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Resumo
Neste estudo, considera-se um problema de dimensionamento e programação de lotes de produção de bebidas não 
alcoólicas à base de frutas. O problema é caracterizado por horizonte de planejamento com múltiplos períodos, 
processo de produção com máquinas distintas, restrições de capacidades de produção e tempos de preparação das 
máquinas independentes da sequência de produção, além de condições especiais de preparações, como limpezas 
obrigatórias das máquinas dentro de limitações de tempo de produção. Para tratar o problema, propõe-se uma 
abordagem de solução baseada em modelos de programação matemática e uso de softwares de otimização. Os modelos 
são modificações de modelos de programação linear inteira mista conhecidos na literatura de dimensionamento 
e programação de lotes de produção. Porém, ao invés de considerar múltiplas máquinas em paralelo, os modelos 
propostos exploram outras possíveis configurações de máquinas para representar apropriadamente os processos de 
produção envolvidos na produção de bebidas à base de frutas. A abordagem proposta é validada por meio de um 
estudo realizado em uma fábrica de sucos e néctares de frutas no interior do Estado de São Paulo, em que as soluções 
obtidas pelos modelos foram testadas e analisadas em situações realistas da empresa. Os resultados mostram que a 
abordagem tem bom potencial de aplicação prática.
Palavras-chave: Indústria de bebidas não alcoólicas; Planejamento da produção; Programação inteira mista; 
Dimensionamento de lotes.

Abstract
This study considers a production lot-sizing and scheduling problem of non-alcoholic fruit juice beverages. 
The problem is characterized by a multi-period planning horizon, a production process with different machines, 
capacity constraints and setup times independent from the production sequence, as well as special conditions 
regarding required machines clean-in-place (CIP) within production time periods. To deal with this problem, we 
propose a solution approach based on mathematical programming and using optimization software. The models are 
modifications of mixed integer programming models known in the lot sizing and scheduling literature. However, 
instead of considering multiple parallel machines, the proposed models explore other possible configurations of 
machines to properly represent the production processes involved in producing fruit beverages. The proposed 
approach is validated by a study carried out in a fruit juice company located in the interior of Sao Paulo State, 
Brazil, in which the solutions obtained by the models were tested and analyzed in real situations at the company. 
The results show that the approach is potentially good for practical applications.
Keywords: Non-alcoholic fruit juice beverage industry; Production planning; Mixed integer programming; Lot sizing 
and scheduling problem.
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1 Introduction
Over the last few years, there has been a significant 

growth in the production of non-alcoholic drinks in Brazil 
(ABIR, 2010; Diário Econômico, 2011). The potential 
increase in the consumption of these products, the 

growth of the number of items manufactured by the 
industry, as well as the competition and demands of 
this market has resulted in companies being concerned 
about improving their production processes, especially 
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in areas directly involved with production, such as 
production planning and control. In 2015, it was 
estimated that there will be a growth in the production 
of the entire drink sector, according to the Beverage 
Production Control System - SICOBE (SICOBE, 
2005). One of the recurrent challenges in this sector 
is to obtain efficient production programs, which 
should consider the time available for production, the 
input availability, the demands of every period, the 
machines to be set up and the changeovers between 
items to be produced. It is also important to take into 
consideration the synchrony between the two main 
production phases: preparing syrups and packaging 
beverages. Some studies about non-alcoholic drink 
companies in Brazil, more specifically concerning the 
production of soft drinks and other carbonated drinks 
(Toledo et al., 2007; Ferreira et al., 2009) and fruit 
juice drinks highlight the difficulty in determining 
effective production plans (generally manually).

During the development of this research, various 
visits to typical companies of the beverage industry 
in the State of São Paulo were made. During these 
visits, the production managers and programmers of 
these companies reaffirmed the difficulty in taking 
lot sizing and scheduling decisions. Such challenges 
were also observed in fruit juice drink production 
lines, which are the object of this study. Having the 
collaboration of these companies, we chose one of 
these lines in order to meet the objectives of this study. 
The selected company has typical characteristics 
of other production lines of beverage companies. 
The fruit-based drink production line was selected 
because this type of drink has shown increasing trends 
over recent years (ABIR, 2010). The consumption 
of ready-to-drink fruit-based beverages is still below 
the consumption of soft drinks. On the other hand, 
this is seen by some authors as an indication of its 
growth potential (Pirillo & Sabio, 2009).

The lot sizing and scheduling problem in the fruit 
juice beverage industry consists of determining the 
lot size of different types of fruit juices (items) to 
meet the demands in each period of a finite planning 
horizon. Each beverage production line has its own 
characteristics. In the fruit juice line studied in this 
work, the setup time, for instance, is not sequence 
dependent, unlike other beverage production lines. 
In most studies, such as in carbonated drinks, the 
setup operations in the production lines are widely 
dependent on the sequence of production (Toledo et al., 
2007; Ferreira et al., 2009). In addition, in fruit juice 
production, tanks and filling machines must be cleaned 
within production time constraints. It is mandatory to 
clean the lines (this is called CIP - Clean-in-Place) after 
a certain time of production, regardless of whether 
there is change of beverage flavor or not in the fruit 
juice line. If there is a change of flavor (item), the 
same cleaning is required, and the cleaning time does 

not vary with the flavor of the product. A preliminary 
study in a fruit juice production line can be found in 
Leite (2008), where machine setups do not depend 
on the result of production batches.

The lot sizing problem and its extensions have been 
widely investigated by the scientific community and 
by consultants related to businesses, motivated by 
applications in industrial environments. Comprehensive 
reviews about lot sizing can be found in Drexl & 
Kimms (1997), Karimi et al. (2003), Jans & Degraeve 
(2008), Buschkühl  et  al. (2010) and Glock  et  al. 
(2014). Among the lot sizing models, linear models 
such as the Capacitated Lot Sizing Problem (CLSP) 
and the General Lot Sizing and Scheduling Problem 
(GLSP) stand out. CLSP is characterized by being big 
bucket, meaning that several items can be produced in 
each period. The problem considers that the limited 
resources are used for production and to set up machines. 
The CLSP with capacity constraints and setup times 
can be found, for example, in Trigeiro et al. (1989). 
The GLSP was proposed by Fleischmann & Meyr 
(1997) and Meyr (2002). It consists of determining 
lot sizes of several products and scheduling them 
in a single machine or parallel machines subject to 
capacity constraints. Each macro period is divided 
into smaller periods called micro periods. The duration 
of each micro period is so short that only one type 
of item can be manufactured in it. Hence, we obtain 
the sequence in which each item should be produced 
in each macro period.

The lot-sizing and scheduling problems have 
been widely used in several productive sectors 
(e.g., Araujo et al., 2008; Almada-Lobo et al., 2008; 
Luche et al., 2009; Toso et al., 2009; Santos & Almada-
Lobo, 2012; Marinelli et al., 2007; Kopanos et al., 
2010, among many others). Some studies are found 
in the production of non-alcoholic drinks such as soft 
drinks, water, tea and juice, but most of these studies 
consider soft drink production lines. For example, 
Toledo et al. (2007) presented an integrated model 
for a lot sizing and scheduling problem in a soft drink 
industry based on the GSLPPL (GSLP with parallel 
machines) from Meyr (2002). The production involves 
two interdependent levels with decisions concerning 
the storage of raw materials and bottling beverages. 
The aim was to determine the design and programming 
of raw materials in the tanks to produce syrups and 
bottle packaging in the lines where times and costs 
depend on the type of item previously stored and 
packaged. In the bottling lines, the setup time and 
cost depend on the type of previously stored and 
bottled item. Other related studies can be found in 
Toledo et al. (2009, 2014, 2015).

Clark (2003) explores several heuristic solution 
approaches for a mixed integer programming model, 
based on the CLSP, to address the production problem 
in a beverage company that fills cans and bottles, 
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and the process of filling the mixed liquid in cans 
was chosen for a pilot project. In Rangel & Ferreira 
(2003), a mixed integer programming model is also 
developed, nonetheless based on GLSP, for a lot sizing 
and scheduling problem in a soft drink company with 
sequence-dependent setup costs and setup times. 
In Ferreira  et  al. (2009), these studies have been 
extended to deal with cases in the soft drink industry 
with several filling lines and with several available 
tanks to prepare syrups. Regarding the problem, the 
production bottleneck alternates between the liquid 
preparation stage and the bottling one, therefore 
synchronization of the production between these 
stages is required. Other related studies appear in 
Ferreira et al. (2010, 2012) and Defalque et al. (2011).

Leite (2008) is the only study found in the literature 
review that deals with the production problem of 
a line of fruit beverages. A preliminary study was 
conducted in a beverage industry to find out about 
the particularities of the production lines involved, 
and a model based on Ferreira et al. (2009) and the 
GLSP were developed to analyze it. In this study, 
three identical filling machines serviced by a single 
tank were identified. Thus, the three machines can 
fill only one type of drink flavor at a time.

In this paper, we consider a lot sizing and scheduling 
problem in beverage plants which produce fruit 
beverages with some similarities to the problem 
studied in Leite (2008). However, although the 
characteristics of the product are the same (with 
setup time and setup cost that are non-dependent 
from the production sequence), the attributes of the 
production line are different as the process is different 
and involves various filling machines and more 
tanks, mixers and pasteurizing, as presented below. 
In this paper, the filling machines will be presented 
as packaging machines for the sake of simplification. 
The problem is initially represented by a mathematical 
model based on GLSPPL (Meyr, 2002), used to avoid 
the problem of maximum lot sizes in these types 
of companies, due to mandatory cleaning within 
production time constraints. The obtained solution 
by the model consists of determining the lot sizes of 
items and the production sequence, however these 
lots can be interchanged within each period without 
loss of generality, due to the fact that the setup is 
sequence independent of the production of the items. 
Considering the previous model, a simpler model is 
developed to represent the problem based on the CLSP. 
This new model also considers all characteristics of 
the production process such as mandatory cleaning, 
but simplifies decisions about scheduling lots. Both 
models are solved by CPLEX software using generated 
examples based on realistic data from the company 
with planning horizons of a few weeks.

The structure of the paper is as follows. The next 
section briefly describes the production process of 

fruit beverages according to the reality of the studied 
company and also provides information about how the 
production planning is carried out in this company. 
The proposed mathematical models are presented in 
Section 3. The computational results are described 
in Section 4. Finally, in Section 5, the conclusions 
and perspectives for future research are discussed.

2 Production process
This research was supported by the cooperation 

of a factory in São Paulo. This factory produces soft 
drinks and fruit juice drinks. The need for a more 
effective production planning technique was observed 
due to the demand and type of product, especially on 
the line related to the group of non-carbonated and 
fruit juice products. This line is the market leader 
in its sector, and in this study it is renamed Line 1. 
Line 1 produces five different flavors of fruit juice 
drinks (pineapple, orange, passion fruit, strawberry 
and grape) and it is different from the other lines of the 
factory due to the fact that its setup time is sequence 
independent, unlike the soft drink lines, for example. 
On the other hand, the product has characteristics 
whereby the tanks and bottling machines need to 
be cleaned every 48 hours, which is not absolutely 
necessary for the other drinks. The cleaning process 
consists of different cycles that are recirculated through 
the tanks, pumps, valves and other equipment in the 
process flow. It is important to note that once the 
line has been cleaned, production should be started 
as soon as possible because the line is not perfectly 
hermetic. Production can be continuous, which means 
the production can be resumed in the last period.

The production of drinks generally has two 
main stages: liquid flavor preparation and bottling 
(packaging). In the first stage, the main raw material, 
the liquid flavor or syrup, is prepared in tanks of 
different capacities. The tanks should work with a 
minimum liquid quantity to ensure its homogeneity. 
To properly mix the necessary ingredients, the tank 
propeller must be completely covered. In the second 
stage, the liquid is bottled in the production lines. 
A production line is made up of a conveyor belt 
and machines that wash the bottles, fill them with a 
combination of liquid flavor and water (carbonated or 
non carbonated) and then seal, label and pack them.

The two stages are shown in Figure 1. The syrup and 
water are put into the mixer in order to homogenize 
the two components. The mixture is then put into 
the preparatory tank and, afterwards the buffer tank. 
The preparatory tank and the buffer tank maintain 
the mix homogeneous as both have helixes at the 
bottom of the tank. The purpose of the preparatory 
tank is to keep the buffer constantly full, therefore 
serving the purpose of an intermediate stock. In other 
words, although limited, it is as though the buffer tank 
had always enough capacity (infinite), because it is 
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constantly provided by the preparatory tank. It takes 
approximately two hours to fill the preparatory tank 
for the first time and fifty minutes to fill the buffer. 
After that, the supply is constant. The bottleneck 
of this line production is the packaging machines. 
In  Figure 1, the four packaging machines are called 
L1, L2, L3 and L4.

It can be observed in Figure 1 that the preparatory 
tank has a capacity of 12m3 and it supplies two buffer 
tanks with capacities of 12 m3 each. Buffer tank 1 only 
serves the L1, L2 and L3 machines, each one with a 
packaging capacity of 6,000 packages per hour, and 
buffer tank 2 supplies the L4 machine, with a capacity 
of 7,500 packages per hour. Pasteurizers 1 and 2 shown 
in the figure, whose function is to destroy bacteria, 
have various capacities. The maximum capacities 
are 18,700 packages per hour and 32,500 packages 
per hour, respectively. On the other hand, these 
maximum capacities are not reached because the L1, 
L2 and L3 machines have total nominal capacities of 
18,000 packages per hour. The cleaning process of 
these packaging machines is generally simultaneous 
and it always takes more time than cleaning the tanks, 
therefore when the machines are ready to work, the 
buffer tank will be full.

In this study, we also studied a change in the 
productive process described in Figure 1 including 

a new bottling machine, called L5, with a packaging 
capacity of 11,200 packages per hour, supplied by 
buffer 2 with machine L4. Buffer 2 also supplies 
the L4 machine. This process with the L5 machine 
went into the adaptation phase in the company while 
developing this study, therefore it is also considered 
in the study. However, not all the combinations of the 
machines are feasible for operation in Figure 1 or in the 
second configuration of this production process with 
machine L5. For example, with a limited capacity, it is 
not feasible to produce less than 12,000 packages/hour, 
which means that at least two of the machines L1, 
L2 or L3 must be connected (if machines L4 and L5 
are off). Similarly, it is not feasible to produce only 
using machine L4 or at least machine L5 connected 
(if machines L1, L2 and L3 are turned off), both with 
smaller capacities than 12,000 packages/hour.

As can be seen, buffer tank 1 supplies the L1, L2 
and L3 packaging machines, and buffer 2 supplies the 
L4 machine as shown in Figure 1 and the L4 and L5 
machines in the modified configuration. It is worth 
mentioning that although the buffer tanks have the same 
capacity, the capacities of the pasteurizers are different: 
the pasteurizer connected to machines L1, L2 and L3 
have a maximum capacity to process 18,700 packages 
of 200 ml per hour, while the pasteurizer connected 
to machines L4 and L5 have a processing capacity 

Figure 1. Line 1.
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of 32,500 packages per hour. The washing process of 
all the machines is generally done at the same time 
and takes four hours. According to the production 
programmer, it would take approximately two hours 
to clean only one machine, while the cleaning time 
of all the machines is four hours. Therefore, there 
was no reason to carry out the washing process in 
only one machine at a time.

The buffer tanks supply two different groups 
of packaging machines. Once we consider that the 
capacity of the tanks is large enough for the purposes 
of scheduling the production, the problem considered 
in this article can be considered as single-stage, 
considering that there is always enough syrup to 
supply the packaging machines. Hence, we approach 
the problem of lot sizing and scheduling the fruit 
based drinks considering a mixer and a preparatory 
tank that supply two buffers as shown in Figure 1.

The production scheduling in the company is 
done manually. The demand data of the 5 products 
are obtained through a second company (which is a 
partner to the same business group) that purchases 
products made by Line 1. Considering the demand 
data, the production programmer distributes the 
obtained demand of the month in weeks. These 
demand data are shared with the liquid preparation 
sector. These amounts are then passed to the syrup 
sector, which calculates the amount of kits needed to 
meet the demand. A relevant feature of Line 1 is that 
production lots generally last 48 hours. Production 
flexibility is achieved by changing the number of 
machines designated to that “batch” and by the speed 
of the pasteurizer. Stock quantities do not interfere 
in the production planning.

The stock created by the production planning is 
controlled by a partner of the business group that 
monitors the stock levels and labor distribution in the 
factory. Therefore, the task of optimizing lot sizing 
and scheduling is not affected by stock numbers. 
Consequently, the product programmer aims to 
meet the demand considering setup times without 
backlogging, but with no focus on inventory. On the 
other hand, it is advantageous to schedule lots that last 
at least 48 hours in order to avoid unnecessary setups.

The flexibility of the lot size production consists of 
sending one of the packaging machines for maintenance 
and reducing the speed of the pasteurizer, so that 
the product is not wasted by excessive cooking. 
Therefore, this results in the lot of 48 hours having a 
lower number of products. The programmer forwards 
the schedule to the production line supervisor, who 
places the quantities in lots of 48 hours. However, 
it is not always possible to meet the demand in lots 
of 48h. In this case, the production supervisor asks 
for the lowest nearest multiple demand and consults 
the programmer about the possibility of producing 
another lot.

Fractions of kits can be used in the plant, which 
is the measurement of syrup used. The minimum 
fraction is pre-set at 0.25 kit, as there must be a 
minimum amount of liquid in the tank so that the 
helix for the mixture can rotate. However, the fraction 
normally used by the production programmer is 
0.5 kit, except for the strawberry and orange flavors. 
The correspondences can be seen in Table 1. These 
fractions are used because the tanks have a capacity 
of 12m3. If the calculated amount does not provide 
a whole number of fractions of kits or batches, the 
manager in charge of the syrup makes the largest 
whole number of batches contained in the calculated 
amount and consults the scheduler about making one 
more batch to cover the fraction or leave it for the 
following week, i.e. rounding it up or down.

For example, consider that the programmer sent a 
production of 120,000 boxes of grape flavor, which is 
equivalent to 12×120×103 units of 200mL = 1,440,000 
packages of grape flavored drinks (288,000 liters) 
to the manager in charge of the syrup. According 
to Table  1, 14.4 kits would be needed. In this 
example, the manager in charge of the syrup would 
consult the programmer to know if they would use 
14.5 or 14 kits of the grape flavor. In batches, this 
would mean 29 or 28 batches, respectively. For details 
of this fruit drink production process, please consult 
Pagliarussi (2013).

3 Problem modeling
In this section, the one-stage models to represent 

the fruit juice drink production planning are described. 
Model I is based on GLSPPL and Model II is based 
on CLSP. Model I can approach the production 
problem in order to maximize the contribution margin 
or minimize inventory, backlogging and setup costs. 
The two approaches are respectively called Model 
Ia and Model Ib. Model Ia is proposed taking into 
consideration the suggestions made by the company´s 
production manager, whilst Model Ib is more common 
in the lot sizing literature.

The main difference between Models Ia and Ib is the 
objective function. Model II also aims at minimizing 
production costs, similar to Model Ib. Model solutions 
can be interpreted as feasible production plans, 
optimizing a given criteria and providing lot sizes 

Table 1. Flavor, batch and kit proportion.

Flavor
Amount 

produced by 
kit (L)

Batch  
(kit fraction)

Orange 12,000 1
Grape 20,000 0.5
Passion fruit 24,000 0.5
Pineapple 24,000 0.5
Strawberry 16,000 0.75
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of each drink flavor in order to meet demands. Every 
model presented in this study takes into consideration 
sequent independent setup times.

It is mandatory to consider that it takes at least 
two packaging machines to make production viable 
in Line 1, such as shown in Figure 1. Therefore, in 
the following mathematical models, we consider 
parameter M as the set of all possible combinations of 
operating machines. Taking Figure 1 as an example, 
where machines L1, L2, L3 and L4 are presented, 
the viable combinations are shown in Figure  2. 
Every combination represents machines for which 
the sum of the packaging capacity is equal or more 
than 12,000 packages per hour. Other combinations 
including machine L5 are defined similarly. Since 
machines L1, L2 and L3 are equal, some of the 
combinations are symmetric and can be left out (i.e. 
any combination regarding two of the following 
L1, L2 or L3), without loss of generality. Thus, 
the cardinality of set M is 5, that is: M ={(L1,L2); 
(L1,L2,L3); (L1,L4); (L1,L2,L4); (L1,L2,L3,L4)}.

Another aspect that should be taken into consideration 
when developing models is the synchronization of 
production machines. According to the production 
programmer, all machines start working at the same 
time. However, there may be some breaks or pauses 
during the production runtime. L1, L2 and L3 are 
synchronized machines most of the time as they are 
connected to the same pasteurizer, but the timing of 
L4 and L5 machines with L1, L2 and L3 is adopted in 
the model as a combination for the sake of simplicity.

The model parameters and data inputs are:

T	 number of micro periods, t ∈ T
J	 number of liquid flavors, j ∈ J
St	 set of micro periods in each period t, s ∈ St

M	 set of machine combinations.
am	 processing time of one unit using machine 

combination m ∈ M (not dependent on the 
flavor)

Lmax	 maximum production limit, measured in time 
units

djt	 demand for item j in period t
bj	 changeover time for item j to another

qj	 minimum lot size of flavor j to ensure the 
liquid homogeneity

Kt	 total time capacity in period t

3.1 Model I

Model I is based on the GLSPPL model (Meyr, 
2002), but with some modifications in order to 
include the maximum production constraint. Model I 
represents a situation where there is one preparatory 
tank linked to two buffer tanks, connected to both 
pasteurizers. After the pasteurization process, the next 
stage is packaging, using machines L1, L2 and L3 
connected to pasteurizer 1 and machines L4 and L5 
connected to pasteurizer 2. At first, in this study, 
information obtained in the factory was used, such 
as not taking into consideration either inventory costs 
or idle machine costs. Backlogging costs were not 
available at that time. Hence, the fruit juice based 
drink production planning can be stated as follows. 
Define the lot sizes and production scheduling taking 
into account the fruit juice drink demands and the 
capacity of packaging machines, so that the profit 
margin is maximized (Model Ia), as suggested by the 
factory production manager. Afterwards, we altered 
the objective function in order to minimize the overall 
costs, which is discussed further (Model Ib)

Model Ia - additional parameters

pj	 profit margin of item j

Variables

xjmts	 production quantity of item j in machine 
combination m in micro period s of period t;

Ijt	 inventory for item j at the end of period t;
zjmts	 1, if item j is produced in machine combination 

m during micro period s of period t; 0, otherwise.

Model Ia

max jmtsj
j J m M t T s St

p x
∈ ∈ ∈ ∈
∑ ∑ ∑ ∑    	 (1)

Subject to:

( 1)          ,
t

j t jmts jt jt
m M s S

I x I d j J t T−
∈ ∈

+ = + ∀ ∈ ∀ ∈∑ ∑ ,	 (2)

, 
t t

m jmts j jmts t
m M j J s S m M j J s S

a x b z K t T
∈ ∈ ∈ ∈ ∈ ∈

+ ≤ ∀ ∈∑ ∑ ∑ ∑ ∑ ∑ ,	 (3)

, ,  ,  ,  jmtsjmts j
j J m M s St t Tqx z≥ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ,	 (4)

1  ,  ,  jmts
m M j J

s St t Tz
∈ ∈

≤ ∀ ∈ ∀ ∈∑ ∑ ,	 (5)Figure 2. Viable combinations considering four packaging 
machines.
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max , ,  , jmtsjmts
m

L j J m M s St t T
 x za

 
≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  

 
,	 (6)

{ }0,1 , 0, 0, , , ,   jmts jtjmts j J m M s St t Txz I∈ ≥ ≥ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ .	 (7)

The objective function (1) maximizes the total 
contribution margin. Constraints (2) are the inventory 
balance equations and together with 0jtI ≥ , for all j 
and t, they ensure that the demand is met without 
backlogging. Constraints (3) represent the capacity 
constraints in each period, that is, the time spent on 
production and on setup cannot exceed the available 
time in that period. Constraints (4) establish a minimum 
lot size of production to meet the minimum amount 
of liquid inside the preparatory tank for the helix to 
rotate. The choice of machines and the product to 
be produced in each micro period are ensured by 
constraints (5). Constraints (6) avoid the production 
time longer than Lmax and also ensures that production 
can occur if the combination of m machines is setup 
to item j ( 1jmtsz = ).When a flavor is produced for a 
period greater than Lmax, cleaning will be required 
after this period and then production can continue. 
These constraints also ensure cleaning when there 
is a change of products. The domain of the variables 
is defined by constraints (7).

In order to prevent symmetric (i.e., equivalent) 
solutions in the micro periods, the following constraints 
were added to the mathematical model:

( 1) , 1.jmt s jmts
j J m M j J m M

t T sz z−
∈ ∈ ∈ ∈

≥ ∀ ∈ >∑ ∑ ∑ ∑ 	 (8)

Constraint (8) was proposed by Fleischmann & Meyr 
(1997) to avoid redundancy in the original GLSP: if a 
sequence of micro periods within a period is assigned 
to the same product, the production quantity of this lot 
or part of this could be distributed arbitrarily among 
these micro periods without changing the scheduling 
and the value of the objective function (idle micro 
periods distributed).

It is worth mentioning that in Model Ia, variable 
 jmtsz indicates, by constraints (4), that there will only 

be production if its value is equal to 1. However, 
despite being described as a binary variable which 
indicates production or not, in constraints (3) it is 
linked to the setup time, which ensures that every 
time there is production, the tanks will also be cleaned 
and the machine preparation time will be counted 
within the capacity.

To illustrate a solution to Model Ia, a small-size 
instance is considered. The instance contains 2 items, 
2 machines with the same capacity, 2 combinations 
of machines, 3 periods with 10 micro periods each, 
and K = 144 h. Since the two machines have the same 
capacity and considering that (L1, L2) = (L2, L1), it 
follows that: M = {(L1); (L1, L2)}.

The parameter  ma , the time spent on production 
using the combination of machines m M∈ , was 
calculated using the result of dividing number 1 by 
the nominal capacity of the combination of machines, 
in packages per hour, and then multiplying it by 12. 
The  problem considers, as units of the decision 
variables, boxes with 12 units. As the values can be 
very small numbers, the value of  ma  was multiplied 
by 1,000, i.e., the values correspond to the processing 
time of a thousand boxes of 12 units. Considering 
the first part of the set in Figure 2, the combination 
(L1, L2), the parameter 2a  is determined, which is 
the time needed to produce one thousand boxes with 
12 units each. For this combination, the processing 
time has a duration of 1 hour. 

2
1 12 1,000 1

(6,000 6,000)
a h= × × =

+
.

Thus, for Model Ia, 1 2( , ) (0.5;  1)a a = . The solution 
for Model Ia for the illustrative example is shown in 
Figure 3. Note that the solution uses the full capacity 
(144 hours) and is represented in Figure 3. The graph 
contains the values of the main decision variables 
and the duration of the micro periods. The absolute 
value of variable x, in boxes with 12 units, is also 
presented. Then, its value, in units of time, is obtained 
by multiplying it 0.5, which is the selected processing 
time by Model Ia in this example.

We emphasize that although the model shows 
solutions with the lots in a defined sequence, the 
sequence can be interchanged in the period due to 
the fact that the setup is sequence independent. Note 
that the productions are placed in the first micro 
periods (1, 2 and 3, in this case), which is ensured 
by constraint (8) that prevents symmetric solutions. 
The  objective function value in this example was 
792 boxes of 12 units of 200mL of product each. 
This  value can be conferred by adding all the 
productions jmtsx  shown in Figure 3.

The computational results reported in Section 4 
with Model Ia show that many of the instances have 
no feasible solution, i.e. no production plans that 
meet all demands without backlogs, which led to 
the change of the objective function in Model Ia to 
allow backlogging (delay in delivering products), 
as discussed below.

3.2 Model Ib
As mentioned in Section 3, Model Ib was changed 

in order to minimize the overall production costs, such 
as setup, inventory and backlogging costs.

hj	 inventory cost of item j
gj	 backlogging cost of item j
csj	 changeover cost of item j



Optimizing the production scheduling of fruit juice... 71

Model Ib - additional variables:

Ujt	 Backlog of item j at the end of period t

Model Ib

( )min j jmts j jt jt jt
j J m M t T s St j J t T

cs z g U h I
∈ ∈ ∈ ∈ ∈ ∈

+ +∑ ∑ ∑ ∑ ∑ ∑ , 	 (9)

Subject to (3), (4), (5), (6), (8) and:

, 1 1 ,  ,
t

j t jt jmts jt jt jt
m M s S

I U x I U d j J t T− −
∈ ∈

− + = − + ∀ ∈ ∀ ∈∑ ∑ ,	 (10)

{ }, 0,1 , 0, 0,

0 , , ,   
jmts jtjmts jt

j J m M s St t T
x Uz I∈ ≥ ≥ ≥

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
.  	 (11)

Note that the objective function (9) now minimizes 
the overall production costs such as setup, inventory 
and backlogging. Constraints (10) are the inventory 
balance equations, and now balance production, 
inventories and backlogs with demand. Constraints 
(11) describe variable domain.

3.3 Model II
Although the Models Ia and Ib show solutions 

with the lots in a defined sequence, the sequence can 
be interchanged in the period due to the fact that the 
setup is not sequence dependent, as mentioned before. 
Therefore, the next question is relevant: Why should 
a model based on the GLSPPL be used, which in the 
most general case, provides sequencing decisions, 
instead of basing it directly on a simpler model, for 
example, on the CLSP, which does not include such 
decisions? Thus, a simplified model was developed, 
representing the same problem, but disregarding the 

sequencing decisions. The parameters and decisions 
variables of Model II remain the same as Model I, 
with the exception of:

Variables:

xjmt	quantity of beverage j produced in the combination 

of machines m in period t 
t

jmt jmts
s S

x x
∈

 
 =
 
 

∑ ;

zjmt	number of changeovers performed to produce 
the beverage j in the combination of machines 

m in period t
t

jmt jmts
s S

z z
∈

 
 =
 
 

∑ .

In Model II, the concept of micro periods is not 
used, as the sequence in which the lots are produced 
in the period can be altered without loss of generality. 
Note that the variables in Model II can be seen as 
simple replacements of variables jmtsx  and jmtsz  of 
Model I.

Model II:

min ( )jtjtjmt jtj J m M t T j J t T
j jz Ugcs h I

∈ ∈ ∈ ∈ ∈
+ +∑ ∑ ∑ ∑ ∑ ,	 (12)

( 1) , 1   ,   ,j t jtjmt jt jt j t
m M

j J t Tx U d UI I− −
∈

+ + = + + ∀ ∈ ∀ ∈∑ ,	 (13)

,               jmt tm jmt j
m M j J m M j J

t Ta x b z K
∈ ∈ ∈ ∈

+ ≤ ∀ ∈∑ ∑ ∑ ∑ ,	  (14)

, ,  ,                  jmtjmt j
j J m M t Tqx z≥ ∀ ∈ ∀ ∈ ∀ ∈ ,	 (15)

Figure 3. Solution for Model Ia.
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max , ,  jmtjmt
m

L j J m M t T
 x za

 
≤ ∀ ∈ ∀ ∈ ∀ ∈  

 
,	 (16)

, 0; 0, 0, 0 , ,   jmt jmt jtjmt jt j J m M t Tx Uz z I∈Ι ≥ ≥ ≥ ≥ ∀ ∈ ∀ ∈ ∀ ∈ . (17)

The objective function (12) is to minimize the sum 
of setup costs, inventory holding costs and backorder 
costs similar to Model I. Constraints (13) and (14) are the 
inventory balance equations and the capacity limitation of 
the machine, respectively. Constraints (5) are disregarded 
in Model II as there is a possibility of producing several 
products in the same period. The domain of the variables 
is defined by constraints (17).

In sequence, constraints (15) and (16) are discussed in 
more detail. When replacing the variables jmt jmts

s St
x x

∈
= ∑  

and jmt jmts
s St

z z
∈

= ∑ , the minimum and maximum lot 
sizes constraints, (15) and (16) respectively, (similar 
to (4) and (6)), became either surrogate or substitute 
constraints of micro periods s. For this reason, these 
constraints are relaxations of the constraints of Model 
I and apparently do not ensure that each lot of product 
j, in the same period t, will have the minimum lot 
size jq  and the maximum size max

m
L

a
  
 

. In this 

case, Model II could produce an infeasible solution 
to the problem defined in Section 2. However, in the 
computational experiments, a problem instance was 
not found where this happened. In fact, it is always 
possible to divide a large lot jmtx  obtained by Model 
II (if it exceeds the maximum lot) by the number of 
setups performed in this solution, that is, jmtz , and, to 
obtain lots smaller than max

m
L

a
  
 

. The same argument 

is valid for the constraint of the minimum lot ( jq ).
Consider the following numerical example: 2

jq =

(minimum lot size of product j) and max 10
m

L
a

  = 
 

. 

Assuming a solution in which the lot size of item j 
is 24jmtx =  and the number of setups is 3jmtz = , the 
result is the quotient of 8. This number is higher than 
the minimum lot size and lower than the maximum 
lot size, therefore it fulfills the constraints of the 
minimum and maximum lot sizes. Moreover, we 
must consider the interpretation of the programmer, 
who may choose to make two lots of size 10, not 
exceeding the maximum lot, and another smaller lot 
(equal to 4). That is, this simple post processing in 
the solution of Model II produces new lots, which 
will always be feasible from the point of view of 
minimum and maximum lots. It should be noted that 
Model II cannot be regarded as the classic CLSP, due 
to the fact that variable jmtz  is now integer, instead of 
binary, as it is considered in the CLSP.

Models Ia, Ib and II differ from the mathematical 
model in Leite (2008) because they represent a 
different production process and due to the fact that 
they treat machines as combinations of machines, 

rather than just a configuration as in Leite (2008), thus 
enabling one or more machines to be stopped if it is 
more advantageous. Furthermore, unlike the model 
in Leite (2008), the filling machines are considered 
the bottleneck in production, while buffer tanks are 
assumed to have enough capacity to ensure continuous 
production, as discussed earlier. The model in Leite 
(2008) considers that the productions should be multiples 
of an integer value, referring to the kit size and how 
many liters of beverage the kit produces (Table 1). 
To address this issue, we consider the minimum lot 
size constraints in Models I and II.

4 Computational tests
Data concerning demands, changeover times 

between beverages in filling machines and tank 
capacity among other data necessary to solve the 
problem were kindly provided to this study by the 
factory. To perform the models I and II computational 
tests, we used a computer with an Intel Core ™ 
i5-2450M CPU 2.50GHz processor and 6GB RAM. 
The models were solved using IBM ILOG CPLEX 
12.6 OPTIMIZATION STUDIO software, with 
time resolution limited to 3600s. To test Models Ia, 
Ib and II, a sample provided by the company was 
extrapolated to generate similar examples.

4.1 Data generation
The sample provided by the company had information 

about demand and production lot sizes and scheduling 
for two consecutive months. A random generator was 
implemented to vary the demand at a time horizon 
of up to 13 weeks, based on the company’s sample 
values. During this time period, the demand varied 
from 110 thousand boxes containing 12 200mL 
units of fruit juice beverage to 216 thousand boxes. 
Therefore, 110,000 and 216,000 are the lower and 
upper bounds of the generator. As there were rarely 
more than 2 orders asking for different flavors in the 
same week, the generator is built to be as near to these 
conditions as possible, that is, non-zero demand to 
only 2 products in each period.

Examples were generated with a period time of 
up to 13 weeks, (T = {3,4,5,6,7,8, 9, 10, 11,12,13}), 
although a typical planning horizon is 8 weeks and 
up to 10 different items (J = {3, 4, 5,6,7,8,9,10}). 
The examples in this study take into consideration 
5  different flavors (items) and number of micro 
periods equal to 10 (S = 10). The maximum lot size 
is limited to 48 h (Lmax = 48 h), the machine setup 
time is 4 hours ( 4  )jb j J= ∀ ∈ . The maximum period 
capacity is 144 ,   tK h t  T= ∀ ∈ , considering workdays as 
Monday to Saturday. The parameter jq  was calculated 
according to Table 1. The values in Table 1 were 
converted into one thousand boxes containing 12 
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200mL units of fruit juice beverage. Parameter ma  
was calculated as described above.

The profit margin was considered equal to 1 for 
all items, for the sake of simplicity, (  1 )jp j J= ∀ ∈  to 
test Model Ia. The company was unable to provide 
production, inventory and backlogging costs, which 
limited our analysis and comparison of the model 
solutions. For Models Ib and II, the inventory costs 
were considered equal to 1 for ( j J∀ ∈ ). Backlogging 
costs were considered 10 times inventory costs. This 
multiplication factor was based on the difference 
between a remuneration rate of 1% (inventory cost) 
a month and a margin of contribution of 10% of 
the product value (backlogging cost). Setup costs 
were estimated based on the time the machines are 
paused, i.e., production equivalent to four hours (as an 
opportunity cost). Hence, every solution presented by 
Models Ib and II prioritizes minimizing backlogging 
costs, which are higher than inventory costs and 
setup costs. This meets the company’s production 
scheduling targets.

Considering the data, variables   jmtsx  and  jtI  are 
described in one thousand boxes containing 12 200mL 
units of fruit juice beverage. The computational study 
is organized as follows. In Section 4.1 we present 
the results of Model Ia and in Section 4.2, the results 
of Model Ib. Scenarios generated from the sample 
obtained in the factory are used in order to compare 
Models Ib and II in Section 4.3.

4.2 Model Ia
The computational tests for Model Ia were conducted 

taking into account three categories of examples, 
each containing 70 generated problem instances as 
shown in Table 2.

Initially, consider category I in a first packaging 
configuration, varying from 3 to 5 products, and 
3 packaging machines (L1, L2, L3). The packaging 
capacity is 18,000 packages per hour, however without 
a decreasing demand.

In this category, the tests with the data using Model 
Ia showed that the solution for the problem is infeasible 
when using only three machines with a capacity of 
6,000 packages per hour each, as would be expected. 
It is important to note that Model Ia assumes that 
every demand must be met without a delay. It must 
be highlighted, once more, that the bottleneck of the 
production is the packaging machines, as we consider 

that the liquid flavor preparation tank capacity always 
meets the packaging machine demands.

As the solutions were infeasible in category I, we 
considered the L4 machine in category II, adding 
therefore a capacity of 7,500 packages per hour. 
However, it was still not possible to obtain feasible 
solutions with this configuration for the 70 sample 
tests. Hence, in category III, we included the L5 
machine, adding a capacity of 11,200 packages per 
hour. In this category, the problem became feasible, 
meeting demands and providing optimal solutions 
within the imposed time limit.

Our results point to the fact that the factory 
expansion plan (i.e. adding one more machine) was 
beneficial in order to obtain production schedules 
that do not include any delays in meeting demands. 
The CPLEX solver solved all instances in category III, 
presenting optimal solutions within the time limit. 
This shows the potential of Model Ia to be used by 
the company on a daily basis. It is important to note 
that the computational time required to solve the 
model was less than one second, which means that 
these instances were easily solved by CPLEX.

4.3 Model Ib
The computer setting and the parameters used 

in this study are the same as the previous tests with 
Model Ia, as well as the random generator for the 
item demands. Owing to the fact that the Model Ia 
instances were solved quickly, the test categories for 
Model Ib were slightly different. In these new tests, 
we increased the number of items, surpassing 5. 
Furthermore, the time frame was increased to more 
than 8 periods per category, not exceeding a period 
of 13 weeks, equivalent to a planning horizon of 
3 months. Although this study aims to support 
production scheduling decisions at an operational 
level (short term decisions), and is not intended to 
propose a tool for midterm decisions, the number 
of products and periods was increased in these tests 
to study the behavior of Model Ib as the number of 
variables and constraints increase. When the time 
frame and the number of items go up, the number of 
constraints and variables are also increased.

The Model Ib tests included instances with time 
periods varying from 6 to 13, items varying from 
5 to 10 and the possibility of using all 5 packaging 
machines. For each possibility, 5 sample tests were 
generated, making a total of 65 categories. Within 

Table 2. Categories of examples used in Model Ia.

Category Periods Products Packaging 
machines

Instances for a 
configuration

Total  
Instances

I T={3,4,5,6,7,8} J={3,4,5} L1, L2, L3 5 70
II T={3,4,5,6,7,8} J={3,4,5} L1, L2, L3, L4 5 70
III T={3,4,5,6,7,8} J={3,4,5} L1,L2,L3,L4,L5 5 70
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each problem category, most of the test instances 
were solved optimally within the time limit of one 
hour. Categories with time periods 11 and 13 were 
not included in the previous statement. The fact that 
the tests with such time frames (when considering 5 
different items) were not easily solved reinforced the 
potential for the model´s practical use.

For every test sample for which the CPLEX 
solver could not find the optimal solution within 
the time limit, the Gap value was calculated by 

( )100 ( )Gap OF IL OF= − , where OF is the objective 
function value of the best solution provided by the 
CPLEX solver and IL is the best lower bound as 
given by CPLEX in one hour time limit.

The tests were run with and without constraints (8), 
and only in 16 out of 65 instances, the solver solved 
the model more quickly with the constraint active. 
On average, the tests without constraints (8) were 
45% faster. The solutions of the 130 tests, with and 
without these constraints, showed the same behavior. 
The gaps were relatively low. For the sake of 
comparison, this study was used for the 65 instances 
without constraints (8), as they were solved faster and 
optimally. Only two instances reached the maximum 
execution time and the biggest gap was 0.25%.

Table  3 shows the results of the tests using 
model Ib concerning the use of production capacity 
and backlog in relation to demand, as well as the stock 
concerning the demand. In the fifth column of the 
table, the percentage of capacity is shown occupied by 
the setup execution (%Setup), while (%Production) 
represents the percentage of the capacity used for the 
production of items. %Backorder is the backorder 
ratio related to the demand in the last period and 
%Inventory is the ratio of the stock in the last period 
and the demand in the last period.

Table 3 shows that the average use of the capacities 
did not exceed 70%, although there is a significantly 
small backorder ratio. The highest usage of capacity 

was 72% in category 2 for one instance. It can be 
observed that because of the set of constraints (6), 
minimum lot, it is less expensive to have a minimum 
of delay that meets all the demand and stock at the 
end of the planning horizon. These results will be 
compared with the results from Model II, based on 
the CLSP, in the next section.

4.4 Model II
In this section, we present a comparison between 

the test results obtained from Model II when using the 
problem instances shown in Table 3 of Section 4.2. 
The solutions achieved by Models Ib and II were 
similar when considering the objective function 
values, the utilized production capacities, the ratios 
between inventory and demand and the ratios between 
backorder and demand. The comparison between the 
models’ performances is illustrated in Table 4. Note 
that the number of optimal solutions drawn from each 
model (Nº*) are shown, as well as the average gap 
and the average running time for each test category. 
The symbol (*) indicates that the solver CPLEX was 
able to solve all test samples optimally.

Both models presented feasible solutions for all test 
samples. However, Model Ib obtained more optimal 
solutions than Model II. When the solutions of Model 
Ib were not optimal, the gaps were less than 0.35%. 
On the other hand, solutions from Model II could 
be found within the time limit and they presented 
a gap of 3.87%.

In category 10, Model Ib presented optimal solutions 
for all instances. In the same category, Model II was 
able to find only two optimal solutions and they 
presented an average gap of 1.80%. On  average, 
Model II was solved three times slower than Model Ib. 
In general, both models yielded solutions of good 
quality. However, when we take into account the 
average time and the number of optimal solutions, the 
performance of Model Ib was better than Model II. 

Table 3. Model Ib test results - Solution characteristics
|J| |T| Nº example. %Setup %Production %Backorder %Inventory

1 5 6 5 2.0 58.37 0.47 0
2 5 7 5 2.3 68.51 0.04 0
3 5 8 5 2.18 59.50 0.67 0
4 5 9 5 2.40 57.44 0.35 0
5 5 10 5 1.98 56.71 0.36 0
6 5 11 5 1.98 57.39 0.64 0
7 5 12 5 2.01 57.43 0.26 0
8 5 13 5 2.04 56.90 0.38 0
9 6 13 5 1.99 57.33 0.19 0
10 7 13 5 2.10 57.33 0.00 0
11 8 13 5 2.06 57.40 0.17 0
12 9 13 5 2.01 56.90 0.41 0
13 10 13 5 2.03 57.17 0.38 0
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This was unexpected as Model Ib is less simple 
because it considers scheduling decisions based on 
the GLSPPL, unlike Model II which is based on 
the CLSP.

It is worth mentioning that Model II still requires 
a post-processing step to review the sizes of the 
obtained lots and ensure that the solution is feasible 
from the point of view of the minimum and maximum 
allowable lots. This post-processing step consists 
of simply dividing the big lot, jmtx , (if it exceeds the 
maximum lot) by the number of performed setups, 
that is, jmtz , and therefore, obtaining smaller lots
( )max mL a . Model Ib does not need a post-processing 
step and since the resolution of the instances with it 
was faster and sometimes resulted in better quality 
solutions (within the time limit) than Model II, it is 
concluded (on the basis of the results of this study) 
that Model Ib is the most recommended one to deal 
with this problem.

The results obtained from Models Ia, Ib and II 
were shown to the factory production manager and 
to the production programmer. As we mentioned 
earlier, the objective functions of Models Ib and II 
prioritize minimization of the overall production costs, 
such as inventory, setup and backorder. However, the 
objective function suggested by the manager was the 
one presented in Model Ia.

The solutions from Model Ia were the best 
according to the production programmer, because 
they were closer to what was already done in the 
factory. In the case of Model 1a, the objective function 
gives priority to maximizing the profit margin and 
does not consider the costs, therefore its solutions 
avoid idle time. However, the programmer stated 
that, considering the solutions in Model Ia, these lots 
could be too small, and therefore it would be better 
not to produce these products during these periods. 
Therefore, it might be better not to make these lot 
sizes in such time frames. A simple alternative to 

avoid this type of solution would be to revise the 
parameters of Model Ia related to the minimum lot 
size corresponding to jq , for some of these products.

It should be noted that the models presented 
here were solved by the solver Cplex using the 
branch‑and-cut method and requiring only a few 
seconds for these samples, which are as large as 
the ones we were given by the factory. On the other 
hand, the production programmer takes at least 
40 minutes to come up with a feasible production 
plan. Both the production manager and the production 
programmer found that the solutions produced by 
Models Ia and Ib are potentially good to be used in 
practice. Any adjustments to adapt the models to 
the specific operational conditions might be of use, 
especially to obtain a production plan of each week 
of the company. Interesting future research would 
be to develop an effective validation of the models 
using them in the company on a daily basis to better 
evaluate the advantages and disadvantages of the 
production schedules generated by the models in 
comparison with the schedules used in the factory.

5 Concluding remarks
This paper presented optimization models based 

on mathematical programming and applied methods 
of solution to solve them in order to support the 
process of taking decisions regarding production 
planning and scheduling of fruit juice drink lines. 
A case study was undertaken in a production line 
of a typical company of this sector. The proposed 
models used a theoretical framework for the lot 
sizing problems and to schedule production lots, 
which are well known and explored in the literature. 
Considering the results obtained, it can be concluded 
that the presented models and the tested methods are 
potentially good to support short term production 
planning decisions in this industry, for example, 
considering time frames of 8 or 9 weeks. We believe 

Table 4. Model performance comparison.

|J| |T| Nº 
example.

Nº*  
model Ib

Nº*
model II

Gap
GLSP(%)

Gap 
CLSP(%)

Time 
GLSP(s)

Time
CLSP(s)

1 5 6 5 5 5 * * 23.99 11.04
2 5 7 5 5 5 * * 15.99 22.59
3 5 8 5 5 5 * * 29.51 49.92
4 5 9 5 5 5 * * 74.87 53.87
5 5 10 5 5 5 * * 113.60 299.06
6 5 11 5 4 5 0.05 * 731.96 267.21
7 5 12 5 5 5 * * 345.15 137.03
8 5 13 5 4 5 0.02 * 743.53 365.36
9 6 13 5 5 5 * * 30.59 212.42
10 7 13 5 5 2 * 1.80 66.74 3,150.72
11 8 13 5 5 3 * 0.11 72.44 1,095.52
12 9 13 5 5 5 * * 71.91 444.80
13 10 13 5 5 3 * 0.48 313.68 1,837.71

* indicates that the solver CPLEX was able to solve all test samples optimally.
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that these approaches can be adopted successfully in 
the company under consideration and also in other 
companies in this industry, as well as other industrial 
sectors whose processes are similar. It is important 
to notice that the criteria for optimizing the lot sizing 
and scheduling could be different when considering 
costs related to preparation, inventories and delays, 
time limits, and minimum and maximum lots size 
capacities, among other factors.

Interesting future research would be to develop a 
user-friendly version of Model Ia, so that the production 
programmer of the company could test and evaluate 
the efficiency of its solutions on a daily basis. Having 
such results available, it would be possible to develop 
an effective case study and proceed to validating this 
model in real life situations. In this case, it would 
be interesting to evaluate the performance of the 
model in production scheduling and rescheduling, 
using rolling planning horizon approaches. Another 
motivating line of research would be to investigate 
effective heuristic methods to solve Models Ia, Ib and II 
in situations where optimization software, based on 
branch-and-cut algorithms, such as the one of the 
CPLEX solver, were not capable of providing good 
solutions within acceptable computer times.
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