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ABSTRACT 

Crop growth simulation models such as WOFOST and DSSAT are useful, but require 

several inputs that sometimes are not available, especially in developing areas. In 

addition, measured data is usually time and labor-intensive. In search of faster and easier 

methods for soybean estimates, this study presents a lower input requiring methodology 

for yield estimation. This study combines the FAO-33 yield model with the agro-

ecological zone approach for soybean yield estimations using mostly indirect data. 

Sowing and harvest dates and yield were collected from 74 soybean commercial farms. 

Agrometeorological data from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) were used. Fifty farms (66%) were used to calibrate the model and 

24 farm areas (33%) were used for evaluation purposes. Two methodologies (FAO-56 

and Thornthwaite and Mather) for water balance and actual evapotranspiration (ETa) 

estimations were used. The comparison of yield estimations and observations showed that 

the use of low data input to obtain reasonable accuracy, with a mean error of −310 kg ha−1 

and a mean absolute percentage error of 23.3%. 

 
INTRODUCTION 

Global food issues are frequently raised due to the 

growing demand for food in the world market and fluctuations 

in commodity prices (Sakamoto et al., 2014), pointing to the 

importance of studies that reduce market speculation and assist 

in food management. In this sense, local and regional estimates 

of crop yield are important for macro-and microeconomic 

management (Johnson, 2014). Thus, proposing ways to obtain 

agricultural statistics reliably and quickly is essential (Johnson, 

2014), and one way to obtain such information is through the 

remote sensing technique. There are different methods to do so. 

Moges et al. (2007) used a hand-held optical sensor to estimate 

sorghum yield in Oklahoma – USA, obtaining an in-season 

estimated yield derived from green Normalized Difference 

Vegetation Index (NDVI) correlated with final grain yield (r = 

0.71). Gusso et al. (2017) developed a satellite remote sensing-

based procedure to estimate soybean production before crop 

harvest, with coefficients of determination ranging from 0.91 to 

0.98. Richetti et al. (2018) used machine learning algorithms 

with Enhanced Vegetation Index (EVI) for soybean in Brazil 

and obtained a mean error of 3.5 kg ha−1, RMSD of 373 kg ha−1, 

and Willmott’s d of 0.85. 

Another approach consists of crop growth mechanistic 

models such as WOFOST (World Food Studies) (Boogaard et 

al., 2014) or DSSAT (Decision Support System for 

Agrotechnology Transfer) (Jones et al., 2003), which are 

reliable and present accurate results. However, the minimum 

data requirements are sometimes high for developing or less 

technologically advanced regions. Antle et al. (2017) presented 

future strategies for agricultural systems and modeling, 

indicating that data are the foundation for the science and the 

analysis of agricultural systems. However, better data may be 

the greatest need and challenge to achieve the next generation 

of research and modeling for agricultural systems. In addition, 

the lack of information for model inputs is still a challenge in 

many developing areas. There is little information on 

agrometeorological and soil data, and more complex inputs, 

such as the soil fertility level, are very difficult to obtain in some 

cases. Thus, this study aimed to assess whether a low input 

model is capable of acceptable accuracy results. 
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MATERIAL AND METHODS 

Study area 

The study area comprised of 74 monitored farm areas 

with an average size of 102 ha, in the state of Paraná (southern 

Brazil), located between parallels 22°29′ S and 26°43′ S and 

the meridians 48°2′ W and 54°38′ W (Figure 1), with an area 

of 199,308 km2. The climate in the state of Paraná is mainly a 

humid subtropical climate (Aparecido et al., 2016), with a 

predominance of clay-textured Oxisols (EMBRAPA, 2009). 

The state of Paraná accounts for almost 18% of the Brazilian 

production (CONAB, 2018), which means a soybean 

production higher than that of China, the world’s fourth-

largest soybean producer (FAOSTAT, 2018). The observed 

yield (Yobs) and sowing and harvest dates from 74 farms 

(Figure 1) from 2007/2008 to 2013/2014 growing seasons 

were used. In the state of Paraná, soybean is usually sown 

from September to November and harvested from January to 

April. A total of 46 farms were used in the 2013/2014 growing 

season, 13 in 2012/2013, four in 2011/2012, three in 

2010/2011, three in 2008/2009, three in 2007/2008, and two 

in 2009/2010. Some farms belong to partners, but most of the 

data (2012/2013 and 2013/2014 growing seasons) were 

obtained from field research developed during the Embrapa 

project named MAPAGRI (Mapping Agricultural Activity in 

Brazil), developed and completed in 2014 by several 

universities and research institutions in Brazil and financed by 

Embrapa Agricultural Informatics. 

 

 

FIGURE 1. Location map of the analyzed farm areas and soybean map for crop-year 2013-2014. 

Data 

Agrometeorological data, quality, and reliability are 

essential in the estimation of agricultural yield. Thus, climate 

data from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) were used considering the poor network 

of weather stations in the state, with only 59 weather stations 

in operation, the red tape for obtaining data, the irregular 

spatial distribution of the stations, and the lack of real-time 

data availability (IAPAR, 2015). Johann et al. (2016) 

conducted a study on ECMWF climate elements in the state 

of Paraná and concluded that the precipitation and ET0 data 

had a significant uncertainty when compared to 

meteorological station data. However, Hagedorn et al. (2008) 

pointed out that raw ensemble forecasts of surface 

temperatures were biased, but approximately 70% of the 

improvement in ECMWF could be attributed to a simple 

correction of the mean bias. Therefore, the calibration of the 

model by HI should correct the ECMWF uncertainty. 

The used agrometeorological data from ECMWF are 

available in a grid with a 10-day time resolution and a 0.25-

degree spatial resolution (± 25 × 25 km). This grid format was 

called virtual station (VS) (Figure 1). The data of rainfall 

(mm; 2007 to 2014), radiation sum (J m−2; 2007 to 2014), 

average air temperature (°C; 2007 to 2014), and 

evapotranspiration (Penman-Monteith, mm; 2007 to 2014) 

from ECMWF were used (Dee et al., 2011). Initially, the 10-

day agrometeorological data were interpolated by inverse 

distance weighting (IDW) at a 250 × 250-m spatial resolution. 

Then, the average values of each agrometeorological data 

were extracted for each farm area. 

The information of the total available soil water 

(TAW) for the state of Paraná was generated from the total 

water-holding capacity, as presented by Farias et al. (2007), 

from soil types obtained from the New Soil Map of Brazil 

(EMBRAPA, 2011). It is the only used soil information and 

input for both water balance methods. 

The soybean crop was considered as described and 

characterized by Allen et al. (1998). The crop water stress 

coefficient (ky = 0.8) and the p-depletion factor (0.5) were 

fixed for the entire growth cycle. The crop index (kc) and root 

depth (Zr) values were used according to the soybean 

phenological stage, as presented by FAO (Allen et al., 1998). 

Water balance and yield estimation 

The FAO-33 model requires four inputs to estimate the 

yield (Yest) of a crop, namely: maximum yield (Yx), crop 
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reference evapotranspiration (ETc), actual evapotranspiration 

(ETa), and crop water stress coefficient (ky). Yx can be 

determined differently, from historical or experimental data. 

However, the use of historical data requires reliable historical 

information, and experimental data are costly and time-

consuming. Therefore, Yx was estimated for this study using 

the agro-ecological zone approach (Kassam & Higgins, 

1981), which considers the average temperature to estimate 

potential production. The crop evapotranspiration (ETc) and 

actual evapotranspiration (ETa) were obtained from two 

methods: the FAO-56 water balance (FAOWB) (Allen et al., 

1998) and the Thornthwaite and Mather water balanced 

(TMWB) (Black, 2007). The calibration of the model was  

performed through a bias adjustment factor, consisting of 

comparison between field data and the data estimated by the 

model. All the procedures (Figure 2) were conducted for each 

farm. The harvest index (HI) was used as the bias adjustment 

factor, minimizing to zero the difference between the 

observed yield (Yobs from farms) and the estimated yield (Yest 

from the FAO-33 model). For this, the Simplex LP method of 

the Solver tool in Excel was used. Fifty out of the 74 farm 

areas were used to determine HI and the other 24 farm areas 

were used to validate the results. The HI was used to 

determine the potential yield (Yx) and as a calibration factor 

for the model, making the process as simple as possible. 

 

 

FIGURE 2. Flowchart of the study. 

 

FAO-56 water balance (FAOWB) 

The FAOWB uses depletion in the root zone (Equation 

1) to assess the crop water stress. 

𝐷𝑟,𝑡 = 𝐷𝑟,𝑡−1 − 𝑃𝑡 + 𝑅𝑂𝑡 − 𝐼𝑡 − 𝐶𝑅𝑡 + 𝐸𝑇𝑐,𝑡 + 𝐷𝑃𝑡 , (1) 

where:  

𝐷𝑟,𝑡 is the depletion in the root zone at the end of time 

t (mm); 

𝐷𝑟,𝑡−1 is the depletion in the root zone at previous time 

t−1 (mm); 

𝑃𝑡 is precipitation at time t (mm);  

𝑅𝑂𝑡  is the runoff at time t (mm);  

𝐼𝑡 is irrigation at time t (mm);  

𝐶𝑅𝑡 is the capillary rise at time t (mm);  

𝐸𝑇𝑐,𝑡 is the crop evapotranspiration at time t (mm), and  

𝐷𝑃𝑡 is the deep percolation at time t (mm).  

 

The values capillary rise, deep percolation, runoff, and 

irrigation were not considered in this study, as they are 

extremely hard to be determined and the state of Paraná has 

no significant irrigation areas. One way of calculating ETa,t is 

through the ks,t factor, that is, the crop water stress coefficient 

at time t (Equation 2). The ks,t coefficient (Equation 3) 
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quantifies the reduction factor relative to the evaporation of 

soil water availability. 

𝐸𝑇𝑎,𝑡 = 𝑘𝑠,𝑡 ∗ 𝐸𝑇𝑐,𝑡 , (2) 

where:  

ETa,t is the actual evapotranspiration at time t (mm), and  

ks,t is the water stress coefficient at time t. 

 

𝑘𝑆,𝑡 = {
1,                                                                  if 𝐷𝑟,𝑡 < 𝑅𝐴𝑊𝑡

(𝑇𝐴𝑊𝑡 − 𝐷𝑟,𝑡) (𝑇𝐴𝑊𝑡 − 𝑅𝐴𝑊𝑡),⁄       if 𝐷𝑟,𝑡 ≥ 𝑅𝐴𝑊𝑡
, (3) 

where:  

TAWt is the total water available at a certain soil depth 

at time t (mm), and  

RAWt is the readily available water for the crop at time 

t (mm).  

The readily available water at time t (RAWt, Equation 

4) represents the amount of water that the plant needs no effort 

to use. It is calculated by multiplying the TAWt value by the p 

coefficient (p = 0.5) (Allen et al., 1998), which is the depletion 

coefficient representing the difficulty that the plant undergoes 

because the amount of water in the soil is not readily available. 

𝑅𝐴𝑊𝑡 = 𝑝 ∗ 𝑇𝐴𝑊𝑡 ∗ 𝑍𝑟,𝑡 . (4) 

 

The amount of depletion ( 𝐷𝑟,𝑡 , Equation 5) is 

dependent on the TAWt value and 𝐷𝑟,𝑡−1. 

𝐷𝑟𝑡 𝑖 = {
𝑇𝐴𝑊𝑡 , if 𝐷𝑟,𝑡−1  >  𝑇𝐴𝑊𝑡

𝐷𝑟,𝑡−1,        if  𝐷𝑟,𝑡−1  ≤ 𝑇𝐴𝑊𝑡 .
 (5) 

 

Thornthwaite and Mather water balance (TMWB) 

The TMWB method calculates the water balance 

differently using the same data. First, it determines the 

difference between precipitation (Pt) and ETc, preserving the 

positive or negative signs. Subsequently, it estimates both the 

accumulated negative at time t (ANt, mm; Equation 6) and the 

water stored in the soil at time t (WSSt, mm; Equation 7). The 

accumulated negative is the sum of the sequence of negative 

values of the months in which DIFt has a negative value, 

showing that rained less than the soil lost water during             

the period, in this case dekadly, indicating the potential for 

soil dryness. 

𝐴𝑁𝑡 =  {
𝑃𝑡 − 𝐸𝑇𝑐,𝑡 ,                                 if 𝑃𝑡 − 𝐸𝑇𝑐,𝑡 < 0

𝑇𝐴𝑊𝑡 ∗ 𝑙𝑛(𝑊𝑆𝑆𝑡 𝑇𝐴𝑊𝑡⁄ ),      if 𝑃𝑡 − 𝐸𝑇𝑐,𝑡  ≥ 0
   (6) 

  

𝑊𝑆𝑆𝑡 =  {
𝑊𝑆𝑆t−1 + (𝑃𝑡 − 𝐸𝑇𝑐,𝑡) ,      if 𝑃𝑡 − 𝐸𝑇𝑐,𝑡 ≥ 0 

𝑇𝐴𝑊𝑡 ∗ 𝑒(AN𝑡 𝑇𝐴𝑊𝑡⁄ ),            if 𝑃𝑡 − 𝐸𝑇𝑐,𝑡 < 0.
   

 

  (7) 

 

After determining WSSt, it is possible to verify 

alterations in soil water at time t (ALTt, mm; Equation 8). It 

refers to the difference between WSSt values while 

maintaining the positive and negative signs, showing whether 

the amount of water in the soil increased. 

𝐴𝐿𝑇𝑡 = 𝑊𝑆𝑆𝑡 − 𝑊𝑆𝑆t−1. (8) 

 

The ETa,t value (mm; Equation 9) is calculated 

considering water alterations in the soil, never with negative 

values. 

𝐸𝑇𝑎,𝑡 = {
𝐸𝑇𝑐,𝑡 ,                     if 𝐴𝐿𝑇𝑡  ≥ 0

𝑃𝑡 + |𝐴𝐿𝑇𝑡|,        if 𝐴𝐿𝑇𝑡 < 0
. (9) 

 

The ETa,t value allows verifying if there was a water 

deficit at time t (DEFt, mm; Equation 10), that is, DEFt 

indicates the lack of crop evapotranspiration. 

𝐷𝐸𝐹𝑡 = 𝐸𝑇𝑐,𝑡 − 𝐸𝑇𝑎,𝑡. (10) 

 

The method also introduces the excess water at time t 

(EXCt, mm; Equation 11). EXC is the amount of water that is 

lost during rainy periods and can be determined when WSSt is 

lower than TAWt, showing the water supply in the soil at time 

t, and when WSSt is equal to TAWt, showing that the soil is 

storing its maximum water capacity. 

𝐸𝑋𝐶𝑡 = {
0                                  , if 𝑊𝑆𝑆𝑡 > 𝑇𝐴𝑊𝑡

(𝑃𝑡 − 𝐸𝑇𝑐,𝑡) − 𝐴𝐿𝑇𝑡 , if 𝑊𝑆𝑆𝑡  ≤ 𝑇𝐴𝑊𝑡 .
 (11) 

 

Thus, water balance is the difference between water 

excess and deficit at a given period. 

Ecological zone approach for potential yield (Yx) 

estimation 

The Yx value is the sum of potential gross yield at time 

t (PPRt, kg ha−1; Equation 12). 

𝑌𝑥 = ∑ 𝑃𝑃𝑅𝑡
𝑛
𝑡=1 . (12) 

 

The crop gross yield is determined by the potential 

gross yield of the standard crop at time t (PPBt, kg ha−1; 

Equation 13) and the harvest index (HI, dimensionless), 

responsible for the model calibration in the study. 

𝑃𝑃𝑅𝑡 = 0.265455 ∗ 𝐻𝐼 ∗ 𝑃𝑃𝐵𝑡 . (13) 

 

The PPBt value is the potential gross yield for cloudy 

days at time t (PPBn,t; Equation 14) plus the potential gross 

yield for clear days at time t (PPBc,t; Equation 15). 

𝑃𝑃𝐵𝑛,𝑡 = (31.7 + 0.219 ∗ 𝑄0,𝑡) ∗ 𝑐𝑡𝑛𝑡 ∗ 0.6.  (14) 

  

𝑃𝑃𝐵𝑐,𝑡 = (107.2 + 0.36 ∗ 𝑄0,𝑡) ∗ 𝑐𝑡𝑐𝑡 ∗ 0.6. (15) 

 

Potential yields are dependent on temperature 

corrections for cloudy (ctnt; Equation 16) and clear days at 

time t (ctct; Equation 17), and the radiation at the top of the 

atmosphere (Q0,t; Equation 18). 

 

𝑐𝑡𝑛𝑡 = {
0.583 + 0.014 ∗ 𝑇𝑡 + 0.0013 ∗ 𝑇𝑡

2 − 0.000037 ∗ 𝑇𝑡
3,                if  16.5 ≤ 𝑇𝑡 ≤ 37

−0.0425 + 0.035 ∗ 𝑇𝑡 + 0.00325 ∗ 𝑇𝑡
2 − 0.0000925 ∗ 𝑇𝑡

3,     if  𝑇𝑡 < 16.5 𝑜𝑟 𝑇𝑡 > 37
  (16) 

  

𝑐𝑡𝑐𝑡 = {
−0.0425 + 0.035 ∗ 𝑇𝑡 + 0.00325 ∗ 𝑇𝑡

2 − 0.0000925 ∗ 𝑇𝑡
3,     if 16.5 ≤ 𝑇𝑡 ≤ 37

−1.085 + 0.07 ∗ 𝑇𝑡 + 0.0065 ∗ 𝑇𝑡
2 − 0.000185 ∗ 𝑇𝑡

3,               if  𝑇𝑡 < 16.5 𝑜𝑟 𝑇𝑡 > 37
  (17) 
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𝑄0,𝑡 = 899.521344 ∗ 𝐷𝑅𝑡 ∗ (
𝜋

180
∗ ℎ𝑛 + 𝑠𝑖𝑛(𝑙𝑎𝑡) ∗ 𝑠𝑖𝑛(δt)) + (cos(δt) + cos(𝑙𝑎𝑡)) ∗ cos(δt) ∗ 𝑠𝑖𝑛(ℎ𝑛), (18) 

 

where:  

T is the average temperature (°C, from ECMWF);  

Q0,t is the radiation at the top of the atmosphere at time 

t (Cal cm−2);  

DRt is the Sun-Earth relative distance at time t (UA; 

Equation 19); 

lat is the local latitude (Rad);  

hn is the time of sunrise (Rad), and  

𝛿𝑡 is the solar declination at time t (Rad; Equation 20). 

 

𝐷𝑅𝑡 = 1 + 0.033 ∗ cos (
360

365 ∗ 𝛿𝑡

), (19) 

  

𝛿𝑡 = 23.45 ∗ 𝑠𝑒𝑛 (
360

365 ∗ (𝐷𝐽 − 80)
), (20) 

where:  

DJ is the Julian day. 

 

The HI value was determined by minimizing the 

difference between the actual yield (Yact, from farm areas) and 

the estimated yield (Ya, from the FAO-33 model) to zero, 

using the Simplex LP method of the Solver tool in Excel. The 

methods FAO-56 water balance (FAOWB) and Thornthwaite 

and Mather water balance (TMWB) were used to estimate 

ETa. Fifty out of the 74 farm areas were used to determine HI 

and the other 24 farm areas were used to validate the results. 

The HI was used to determine the potential yield (Yx), and the 

higher the HI value, the higher the potential yield. The HI 

value was used as a calibration factor for the model, making 

the process as simple as possible. 

FAO-33 yield model 

The traditional FAO-33 model (Equation 21) shows 

that the relative reduction in yield is related to the 

corresponding relative reduction in evapotranspiration 

(Steduto et al., 2012). It was operated in a 10-day stage, and 

the final yield was obtained by the sum of estimated yields for 

the growing season. 

(1 −
𝑌𝑎

𝑌𝑥

) = 𝑘𝑦 (1 −
𝐸𝑇𝑎

𝐸𝑇𝑐

), (21) 

where:  

Yx and Ya are the potential and estimated yield, 

respectively (t ha−1);  

ETc and ETa are the crop and actual evapotranspiration, 

respectively (mm), and  

ky is the yield coefficient that translates the crop yield 

sensitivity to water stress (dimensionless). 

 

Statistical analysis 

The metrics consisted of the mean absolute error 

(MAE; Equation 22), which measures the magnitude of the 

errors in a set of estimates, the mean error (ME; Equation 23), 

the root mean square error (RMSE; Equation 24), which 

indicates the size of the error generated by the model, that is, 

the model performance assessment criteria, and the mean 

absolute percentage error (MAPE; Equation 25), which 

shows, in relative terms, the errors of the estimates. 

 

𝑀𝐴𝐸 =  
1

𝑛
∑| 𝑌𝑒𝑠𝑡𝑖 − 𝑌𝑜𝑏𝑠𝑖|,

𝑛

𝑖=1

 (22) 

  

𝑀𝐸 =
1

𝑛
∑(𝑌𝑒𝑠𝑡𝑖 − 𝑌𝑜𝑏𝑠𝑖),

𝑛

𝑖=1

 (23) 

  

𝑅𝑀𝑆𝐸 =  √(
1

𝑛
∑(𝑌𝑒𝑠𝑡𝑖 − 𝑌𝑜𝑏𝑠𝑖)2

𝑛

𝑖=1

), (24) 

  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

|𝑌𝑒𝑠𝑡𝑖 − 𝑌𝑜𝑏𝑠𝑖|

𝑌𝑜𝑏𝑠𝑖

∗ 100)

𝑛

𝑖=1

, (25) 

where:  

n is the number of farms; 

Yest is the estimated yield, and  

Yobs is the observed yield from farm areas. 

 

RESULTS AND DISCUSSION 

Model calibration 

The model calibration was performed based on 50 

farms using HI. The results show that the average HI values 

of 0.2625 and 0.2093 for FAOWB and TMWB, respectively, 

are recommended (Table 1). Both HI values presented a 

homogeneous coefficient of variance, and the results of the t-

test showed 5% significance, indicating a significant 

difference between the two index values. Therefore, a single 

index cannot be used for both methods. However, the results 

are the same as those shown in Section “Water balance”, 

regardless of the used water balance method. 

 

TABLE 1. Descriptive Statistics from the obtained Harvest 

Indexes (HI). 

Statistics  FAOHI TMHI 

Count 50 50 

Minimum 0.129 0.108 

1st Quartile 0.225 0.175 

Median 0.252 0.208 

Mean 0.263 0.209 

3rd Quartile 0.305 0.239 

Maximum 0.435 0.382 

Standard Deviation 0.067 0.059 

Coefficient  of Variation 25.41% 28.33% 

Pearson 0.869* 

Willmott 0.406 

*: significant at 5% 
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Additionally, the indices found in the literature do not 

allow obtaining statistically satisfactory yield estimates using 

agrometeorological models (Araújo et al., 2011). Steduto et 

al. (2012) recommended that HI should be calibrated for each 

region. Furthermore, the authors found HI values from 0.25 to 

0.40 for oilseed crops using a diverse methodology to estimate 

Yx. The results of this study corroborate with Steduto et al. 

(2012) and the pilot project (Richetti et al., 2015) conducted 

at a regional level. Kemanian et al. (2007) proposed a linear 

model to estimate HI values for barley (0.40 to 0.60), spring 

wheat (0.38 to 0.46), and sorghum (0.45 to 0.53). 

Water balance 

The soil water balance and ETa for each farm area were 

estimated by the FAOWB and TMWB methods. No 

significant differences were observed between water 

balances. Therefore, both methods could monitor water stress 

during the soybean cycle. An example is the farm chosen at 

random (Figure 3) and designated as No. 34 (P-34 in Figure 

1) for the 2013-2014 growing season. However, Katerji et al. 

(2011) used the FAOWB method under saline environment 

conditions for potato and broad beans and concluded that ks 

calculations underestimated the evapotranspiration measured 

during the crop cycle by 12%, on average. Rojas (2007) 

concluded that the FAOWB method together with data from 

remote sensing can be used to conduct operational predictions 

of corn yield. Schwantes et al. (2016) compared the TMWB 

model with data from a polymer tensiometer in a field 

experiment with soybean and concluded that the time course 

of the soil water storage profiles calculated with water 

balances based on the evapotranspiration models measured 

with the polymer tensiometer was very similar. Thus, the 

TMWB method can lead to an immediate response in yield. 

An immediate decrease in yield is observed with water stress, 

while the FAOWB method leads to a higher reduction in the 

relative yield, but not immediate. 

 

 

FIGURE 3. Soil Water Balance and relative yield by FAOWB method for the soybean crop in crop-season 2013-2014 at P-34 

farm area. 

 

Sowing in the example farm (P-34) was carried out at the first dekad of October, with harvest at the first dekad of February. 

ETa presents its first decrease at the first dekad of stage IV (Figure 4), leading to a decrease in the relative yield. The next 

reduction in ETa occurred when the cycle was ending, and the water requirements were lower than in other stages of the crop. 

Therefore, there is no relative yield loss. 

 

 
FIGURE 4. ETa and relative yield by FAOWB method for the soybean crop in crop-season 2013-2014 at P-34 farm area. 
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Yield estimations 

Sowing and harvest dates varied according to the 

location of each area, but most of the farms carried sowing in 

the first 10-day of October and harvest in the second 10-day 

of February. The ME value showed an underestimation of 310 

kg ha−1 and the MAPE value of 23%, regardless of the chosen 

water balance method. Therefore, both methods can be used 

equally to estimate soybean yield (Table 2). These results are 

slightly lower than those obtained by Araújo et al. (2011), 

who found an estimated yield of 3567 kg ha−1, but for only 

one region and growing season in the state of Paraná. The 

average estimated yield was 12% higher than the average 

yield officially reported in Brazil and 6% higher than the 

average observed in the state (CONAB, 2018). Most farms 

presented observed yields of around 3100 to 3700 kg ha−1, 

with a coefficient of variation of 21%. 

 

TABLE 2. Descriptive statistics for observed and estimated 

yields and statistical metrics between them. 

Statistics 
Yobs 

(kg ha-1) 

Yest FAOWB 

 (kg ha-1) 

Yest TMWB  

(kg ha-1) 

Count 24 24 24 

Minimum 994 2307 2027 

1st Quartile 3112 2902 2870 

Median 3402 3219 3142 

Mean 3339 3090 3090 

3rd Quartile 3732 3312 3375 

Maximum 4512 3779 3945 

Standard Deviation 689.9 413.6 501.2 

Coefficient  of  

Variation 
20.66% 13.38% 16.22% 

 MAE 667.6 682.9 

 ME -310.9 -311.1 

 RMSE 862.5 847.6 

 MAPE 23.3% 23.3% 

 

An HI value of 0.26 was used as a calibration index in 

this study. Moreover, the indices obtained in the literature do 

not allow obtaining statistically satisfactory yield estimates 

with the agrometeorological models (Araújo et al., 2011). 

Steduto et al. (2012) recommended that HI values should be 

calibrated for each region. Furthermore, these authors used a 

diverse methodology for estimating Yx and found that the HI 

value for oilseed crops ranged from 0.25 to 0.40. The results 

obtained using the FAO-56 method corroborated with Steduto 

et al. (2012) and a pilot project (Richetti et al., 2015) conducted 

at the regional level. Kemanian et al. (2007) proposed a linear 

model to estimate HI values for barley (0.40 to 0.60), spring 

wheat (0.38 to 0.46), and sorghum (0.45 to 0.53). 

 

CONCLUSIONS 

This study estimated soybean yield using only rainfall, 

ETo, average temperature, TAW, sowing and harvest dates, 

and yield as inputs. The use of low inputs, in which field data 

are almost unnecessary (sowing and harvest dates and yield 

from farms), is a quick way to evaluate agricultural 

production. The method underestimated the observed values, 

with a mean error of −310 kg ha−1. Field verifications are 

necessary, although costly, as there are many displacement 

difficulties, some producers are closed and mistrusted, and 

others have no record of previous growing seasons. Soybean 

yield estimations using HI values of 0.2625 (using FAOWB) 

and 0.2093 (using TMWB) are recommended. Furthermore, 

an improvement in the estimates can be obtained using the 

dual crop coefficient (Allen et al., 2005). Another 

improvement is the use of an equation/function for HI rather 

than a single value for all areas, as presented by Kemanian et 

al. (2007). This study has been implemented in simple 

software, in which the calculations will be assessed on a 

refined spatial-temporal scale and daily based. 
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