  al., 2019). Second, as 
no purification steps are included in the extraction procedure 
through boiling methods, therefore inhibitors can hamper the 
PCR reaction (Schrader et  al., 2012). However, if very small 
volume about 0.25 μL to 2 μL of template DNA is subjected to 
a 25 μL PCR reaction, the concentrations of inhibitors will be 
lowered to such values that they may not hinder the amplification 
(Tagliavia et al., 2016).

Although, all three buffers yielded promising results and 
can be used for further RFLP analysis, in this study only alkaline 
lysis buffer 3 was selected for developing the direct PCR-RFLP 
assay. The selection was made on several criteria: first, the positive 
PCR amplifications were slightly higher with alkaline lysis buffer 
3 than the other two buffers. Second, AL 1 and 2 were unable to 
give results for horse DNA sample unlike AL 3, which isolates 
the DNA from meat tissue of horse as well as identifies horse 
and dog species accurately in halal meat products because these 

Figure 3. Application of the developed direct PCR-RFLP assay. A): Samples of uncooked and cooked beef. B): Samples of cooked and uncooked 
mutton. L is for Ladder. (Details for each lane are described in Table S1).
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are majorly mistrusted as non-halal adulterants (Nagpal, 2008; 
Yamoah & Yawson, 2014). On the other hand, PCR amplifications 
of uncooked chicken meat DNA were not consistently positive 
with AL 3 and can be considered a major drawback of this 
buffer. As horse meat has also been part of food adulteration 
scandal and a lot of public mistrust in the past (Premanandh, 
2013), it was preferred that the developed assay be capable to 
analyze horse meat DNA. Our buffer selection coincides with 
most of the recent studies that have adapted alkaline lysis for 
DNA extraction (Koch  et  al., 2019; Martincová & Aghová, 
2020; Bui  et  al., 2021) as they have used AL 3 as their lysis 
buffer. The developed fast extraction protocol of DNA might 
be helpful for quicker PCR-based identification of meat species 
in testing laboratories.

Another desirable aspect of the developed direct PCR-RFLP 
assay is the newly designed 16S rRNA primers. These primers 
have the potential to encompass the whole vertebral fauna 
allowing species discrimination with specificity and sensitivity. 
Mitochondrial DNA as compared to the nuclear DNA is preferred 
for distinguishing meat species owing to the fact that there are 
approximately (1000-10,000) copies of this organelle in a single 
cell and its high genetic variability among different species 
(Ballin et al., 2009; Chen et al., 2010; Kowalczyk et al., 2021). 
Moreover, alkaline method of DNA extraction is preferred for 
the mitochondrial DNA separation over the nuclear one due 
to the low stability of nuclear DNA after abrupt change in pH 
during extraction procedure (Borgo et al., 1996). 16S rRNA holds 
high inter-species DNA variations and low intra-species DNA 
variation (Taniguchi et al., 2022), providing high confidence in 
meat species discrimination. Within the mitochondrial genes, 
16S rRNA has been used for broad range of mammalian and 
birds’ species because of its evolutionary stability (Vences et al., 
2016; Ha et al., 2017; Lalitha & Chandavar, 2017).

Furthermore, the developed direct PCR method is coupled 
with RFLP assay which is much more desirable for molecular 
based meat identification, especially, in cases where large number 
of samples have to be processed as it does not require DNA 
sequencing and/or specialized equipment and reduces the cost 
and time for post-PCR processing of samples (Guan et al., 2019; 
Gargouri et al., 2021; Vaithiyanathan et al., 2021; Taha et al., 
2021). It has been mostly applied for species discrimination 
in processed and unprocessed meat products because of its 
simplicity, quicker detection and reduced cost (Al et al., 2020; 
Asghar et al., 2022; Farag et al., 2022).

5 Conclusion
In conclusion, this study shows that meat identification by 

direct PCR-RFLP assay is rapid, specific, sensitive, and repeatable. 
Efficient and cost-effective DNA extraction can be achieved with 
alkaline lysis method by processing only 10 mg of meat sample 
and boiling it in 150 μL buffer for 10 min. The comparison of 
different boiling DNA preparation methods for a direct PCR 
approach led to the conclusion that out of the five buffers under 
study, all three alkaline lysis buffers can be utilized for direct PCR-
RFLP assay but alkaline lysis buffer 3 (25 mM NaOH, 0.2 mM 
Na2EDTA) is preferable on the basis of positive amplification 
rate and capability to extract crude DNA from all the targeted 

species. The direct PCR-RFLP assay developed in this study can 
provide a simpler and affordable meat authentication test for 
laboratories as well as authorities dealing with food adulteration.
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Supplementary Material
Supplementary material accompanies this paper.

Table S1. Application of the developed direct PCR-RFLP assay on 53 different commercial meat products.
This material is available as part of the online article from https://doi.org/10.1590/fst.65122


