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ABSTRACT 

Currently, concern about the burning of fossil fuels and the consequences for the planet 
has increased and become the agenda of discussions at global levels. In this sense, 
biofuels are an important alternative, and this article seeks to review the literature on the 
use of microalgae as raw material for the manufacture of biodiesel, the transesterification 
process as a conversion method, the technologies used to optimize this process, the 
characteristics of biodiesel that are required by Brazilian legislation, and the challenges 
for production. Brazil has a very large potential for the production of these biofuels but 
their production on a large scale still requires further studies so that it can be part of the 
country’s energy matrix, including in the agro-industrial sector. 

 
 
INTRODUCTION 

Currently, the impacts caused by greenhouse gas 
(GHG) emissions are the subject of a broad discussion. 
Combating climate change has become one of humanity’s 
greatest challenges, demanding global efforts. The signing 
of the Paris Agreement, in 2015, where the signatory 
countries committed to establishing and meeting targets to 
limit the increase in the temperature of the planet to 1.5 °C 
relative to the pre-industrial period is one of the most 
recent efforts. In 2021, the goals and objectives established 
in the Paris Agreement were discussed in COP26, with the 
reduction of fossil fuel consumption being one of the most 
discussed topics (Allam et al., 2022). 

The burning of fossil fuels represents the main 
source of CO2 emissions (Mondal et al., 2017). According 
to the International Energy Agency (IEA, 2021), about 1.5 
Gt of CO2 was emitted into the atmosphere in 2020 alone 
just by burning fuels (gas, oil, and coal). A change in the 
power generation sector needs to occur to allow a decrease 
in GHG emissions. Thus, biofuels are a valuable 
alternative to the use of fossil fuels. 

Biofuels are produced from renewable sources 
(Malode et al., 2021). They are classified into generations 
according to the used raw material: edible and non-edible 
oils, biomass, lignocellulose, and residues (Athar & Zaidi, 
2020; Chhandama et al., 2021; Ganesan et al., 2020). 

First-generation (1G) biofuels are those that use 
edible oils as raw materials, such as sugarcane, soybean, 
and coconut (Couto et al., 2020). It is an already 
established technology, mainly in Brazil with sugarcane-
based ethanol production, but the main discussion is the 
competition for arable areas with food production (de 
Mendonça et al., 2021). The increase in the world 
population has led to the need for greater food production 
and, therefore, this issue becomes a disadvantage of this 
generation. In addition, there is also the issue of 
environmental degradation due to the deforestation of 
native forests for the planting of oleaginous plants (Correa 
et al., 2017). 

Second-generation (2G) biofuels are produced from 
non-edible oils or residues. However, the cultivation of 
crops producing non-edible lipids also requires arable 
lands, as required for 1G biofuels (Ullah et al., 2015). 
However, there is still the possibility of using residues as 



Alice A. Lomeu, Henrique V. de Mendonça, Marisa F. Mendes
 

 
Engenharia Agrícola, Jaboticabal, v.43, special issue, e20220087, 2023 

raw materials, such as used cooking oil or beef tallow, 
which are attractive due to their low cost (Bhuiya et al., 
2016). As a disadvantage, Ganguly et al. (2021) pointed 
out that the conversion of these raw materials is usually 
less efficient compared to 1G in terms of energy and costs. 

Microalgae are used as raw material for third-
generation (3G) biofuels. Different biofuels can originate 
from microalgae, such as bio-oils, bioethanol, biodiesel, 
and biogas/biomethane (Chowdhury & Loganathan, 2019; 
de Mendonça et al., 2021). The cultivation of microalgae 
does not require arable lands or drinking water, as it can be 
grown in wastewater. In addition, microalgae have a high 
doubling time and a shorter cultivation time than higher 
plants, thus developing faster and providing higher 
productivity per area (58,700 to 136,900 L ha−1 year−1) 
with relevant rates of CO2 bio-fixation of up to 1,051 mg 
L−1 day−1 (de Souza et al., 2021; de Mendonça et al., 
2021). The main problem associated with these fuels is the 
high production costs, especially during the conversion 
into biofuel (Behera et al., 2020). 

Considering the need for alternatives for the 
generation of cleaner energy and considering the high 
costs associated with the production of 3G biofuels, this 
study seeks to review alternatives found by researchers to 
optimize the conversion process. 

Raw materials 

As discussed in the previous item, many raw 
materials can be used in biofuel production. The sources of 
biofuel generation can be divided into categories: edible 
oils (e.g., corn, sunflower, and soybean), non-edible oils 
(e.g., castor, rice bran, and palm), microalgae (e.g., 
Spirulina sp., Chlorella sp., and other species), animal fats 
(e.g., beef tallow and fish oil), and residues (e.g., used 
cooking oil) (Athar & Zaidi, 2020). 

The Brazilian territory has a variety of climate 
conditions that allow the cultivation of different raw 
materials. Palm, coconut, babassu, sunflower, castor, 
peanut, soybean, and cotton oils are some of the crops 
found in Brazil listed by Bergmann et al. (2013). However, 
residues can also be used for biofuel production. Lourenço 
et al. (2021) used rice bran to produce biodiesel. 
According to the authors, the biodiesel obtained complied 
with the specifications of the American, European, and 
Brazilian standards for the iodine index (IO), acidity index, 
saponification index, and moisture. Vieira et al., 2021) 
used a mixture of used soybean oil and castor oil to 
produce biodiesel and observed a positive influence on    
the oxidative stability of biodiesel, represented by the     
IO reduction. 

Sugarcane is the main raw material used in Brazil for 
bioethanol production and Brazil is the world’s second-
largest bioethanol producer, second only to the United 
States (FAO, 2021). Ethanol can be used in two ways: as 
anhydrous ethanol (used as a gasoline blending component) 

and hydrated ethanol, as commercialized fuel (ANP, 2020). 
However, sugarcane presents the problem of 1G biofuels, 
that is, competition for arable lands with food production. 
According to Bicalho et al. (2016), deforestation is directly 
and indirectly related to agro-industrial activities, including 
the planting of raw materials for biofuel production. In this 
case, most of the Brazilian territory has favorable lighting 
and temperature conditions for microalga cultivation (dos 
Santos et al., 2021). 

Microalgae as a raw material for biofuels 

As previously mentioned, microalgae are a 
promising raw material for biofuel production, as they 
have a higher photosynthetic rate than higher plants, have 
a higher growth rate, and require no arable areas to be 
cultivated, among other advantages. In addition, 
microalgae have higher oil production than terrestrial 
plants, producing 100,000 L oil ha−1 year−1, while palm 
and soybean produce 5,366 and 446 L oil ha−1 year−1, 
respectively (Ganesan et al., 2020; Katiyar et al., 2017). 

In general, microalgae accumulate about 20 to 50% 
of lipids, 5 to 23% of carbohydrates, and up to 52% of 
proteins (Ganesan et al., 2020; Yin et al., 2020; de Souza 
et al., 2021; Prajapati et al., 2013). Some factors may 
influence the accumulation of these macromolecules, such 
as the microalga species, nutrient availability, lighting, pH, 
temperature, and operation of photobioreactors (PBR). 

Nutrient availability is one of the factors that most 
influence lipid accumulation. Nutrient deprivation, 
especially nitrogen, causes stress on the biomass, as it is 
considered a limiting factor for the growth of these 
organisms. Chokshi et al. (2016) found higher percentages 
of lipids for Acutodesmus dimorphus with nitrogen 
deprivation, which is about 23% higher than the medium 
without nutrient deficiency. 

PBR operation can also affect lipid accumulation. 
They tend to have a higher percentage of lipids when 
operated in batches than in continuous flow. It occurs 
because all the nutrients available for the biomass in the 
batch operation are inserted into the reactor at the 
beginning of the operation and the nutrients become 
scarcer as the microalgae grow, promoting stress on the 
biomass. de Mendonça et al. (2018) reported results that 
confirm this information when comparing Scenedesmus 
obliquus growth in PBRs operated in batch and 
continuous flow, with values for total lipids of 29 and 
13%, respectively. 

Table 1 shows studies conducted with different 
species of microalgae and different culture media 
(substrate). Different cultivation conditions and species 
can alter the accumulation of macromolecules. For instance, 
Purba et al. (2022) found 58% of lipids when growing 
Desmodesmus maximus CN06 in municipal wastewater. 
Cardoso et al. (2021) found 15% of lipids in the cultivation 
of Spirulina sp. LEB 18 in aquaculture wastewater.

 
 
 
 
 
 
 
 



Microalgae as raw material for biodiesel production: perspectives and challenges of the third generation chain
 

 
Engenharia Agrícola, Jaboticabal, v.43, special issue, e20220087, 2023 

TABLE 1. Cultivation of microalgae in different substrates and percentage of accumulated macromoleculest. 

Microalgae strain Substrate Operating conditions Lipids Proteins Carbohydrates Ref. 

Arthrospira platencis 
DHR20 

ACWW  
HFBR, 30°C,  

265 μmol m−2 s−1 24 h d-1 
16,3% 45% 20% (de Souza et al., 2021) 

Chlorella vulgaris 
SDW pre-treated by 

activated sludge 
FBR, 60 μmol m−2 s−1 24 h 

d-1, 0.42% of CO2 . 
18% 40% 38% 

(de Mendonça et al., 
2022) 

Scenedesmus obliquus 
SDW pre-treated by 

activated sludge 
FBR, 60 μmol m−2 s−1 24 h 

d-1, 0.42% of CO2. 
21% 35% 39% 

(de Mendonça et al., 
2022) 

C. minutíssima, N. 
muscorum, Spirulina sp. 

70% DWW + 10 g L-1 of 
glucose 

FBR, 27°C and 
photoperiod of 18:6 h 

14.3% NR NR (Chandra et al., 2021) 

Nannochloropsis 
oculata 

Tannery effluent pre-
treated with ozone 

FBR, 25 °C, 150 μmol m−2 
s−1, photoperiod of 16 h 

and CO2 added 
51% NR NR 

(Saranya e 
Shanthakumar, 2021) 

Scenedesmus sp. 
Effluent from olive oil 

production + BG11 
medium 

FBR, 80±10 μEm−2 s−1, 
CO2 e 25 °C ± 3 

32% NR 43% (Di Caprio et al., 2015) 

Desmodesmus maximus 
CN06 

Wastewater 
FBR, 80 μmol m−2 s−1 and  

24 °C 
58% NR NR (Purba, et al., 2022) 

Spirulina sp LEB 18 Aquaculture wastewater 
PBR, 30°C, photoperiod of 

12 h, 41,6 μmol m−2 s−1 
15% 62% 12% (Cardoso et al., 2021) 

ACWW: anaerobically digested cattle wastewater; SDW: synthetic dairy wastewater; DWW: dairy wastewater; HPBR: horizontal 
photobioreactor; FBR: photobioreactor; NR: not reported 
 
Energy production in agroindustry using microalgae 

Agroindustry generates highly polluting residues to 
the environment and, therefore, their treatment is 
imperative. These residues can be used as raw materials 
for energy production. Not only biofuels can be produced 
from microalgae. Several studies have been developed to 
analyze the feasibility of the co-digestion of digestate from 
anaerobic digestion with microalgae (Ganesh et al., 2018; 
Solé-Bundó et al., 2019). 

Hu et al. (2021) used Tribonema sp. as a co-
substrate for the anaerobic digestion (AD) of pig manure 
and observed an increase of only over 20% in CH4 
production. The authors attributed this increase to the 
better C:N ratio balance, which increases AD efficiency 
and, consequently, methane production. 

In contrast, Miyawaki et al. (2021) applied biogas 
to PBRs as an alternative source of CO2 for microalgae 
and a way of purifying biogas. The authors concluded that 
there was a significant removal of CO2 from the biogas, 
which led to an increase in the CH4 concentration, 
providing an increase in the calorific value. 

Microalgae can be used in the co-digestion of 
various types of substrates, sludge, animal manure, food 
waste, agro-industrial residues, and glycerol (Solé-Bundó 
et al., 2019). Most studies have sought to improve the 
anaerobic digestion process through the C:N ratio balance 
to increase biogas production. Co-digestion is a viable 
alternative to this issue (Karray et al., 2022). Furthermore, 
as proved by Miyawaki et al. (2021), microalgae can be   
an alternative for purifying biogas, increasing its       
energy potential. 

Biomass conversion process into biodiesel 

Transesterification 

The main conversion method used to obtain 
biodiesel is the transesterification process. The Brazilian 

National Agency of Petroleum, Natural Gas and Biofuels 
(ANP, 2021a) defines biodiesel as a fuel of alkyl esters of 
long-chain carboxylic acids produced from the 
transesterification and/or esterification of fatty materials 
and fat of animal or vegetable origin. It is a reversible 
reaction, which occurs when the triglyceride preferentially 
reacts with primary alcohol to form an ester (biodiesel) 
and glycerol. The reaction can still occur in the presence or 
absence of a catalyst. 

Biodiesel needs to be purified to be commercialized 
(ANP, 2021b), as the presence of impurities in the final 
product can be noted and may lead to engine problems and 
even increased pollution levels (Fayyazi et al., 2021). The 
main advantage of the transesterification process is that the 
produced biodiesel has similar properties to diesel 
(Jayakumar et al., 2021), in addition to being possible to 
obtain conversions that comply with legislation, such as 
ANP No. 45/0214 in Brazil, which requires a minimum 
96.5% conversion. 

Factors that influence the transesterification process 

The main factors that affect the transesterification 
process are temperature, the presence of free fatty acids, 
the alcohol-to-oil ratio, moisture, reaction time, and 
stirring (Freedman et al., 1984; Mathew et al., 2021; Salam 
et al., 2016). High concentrations of free fatty acids result 
in lower conversions because these acids react to form 
soap (saponification). Esterification can be performed to 
avoid this problem by converting free fatty acids into 
biodiesel (Athar & Zaidi, 2020). 

The presence of moisture is also a factor that 
decreases conversion to biodiesel, as soap can be formed. 
Sathish et al. (2014) studied the effect of moisture on 
biodiesel conversion in the cultivation of Chlorella and 
Scenedesmus sp. in municipal wastewater. The authors 
observed that a moisture of 15–20% led to a decrease of 
30-50% in the conversion to biodiesel when compared to 
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the most favorable situation. 
The temperature should not exceed the boiling 

point of the alcohol used in the reaction, thus avoiding the 
loss of reagent (Koh & Mohd Ghazi, 2011). The reaction 
time must be such that all the oil reacts and forms 
biodiesel. The oil will remain raw if the reaction time is 
too short. On the other hand, the degradation of the final 
product may occur if the reaction time is longer than ideal 
(Mathew et al., 2021). Behera et al. (2020) observed the 
effect of reaction time on biodiesel conversion using 5% 
(m/m) biochar based on peanut shell as a catalyst, the 
methanol-to-oil ratio of 20:1, and a temperature of 65 °C. 
The reaction times varied at 2, 4, 6, and 8 h, and the 
highest conversion 94.91% was observed at 4 h, with the 
conversion decreasing after this time. The authors attributed 
this fact to the formation of mono-and diglycerides. 

The methanol-to-oil ratio plays an important role in 
biodiesel production, as increasing this ratio causes the 
reaction equilibrium to shift to the right, increasing 
biodiesel production (Behera et al., 2020). However, the 
high amount of alcohol may mean greater difficulty in 
recovering glycerol (Ganesan et al., 2020) and its presence 
can affect the balance of the reaction, shifting it to the left, 
thus decreasing biodiesel production (Mathew et al., 
2021). Methanol is the main alcohol used in the reaction, 
but it has high toxicity, unlike ethanol, which is an 
alternative to methanol. Furthermore, ethanol can be 
produced from a renewable source, which would make this 
process more sustainable, despite being more expensive 
and less reactive than methanol (Musa, 2016). 

The use of catalysts is one of the factors that can 
optimize the transesterification process. The catalyst 
concentration may vary according to its type and the origin 
of the oil to be transesterified. Their use is discussed in the 
next section. 

Catalysts 

The transesterification reactions demand large 
amounts of reagents, usually methanol and ethanol, in 
addition to requiring a longer operating time. Therefore, 
the use of catalysts may be a solution to increase their 
speed. Some catalysts have problems in the presence of 
free fatty acids and hence, the conversion process can be 
carried out in two steps: esterification followed by 
transesterification (Athar & Zaidi, 2020). Basically, two 
types of catalysts are used: homogeneous, divided into 

alkaline and acid, and heterogeneous, with alkaline, acid, 
and enzymatic catalysts. 

Homogeneous catalysts present high conversions, 
but they cannot be reused. In addition, saponification 
occurs in the presence of free fatty acids, generating 
residues and increasing the cost of the process (Helmi et 
al., 2022; Maheswari et al., 2022). According to Lôbo et 
al. (2009), homogeneous alkaline catalysts have high 
conversion efficiency, with NaOH and KOH being the 
most used due to their low cost. 

Sulfuric acid is the most used acid catalyst 
(Gebremariam & Marchetti, 2018). The main 
disadvantages of acid catalysis are the large amounts of 
reagent required, low catalytic activity, low reaction time, 
and high temperatures (Athar & Zaidi, 2020). 

The use of heterogeneous catalysts can overcome 
the problems that homogeneous catalysts present, as they 
can be reused, be sustainable, and have a lower production 
cost (Changmai et al., 2020). According to Chhandama et 
al. (2021), the most used heterogeneous catalysts are metal 
oxides, mixed metal oxides, and zeolites. One of the main 
advantages of using a heterogeneous catalyst is the ease of 
separating the biodiesel at the end of the reaction, allowing 
its reuse. 

Ahmad et al. (2020) used eggshell-based CaO as a 
heterogeneous catalyst for the conversion of Chlorella 
pyrenoidosa (NCIM-2738) oil and obtained conversion 
from 93.44 to 2.06% m/m of the catalyst, reusing the 
catalyst for six cycles. Singh et al. (2020) used β-Sr2SiO4 
as a catalyst in the conversion of Spirulina platensis oil 
and found 97.88% conversion, with the reuse of the 
catalyst for six cycles. 

Several studies have been developed in recent years 
to find efficient and sustainable catalysts. Table 2 shows a 
compilation of biodiesel production studies from 
microalgae, the used catalysts, and the found conversions. 

The studies presented in Table 2 show the different 
catalysts used to obtain third-generation biodiesel. For 
example, Farrokheh et al. (2020) used KF/KOH-Fe3O4 as a 
magnetic nanocatalyst for the conversion of Chlorella 
vulgaris oil into biodiesel, obtaining a 96.8% conversion. 

Most of the studies shown in Table 2 used 
heterogeneous catalysts in their conversion processes, 
except for the studies presented by Azcan & Yilmaz 
(2014), Jazie et al. (2020), and Kwon & Yeom (2015).
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TABLE 2. Produção de biodiesel a partir de microalgas com utilização de catalisadores. 

Microalgae strain 
Conversion 

process 
Reagent Catalyst Conditions1 

Biodiesel 
production 

(%) 
Ref. 

Euglena sanguinea 
Esterification and 
transesterification 

 Methanol 

H2SO4 (E) e 
White mussel 
shell (CaO) 

(T) 

70 °C 80  

min 
98,6 (Kings et al., 2017) 

Chlorella vulgaris Electrolysis Methanol  
KF/KOH-

Fe3O4 
25 °C 120  

min 
96,8 

(Farrokheh et al., 
2020) 

Chlorella protothecoides 
Microwave assisted 
transesterification 

Methanol  NaOH 
65 °C 5  

min  
96,82 

(Azcan e Yilmaz, 
2014) 

Chlorella protothecoides Transesterification Methanol  KOH/Al2O3 
65 °C 35 

min 
97,79 

Chlorella pyrenoidosa 
Microwave assisted 
transesterification 

Methanol 
Graphene 

oxide 
90 °C 40 

min 
95,1 (Cheng et al., 2017) 

Nannochloropsis sp. 
KMMCC 290 

Transesterification Methanol 
H2SO4 + 
CHCl3 

70 °C 90  

min  
75,3 (Kwon e Yeom, 2015) 

Chlorella sp. 
Esterification and 
transesterification 

Methanol DBSA2 
100 °C 30  

min 
99 (Jazie et al., 2020) 

Anabaena PCC 7120 Transesterification Methanol Ba2TiO4 
65 °C 180 

min 
98,41 (Singh et al., 2019) 

Chlorella sp., Scenedesmuus 
sp., Synechocystis sp., 
Spirulina sp. 

Transesterification Methanol 
Biochar 

peanut shell 
65 °C 240  

min 
94,91 (Behera et al., 2020)  

1temperature and reaction time; 2dodecylbenzene sulfonate 
 

Still comparing the studies in Table 2, the two 
highest percentages of conversion were found by Jazie et 
al. (2020) and Kings et al. (2017), with 99 and 98.6%, 
respectively. In both studies, the authors carried out the 
esterification and transesterification processes. As 
previously mentioned, the esterification process helps to 
reduce the amount of free fatty acids, preventing parallel 
reactions such as saponification. Jazie et al. (2020) 
performed the esterification and transesterification 
processes at the same time in a fluidized-bed reactor using 
dodecylbenzene sulfonate (DBSA) as a catalyst. 
According to the authors, this combination promoted 
promising results under optimal conditions, with a 99% 
conversion rate (Table 2). Kings et al. (2017) performed 
the conversion into biodiesel in two steps, first the 
esterification with sulfuric acid as a catalyst and then the 
transesterification with CaO as a catalyst, and obtained 
98.41% conversion. 

There is also the possibility of using enzymes as 
catalysts. They have the advantage of converting free fatty 
acids into biodiesel and do not present purification, 
washing, saponification, and neutralization problems 
(Athar & Zaidi, 2020; Guldhe et al., 2015). However, the 
high costs of this resource are still considered one of the 
main disadvantages of its use (Ong et al., 2021). 
Moreover, it can be inhibited by alcohol (Guldhe et al., 
2015). Makareviciene et al. (2019) used Lipozyme TLIM 
lipase as a catalyst to produce biodiesel from oil 
accumulated by the microalgae Ankistrodesmus sp., grown 
in BG11 synthetic medium, and reported a 97.69% 

conversion. Arias-Peñaranda et al. (2013) used the 
microalgae Scenedesmus incrassatulus and Novozym 435 
(C. antarctica lipase B immobilized in acrylic resin) as a 
catalyst for conversion into biodiesel and found a 
maximum conversion of 71.7 ± 0.3% after 24 hours of 
reaction, with a methanol-to-oil ratio of 6:1 at 50 °C and 
stirring at 150 rpm. 

Technologies used to assist the transesterification 
reaction 

In addition to catalysts, other technologies can      
be used to assist the transesterification reaction, such as  
the use of ultrasound, microwaves, co-solvent,               
and membranes. 

The introduction of microwaves promotes greater 
stirring between molecules, generating friction and heat, 
facilitating greater contact between phases, and helping to 
reduce operating time. Azcan & Yilmaz (2014) and Cheng 
et al. (2017) used this technology and obtained 
conversions of 97.79 and 95.1%, respectively (Table 2). 

The use of ultrasound favors mass transfer and 
increases the pressure, temperature, and surface area of the 
catalyst, thus accelerating the reaction time (Karmakar & 
Halder, 2019). Cercado et al. (2018) used ultrasound to 
assist in the transesterification of Chlorella vulgaris oil 
with KOH as a catalyst and reported 85% conversion. 

The immiscibility of alcohol and oil affects phase 
mass transfer. Co-solvents can be used to mitigate it. 
Therefore, it must be soluble in both alcohol and oil (Athar 
& Zaidi, 2020). The disappearance of the two phases 
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means that smaller amounts of alcohol are required for the 
reaction to occur. However, the addition of a co-solvent 
makes production more expensive, as it has to be separated 
from the final product in the biodiesel purification step 
(Kumar et al., 2011). 

Membranes are physical separation mechanisms, 
through which alcohol, esters, glycerol, and catalyst pass, 
while triglycerides are retained, which increases contact 
with alcohol and catalyst, thus increasing conversion and 
reducing reaction time (Athar & Zaidi, 2020). 

Supercritical transesterification is another available 
technology. It is an alternative to the use of catalysts and 
has the advantages of not generating water, facilitated 
separation, and reduced reaction times (Qadeer et al., 
2021). CO2 is the most commonly used fluid due to its low 
critical point of pressure and temperature, in addition to 
being highly available and non-toxic (Mohiddin et al., 
2021). Tobar & Núñez (2018) performed supercritical 
transesterification with CO2 as a co-solvent to convert 
Spirulina platensis oil into biodiesel. The authors tested 
the conversion using ethanol and methanol and obtained 
maximum conversions of 68 and 77%, respectively. 

Challenges and prospects 

As previously mentioned, biodiesel production 
using microalgae as raw material has many advantages, 
such as the lack of arable lands, CO2 sequestration, and 
shorter cultivation times compared to terrestrial plants, 
among others. 

According to Correa et al. (2017), in addition to not 
requiring arable lands, microalga cultivation systems 
require smaller areas than crops commonly used in biofuel 
production. The authors estimated the area required for 
biodiesel production to meet gasoline demand in several 
countries. They found that the area demanded by the 
microalga system was smaller comparing the area needed 
for microalga cultivation with that of soybean, coconut 
(biodiesel), and sugarcane (bioethanol) in these scenarios 
in Brazil, being equivalent to 3% for soybean, 24.4% for 
sugarcane, and 20.4% for coconut. Also, in the same area, 
microalgae are capable of producing raw materials for 
different types of biofuels, such as biodiesel and 
bioethanol (de Mendonça et al., 2022). 

Despite these advantages, the use of microalgae as 
raw material still presents obstacles, mainly the conversion 
process into biodiesel. Several technologies can be used to 
optimize the transesterification reaction but the 3G 
biodiesel production process faces problems to                 
be implemented in full scale even with the help of        
these technologies. 

One of the problems that must be considered in the 
conversion process is the need to use high amounts of 
alcohol in the reaction. Methanol is the most commonly 
used alcohol, but it raises concerns about its toxicity. The 
challenge is to use ethanol in such a way that it has similar 
efficiency to methanol. Another point that disfavors the 
implementation is that catalysts can make the process more 
expensive, in addition to demanding additional costs in the 
separation at the end of the conversion. Technologies have 
been studied to assist the conversion, but the 
implementation of full-scale production should be further 
studied to obtain a better view of the costs and gains of 
large-scale biodiesel production. 

 

In a technical-economic analysis, Tredici et al. 
(2016) evaluated the production of Tetraselmis suecica in 
a 1-ha plant. The analysis showed that the production of 36 
t of biomass would cost € 12.4 kg−1. The authors observed 
that the cost could be reduced by half in a location with a 
more favorable climate (higher temperatures, as in most 
regions of Brazil). Furthermore, costs would decrease to € 
5.1 kg−1 by increasing production to an area of 100 ha. The 
results of this study in the demonstrative phase were 
promising, as they show that increasing production can 
reduce the cost of production. 

In the specific case of Brazil, the creation of public 
policies to encourage the production of this biofuel, as 
occurred with ethanol at the time of ProÁlcool, is 
necessary for this sector to grow. In 2004, the federal 
government created the Brazilian National Biodiesel 
Production Program (PNPB), which sought to introduce 
biodiesel into the country’s energy matrix. This 
introduction was carried out by mixing biodiesel with 
diesel (Brasil, 2021). However, that mixing became 
mandatory only in 2008 and the percentage of mixing 
grew from 2 to 13% from then until 2021, with an 
expectation of reaching 15% by 2023 (ANP, 2021b). 

Similarly, the creation of RenovaBio was an 
initiative of the federal government after signing the Paris 
Agreement and seeks to encourage the production and use 
of biodiesel in Brazil, as well as regulate the biofuel 
market (Denny, 2020; Rodrigues, 2021). Grangeia et al., 
(2022) recommended a review of the program’s policies 
and objectives due to the uncertainties of the market after 
the Covid-19 pandemic. Despite these uncertainties, the 
volume of biodiesel sold in Brazil in 2020 grew 11.5% 
compared to 2019, contrasting with the 5.97% retraction of 
the national fuel market (ANP, 2021b), indicating the great 
potential that Brazil has to grow in  this sector. 
 
CONCLUSIONS 

Microalgae are undeniably a promising source for 
biofuel production. They have a high capacity to adapt, 
which implies that they can be grown in different culture 
media. In addition, CO2 of industrial origin can be added 
into the medium to accelerate growth, which would reduce 
the emission of this gas into the atmosphere. Although the 
transesterification reaction is easily performed, obtaining 
conversions that meet the standards of legislation is still a 
challenge, mainly on a full scale. Catalysts and auxiliary 
technologies offer a solution to increase conversions, but 
the technical-economic feasibility of producing 3G 
biofuels still needs to be studied. The use of catalysts can 
reduce process time and increase production. There is also 
the possibility of producing energy through co-digestion, 
which would fit the concepts of circular economy and 
bioeconomy, making the agro-industrial sector more 
sustainable and profitable. The challenges to be overcome 
so that the production of third-generation biodiesel is 
viable are still many. Brazil is a world reference in 
sugarcane-based ethanol production and also has great 
potential for the production of third-generation biofuels. 
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