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ABSTRACT 

Leaf chemical analysis is one of the ways to assess plant development. However, this type 
of assessment is expensive and time-consuming. The variation of nutrient content in the 
leaves modifies the proportion of light reflected and absorbed by plants at different 
wavelengths. Being able to relate the color reflected by the leaves with their phosphorus 
(P) content and using this data as input into an artificial neural network (ANN) can be an 
alternative for its determination. For this, it is necessary to establish which colors are most 
correlated with the different nutrients. Therefore, the phosphorus content in tomato leaves 
was evaluated in this study, according to four treatments (0.25, 50, 75, and 100% of the 
P doses). Different vegetation indices were also evaluated using images of mini-tomato 
leaves through a principal component analysis to determine which ones would be suitable 
to serve as an input to an ANN (multilayer perceptron). DGCI (Dark Green Color Index) 
and Bn (Normalized Blue) were the indices most related to P content. The neural network 
obtained 90% accuracy in the classification after training using both sides of the leaves. 

 
 
INTRODUCTION 

Phosphorus (P) is one of the most extracted elements 
by plants among the nutrients needed for plant activities, 
such as protein production, productivity, and fruit quality 
(Kumar et al., 2015). Phosphorus plays an important role in 
the initial development of tomatoes and contributes to 
increasing the commercial fruit quality (Nowaki et al., 
2017). Leaf chemical analysis is one of the most commonly 
used methods to control the nutritional status of plants, but 
the response is often time-consuming, hindering decision-
making for efficient management (Meiqing et al., 2016). 
Alternatively, the light reflectance of leaves at different 
wavelengths can be evaluated. In the case of phosphorus, 
some authors have shown the useful band regions, which 
vary between the visible and the Short Wave Infrared 
(SWIR) (Li et al., 2018). The visible region is related to 
stress due to P deficiency, highlighting the bands in the blue, 

red, and red edge regions (Stein et al., 2014). This stress 
causes some changes in the leaves, such as the higher 
presence of anthocyanin and the resulting decrease in 
chlorophyll (Marschner, 2013). 

Thus, the use of computer vision with RGB (Red, 
Blue, and Green) images associated with artificial neural 
networks arises as an alternative for evaluating and 
classifying the nutritional status of plants. The advantages 
of this method are its lower cost (compared to optical 
sensors), greater accuracy (compared to visual assessment), 
and reduced time compared to chemical analysis (Pir, 
2016). Several vegetation indices have been described in the 
literature in recent years, such as NDVI (Normalized 
Difference Vegetation Index) (Rousse et al., 1973), MPRI 
(Modified Photochemical Reflectance Index) (Yang et al., 
2008), and DGCI (Dark Green Color Index) (Karcher & 
Richardson, 2003). 
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Some authors have conducted studies on the subject 
to highlight the importance of vegetation indices in crop 
evaluation. Oliveira et al. (2019) evaluated different indices 
in the relationship between nitrogen doses and yield in tomato 
crops. Siedliska et al. (2021) used hyperspectral data from 
three different crops, while Yan li et al. (2015) and Peng-Tao 
et al. (2018) evaluated orange and rubber tree leaves, 
respectively, to classify the amount of phosphorus. The 
application of neural networks to classify nutrients in leaves 
has been used in several crops, such as palm (Jayaselan et al., 
2018) and tobacco (Backhaus et al., 2011). Furthermore, 
Barbedo (2019) published a review on this topic, with several 
studies using images and machine learning. 

Therefore, this study aimed to evaluate, through 
digitalized images of grape tomato leaves, which colors and 
vegetation indices would have a higher correlation with 
phosphorus contents in leaves for their classification using 
an artificial neural network. 
 
MATERIAL AND METHODS 

Study area, crop, and substrate 

The experiment was conducted in a 117-m2 
greenhouse built with a 10-mm transparent alveolar 
polycarbonate, presenting a panel-exhaust evaporative air 
cooling system (fan pad). The facility belongs to the 
Laboratory of Production Technology and Plant Health of 
the Department of Biosystems Engineering, located at the 
Faculty of Animal Science and Food Engineering (FZEA) 
of the University of São Paulo (USP), Pirassununga, State 
of São Paulo, Brazil. This city is located in the Midwest 
region of the State of São Paulo, at the latitude 21°59′46″ 
South and longitude 47°25′33″ West, at an altitude of 627 
meters above sea level. The climate is as Cwa (subtropical 
climate) according to Köppen and Geiger classification. 

The mini-tomato cultivar Red Sugar (TPC-1430) 
from the company Agristar was used in the experiment. The 
seedlings were produced in the greenhouse; the seeds were 
sown on December 19, 2017, in 128-cell polyethylene trays 
filled with a granular coconut fiber substrate with pH = 5.5–
6.2, electrical conductivity (EC) = 0.5 ± 0.6 dS m−1, and 
density = 150 kg m−3, with the nutritional composition 
shown in Table 1. The substrate was hydrated with a water 
proportion of 35 L to 31 kg, being uncompressed. 

 
TABLE 1. Nutritional composition of the coconut fiber-based substrate. 

N P2O5 K2O Ca Mg S B Cu Fe Mn Mo Zn 
-------------------------------------------- ppm ----------------------------------------------- 

42 48 54 186 39 37 1.09 4.66 14.07 2.98 1.6 4.42 
Source: Amafibra3 

 
The seedlings received manual irrigation after plant 

emergence with a nutrient solution with the following 
composition: calcium nitrate (0.513 g L−1), potassium 
sulfate (0.419 g L−1), magnesium sulfate (0.389 g L−1), and 
micronutrients (44 mg L−1). Irrigation occurred with a 
frequency of one to three times a day, according to weather 
conditions and substrate moisture. Before transplanting, the 
substrate in each pot was saturated with the same nutrient 
solution used to irrigate the seedlings. The electrical 
conductivity of the solution drained into the pot was 
measured after 24 hours, being considered ideal for planting 
when the value is below 3 dS m−1. The transplanting was 
conducted on January 30, 2018, that is, at 40 days after sowing 
(DAS), when the seedlings had four fully expanded leaves. 

Experimental design, irrigation, and nutrient solution 

The experimental design was randomized in blocks 
in a 5 x 4 factorial scheme, with five treatments with 
different phosphorus (P2O5) doses (0, 25, 50, 75, and 100% 
of the recommended dose) in the nutrient solution, four 
evaluations in subplots (22, 36, 50, and 64 days after 
transplanting – DAT), and four replications. Each plot 
consisted of four black plastic bags of 6 liters each filled 
with 4.3 liters of the same substrate used for seedling 
production, totaling 160 plants conducted in a double-stem 
system. This value guaranteed a water holding capacity of 
2.18 liters. The plants were divided into four rows with 40 
pots each, with a spacing of 0.4 m between plants and 0.6 
m between rows, reaching a density of 4.1 plants m−2. 

The plants were drip irrigated using an automated 
system with a flow rate of 8 L h−1, with each dripper tube  

 
3 Personal Communication 

providing 2 L h−1 per plant. The pH was measured using a 
strip and the electrical conductivity was obtained using a 
portable pH meter (waterproof Pen mS/cm Tester), both at 
each preparation. Initially, irrigation was performed once a 
day at 9:30 am, with an irrigation pulse of four minutes, 
totaling an applied volume of 120 mL. The solution 
prepared in the water tank was made for 400 liters of water, 
according to Cunha et al. (2014). 

The necessary phosphorus doses were applied 
manually according to the recommendation proposed in the 
experiment (0, 25, 50, 75, and 100% P2O5), with the 100% 
P2O5 dose consisting of 114 g 1000 L−1 up to 22 DAT and 
260 g 1000 L−1 until the end of the experiment (64 DAT). 
The amount applied weekly was calculated as a function of 
other nutrients applied via irrigation. 

Images, vegetation indices, and nutritional diagnosis  

Tomato leaf images were taken at 22, 36, 50, and 64 
DAT, thus allowing calculating the vegetation indices. The 
4th fully expanded leaf from the apex was sampled, as 
determined by Malavolta et al. (1989), with four leaves 
being collected from each plot. The leaves from both the 
upper and the lower faces were scanned with a white stock 
card in the background on a flatbed scanner, resulting in 300 
dpi images saved in TIFF format. A total of 80 samples were 
collected on each date, that is, four samples per plot, but the 
value of each index was obtained from the average of the 
samples per plot. Thus, 20 values of each index were obtained 
on each date, totaling n = 80 at the end of the collections. 
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After the acquisition, the images were inserted in 
software developed in MATLAB (https://url.gratis/zRt6Cz) 
to obtain their RGB and HSV component values and 
calculate the vegetation indices of interest. The indices were 
MPRI, DGCI, Rn (Normalized Red), Gn (Normalized 
Green), and Bn (Normalized Blue), calculated from both 
sides of the leaves. 

𝑀𝑃𝑅𝐼 =
ீିோ

ீାோ
                     (1) 

 

𝐷𝐺𝐶𝐼 =
ቂቀ
ಹషల

లబ
ቁା(ଵିௌ)ା(ଵି௏)ቃ

ଷ
                   (2) 

 

𝑅𝑛 =
ோ

ோାீା஻
                     (3) 

 

𝐺𝑛 =
ீ

ோାீା஻
                     (4) 

 

𝐵𝑛 =
஻

ோାீା஻
                     (5) 

Where:  

R is the red;  

G is the green;  

B is the blue;  

H is the hue;  

S is the saturation;  

V is the value;  

Rn is the normalized red;  

Gn is the normalized green, and  

Bn is the normalized blue. 
 

The leaves used for image acquisition were stored in 
a paper bag and oven-dried at 65 °C for 72 hours. 
Subsequently, the samples were ground and sent for 
analysis at the Laboratory of Analysis of the Agricultural 
Sciences sector of FZEA/USP. 

Data analysis 

Pearson’s correlation was used to assess the colors 
most related to the phosphorus content in the leaves, 
according to the following criteria: perfect correlation (r=1), 
strong correlation (r>0.75), moderate correlation (r>0.5), 
weak correlation (r<0.5), and non-existent correlation (r=0) 
(NOGUEIRA et al., 2010). The indices Rn, Gn, and Bn 
were evaluated at this phase of the analysis. A principal 
component analysis (PCA) was performed using the 
statistical software R to determine the vegetation indices 
that most indicated the P variation in the leaves. The 

principal component analysis is a multivariate exploratory 
analysis tool, which allows revealing the existence of 
anomalous samples, relationships between measured 
variables, and relationships or groups between samples 
(Lyra et al., 2010). 

The classification of the amount of phosphorus into 
distinct categories was performed after determining the 
indices. An artificial neural network (ANN) was developed 
using the indices as input data. The backpropagation 
Multilayer Perceptron (MLP) ANN was developed in 
MATLAB (https://url.gratis/8VLyIa). The intermediate 
layer had ten neurons, and the Levenberg-Marquardt 
training function (trainlm), in which the performance 
evaluation was based on the mean square error (MSE), was 
used. Two-thirds (n = 53) of the data sample was used for 
network training, and 20 random samples were selected at 
the network validation stage, distributed throughout the four 
evaluation periods (22, 36, 50, and 64 DAT). The hit rate 
was used as a parameter for evaluating the efficiency of the 
artificial neural network. Its calculation is performed using 
the following equation: 

𝑇 =
௏௣

௏௣ାி௣ାி௡
                                  (6) 

Where:  

Vp is the true positive;  

Fp is the false positive, and  

Fn is the false negative. True positives are the ANN 
output data classified within the category to which 
the real data belongs, Fp is the data classified below 
this category, and Fn is the data classified as 
category II, with the real data belonging to category 
I. The P content categories were established 
according to Table 2. The same steps were 
performed with the values of P contents in the leaves 
obtained in the laboratory. 

 
TABLE 2. Categories of parameter classification. 

 P content(g kg−1) 

Category I < 4 

Category II 4–8 

Source: Trani et al. (2015) 
 
RESULTS AND DISCUSSION 

The statistical analysis of nutrient contents in the 
leaves showed that only phosphorus (P) and manganese 
(Mn) were significant relative to doses (Figure 1). Thus, the 
evaluation of the change in leaf color can be explained only 
by variations in phosphorus content. 
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FIGURE 1. Average phosphorus (P) (left) and manganese (Mn) (right) contents (DAT) in grape tomato leaves relative to P2O5 doses. 
 

Pearson’s correlation (Figure 2) showed that the 
green (upper and lower) and blue colors (lower) showed 
moderate correlation with phosphorus contents in the leaf 
(0.628, 0.594, and −0.514, respectively). A reduction in the 
phosphorus content in leaves also leads to a decrease in 
chlorophyll efficiency due to its participation in energy 
production (ATP from ADP) for photosynthesis (Geiger & 
Servaites, 1994). Thus, adequate phosphorus contents lead 
to a higher green reflectance (wavelength of 550nm). This 
factor explains the higher correlation of normalized green 
with phosphorus contents. Figure 3 shows that lower 

phosphorus doses also had lower chlorophyll values, 
reducing the green color of the leaves. Costa et al. (2019) 
also observed a quadratic behavior of chlorophyll contents 
regarding the nitrogen variation in vine leaves. 

Mulla (2013) also observed that normalized green is 
concentrated in absorption areas where there is the action of 
pigments and chlorophyll (such as anthocyanin), a fact that 
explains the changes in this color with the variation in P 
contents. Moreover, the reflection in the blue range in the 
leaf regions where less phosphorus is found increases due 
to the higher presence of anthocyanin. 

 

 

FIGURE 2. Pearson’s correlation between colors and P content. 
 

These results coincide with those obtained in the 
principal component analysis (PCA), using the evaluated 
vegetation indices as input. The PCA shows that the two 
principal components explain 96.45% of the data. The 
largest eigenvectors were DGCI_upper (0.69) and 
DGCI_lower (0.66) in the first principal component and 
Bn_upper (−0.51) and Bn_lower (−0.50) in the second 
principal component. Figure 4 shows the contribution of 
each index obtained by PCA. Both leaf faces had a high 
value, indicated by the eigenvectors. Liu et al. (2015) 
observed that the upper leaf face had a better result to 

indicate N and P contents in citrus leaves. 
According to Karcher & Richardson (2003), the 

higher the DGCI value, the darker the green tone measured 
by this index. Therefore, the positive eigenvector of this 
index indicates that P variation in tomato leaves more 
intensely alters the green color saturation. Healthy plants, 
which did not have their chlorophyll values changed by the 
deficient P contents (Figure 3), have darker green leaves. It 
occurs in opposition to plants where P decreases, thus 
increasing the amount of anthocyanins in the leaves, which 
leads to a higher presence of the blue color relative to green. 
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FIGURE 3. Average relative chlorophyll indices (a, b, and total) (DAT) relative to P2O5 doses. 
 

It can be observed when considering the Bn index, 
as it measures the amount of blue band reflected by leaves 
in contrast to the total RGB. The negative Bn value 
observed in the second principal component is explained by 
a decrease in the amount of P and the consequent purple 
color in the leaves. The purple color has a higher value of 
reflected blue in its composition, which would explain that 
a decrease in the amount of P in the leaves causes an 
increase in the Bn index. Bands reflected by plants in the 
visible range are more commonly associated with P 

deficiency, especially in the blue, red, and red-edge regions 
(Stein et al., 2014). It explains why the Bn index had a high 
negative correlation with the P data in the analyzed leaves 
for both Pearson’s correlation and PCA. Samples with 
lower P contents were distributed in the same quadrant (by 
PCA) as the Bn_U and Bn_L indices (Figure 5). Those that 
had higher nutrient contents (mostly samples from 1 to 20) 
are in the same quadrants as the DGCI_L, Gn_L, and Gn_U 
indices, which may indicate that a higher presence of P 
leads to a greener leaf than those with smaller P contents. 

 

 

FIGURE 4. Contribution of each index to the variation of data obtained by principal component analysis (PCA). 
 

Sun et al. (2018) evaluated macronutrient deficiency 
in rice and observed a predominance of light green color, 
while dark green leaves could be observed in P-deficient 
plants, in which case the leaves changed from green to 
purplish gray. These authors evaluated different vegetation 
indices and demonstrated that the normalized green index 
using the first most expanded leaf of rice is among those 
most related to phosphorus deficiency, whereas the 
normalized green and MPRI are among the most related in 
the second leaf. However, only DGCI is related to the 

phosphorus content when using the third most expanded 
leaf. The indices cited by these authors are in line with those 
used in the present study, showing a higher relationship with 
P contents. Rice plants tend to form anthocyanin and may 
turn red or purplish in the sheaths (Chen et al., 2014). These 
authors also found that rice leaves are narrower, erect, and 
with dark green spots under P deficiency, which is different 
from the result found in the present study for tomatoes, in 
which a higher P content in the leaves had a positive 
relationship (by PCA) with DGCI, that is, darker leaves. 
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FIGURE 5. Distribution of samples according to the principal component analysis (PCA). 
 

Therefore, the neural network was trained with these 
four indices. The neural network had a hit rate (in 
classifying the samples within the defined categories) of 
80.77% in training using 2/3 (53) of the 80 samples. This 
rate was obtained after 10 interactions of the system with a 
performance of 0.24 (mean squared error). The hit rate at 
this phase became higher with the data obtained after 36 
DAT. It indicates that an analysis of leaves from this period 
of development would satisfy P classification in the leaves. 
The hit rate was 69% at 22 DAT and 76.9% at 36 and 50 
DAT. Twenty random samples were selected from the 
remaining 1/3 of the dataset to validate the neural network. 
The hit rate at this phase was 90% to classify in the desired 
categories, with a performance of 1.45 (MSE). 

Christensen et al. (2004) worked with a neural 
network to predict P and N contents in barley leaves using 

leaf reflectance data instead of vegetation indices and 
obtained hit rates of 74 (P) and 81% (N). Yanli et al. (2015) 
used hyperspectral images and obtained better results in the 
prediction of phosphorus rate using the adaxial face of 
orange leaves. Jayaselan et al. (2018) used a neural network 
to classify the nitrogen and potassium contents in palm 
leaves and obtained an overall hit rate of 85.3% for both 
elements. Aboukarima et al. (2020) applied a neural 
network to recognize five varieties of faba bean and 
obtained a hit rate of 77.5%. The hit rate obtained in the 
present study is, therefore, at a level close to that obtained 
by other authors, who used classifiers with neural 
networks. The P content in the leaves predicted by the 
ANN relative to the current values (Figure 6) showed a 
mean percentage error of 64.3% at the validation phase of 
the neural network. 

 

 

FIGURE 6. Difference between P values searched in the leaf chemical analysis and by ANN. 
 

Figure 7 shows the percentage error variation in each 
sample used in the validation of the neural network. Among 
these samples, the error ranged from 6 to 413%. Four out of 
the 20 samples had errors with a variation from the actual 
value above 100%, three between 50 and 100%, and 13 
below 50% (six having a variation below 6%). A larger 
number of samples for the neural network training phase 
can contribute to a decrease in the observed error. 

 

About 10% of the ANN error (and not only in 
obtaining the P content) was classified in a category below 
the current value. In other words, both results were false 
positives for deficient nutrition if we consider category II as 
an ideal range of nutrients. No false negatives were 
observed, indicating that a sample from category I was 
within category II, the same occurring at the training phase 
of the network. 
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According to Withers et al. (2018), the use of 
phosphate fertilizers in Brazil is twice the demand of plants. 
This supply above demand is due to soil characteristics, in 
addition to the lack of leaf analysis. Thus, obtaining leaf 
analysis instantly using images and artificial neural 

networks can assist in faster handling and increase the 
efficiency in the use of this type of fertilization. The results 
presented in this study also indicate that the technique can 
be applied to other nutrients, making it a commercially 
viable alternative for leaf analysis. 

 

 

FIGURE 7. Percent error of each sample at the ANN validation phase. 
 
CONCLUSIONS 

The analysis of the colors reflected in the visible 
range showed that the green and blue colors had a moderate 
correlation with phosphorus (P) content in leaves. This 
factor was corroborated by the results obtained after 
performing the principal component analysis with the 
vegetation indices, indicating that the DGCI index has a 
positive relationship with P content, while the opposite 
occurs with the Bn index. The developed neural network 
had a similar hit rate and, in some cases, superior to other 
studies with the same purpose of predicting or classifying 
nutrient contents in plant leaves. It indicates that the neural 
network, using the mentioned indices as input, can be a way 
to replace the current analysis in obtaining the P content in 
leaves. The results also indicate that the use of both leaf 
sides to measure the nutritional content increases the 
efficiency of the classification of P content. 
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