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Os teores de sólidos solúveis (BRIX), açúcares polarizáveis (POL) e açúcares redutores
(RS) em caldo de cana foram determinados utilizando espectroscopia na região do infravermelho
próximo (NIR) e calibração multivariada, a qual foi validada pelo cálculo das figuras de mérito.
Devido à heterogeneidade das amostras, foi necessário, como primeira etapa do trabalho, a
otimização dos conjutos de calibração e validação através da eliminação das amostras anômalas
(outliers). As figuras de mérito como: sensibilidade, sensibilidade analítica, seletividade, limites
de confiança, precisão (média, repetibilidade), exatidão e razão sinal-ruído foram calculadas.
Resultados viáveis foram obtidos para BRIX e POL apresentando resultados de RMSEP de
0,28 e 0,42% de caldo, respectivamente. Os coeficientes de correlação para ambos os parâmetros
foram de 0,99. Estes resultados indicam que os modelos desenvolvidos para BRIX e POL podem
ser seguramente utilizados como uma alternativa em relação ao método padrão utilizado na
indústria alcooleira.

The determination of soluble solids (BRIX), polarizable sugars (POL) and reducing sugars
(RS) sugar cane juice by using near infrared spectroscopy (NIR) and multivariate calibration
was developed and validated by calculation of figures of merit. Due to the heterogeneity of the
samples, first it was necessary to optimize the calibration set by outlier elimination. The figures
of merit such as: sensitivity, analytical sensitivity, selectivity, confidence limit, precision (mean,
repeatability), accuracy and signal-to-noise ratio were calculated. Feasible results were obtained
for BRIX and POL with RMSEP values of 0.28 and 0.42% of juice and precision of 0.02 and
0.08% of juice, respectively. For both BRIX and POL goodness of fit showed correlation
coefficients of 0.99. These results indicate that the models developed for BRIX and POL can be
used as an alternative to standard procedures in the sugar cane industry.
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Introduction

Nowadays, the industrial production of alcohol
(ethanol) in Brazil has become a strategic area due its
applicability as an alternative fuel, since sugar cane is the
basic raw material for its manufacture.1 The sugars of cane
are basically represented by sucrose, glucose and fructose.
Sucrose (C

12
H

22
O

11
) is a disaccharide which constitutes

the principal parameter of quality of sugar cane and under
acid conditions, or action of enzymes, is unfolded to its
monosaccharide molecules, which causes a decrease in
alcohol production. Glucose and fructose are also called
reducing sugars, because they have the property of
reducing copper from the Cu2+ state to Cu1+.2,3 In the
calculation of sugar cane costs by industry, the main

parameter used is the cane quality, estimated according
to its concentration in recoverable total sugar (RTS), which
is function of polarizable sugar (POL), soluble solids
(BRIX) and reducing sugars (RS).3,4 The parameters
mentioned above are estimated by measurement with
saccharimeters, densimeters and oxidation-reduction
titrations, respectively, as standard methodologies, that
are regulated by norms of evaluation of the quality of
sugar cane.

BRIX can be defined as the percentage in weight, or
in volume, of soluble solids expressed as sucrose. In sugar
cane juice it is a quantitative measurement of the total
solids (including sugars), not giving any qualitative
information about which sugars are present in the final
product.3 POL is a measurement of the amount of sucrose
in the mixture of sugars, because in it, only sucrose diverts
the plane of polarized light.4 RS can be evaluated by
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oxidation-reduction titration. However, for sugar cane
grower payment, RS is not determined via analysis, but is
just estimated by an equation that takes in consideration
the BRIX and POL parameters.3

Alternative methods of analysis for sugar cane grower
payment, such as mid infrared spectroscopy and
fluorescence, have been investigated and tested, with the
aim to increase the reliability, uniformity of the method
and the accuracy of the measurements.5,7 Near infrared
spectroscopy (NIR) has been recently investigated as an
alternative methodology, due its special characteristics
such as non-destructivity, quickness and no production of
offensive wastes.8-13 Nowadays, some distilleries in Brazil
have began the implementation of this analytical
methodology. In this case, the application of NIR should
be validated using an independent data set and by
calculation of figures of merit to certify its ability to
predict the properties of interest. However, based on the
reference norm3 actually employed, figures of merit are
not calculated.

The aims of this work were built and validate
multivariate calibration models for determination of
BRIX, POL and RS using the near infrared spectra of
cane juice. For this purpose, figures of merit such as:
sensitivity, analytical sensitivity, selectivity, confidence
limit, precision (mean, repeatability), accuracy and signal-
to-noise ratio were calculated, and the model results were
compared with reference values obtained by the standard
methods to confirm the applicability of the proposed
methodology.

Experimental

The experimental measurements of this work were
accomplished at alcohol plant Cocamar - Cooperativa
Agroindustrial, located at São Tomé city in the State of
Paraná - Brazil.

Ripe cane sugar arrives in the industry transported by
trucks and were sampled by horizontal probe. Samples
were cut and carried to the laboratory. In the laboratory,
the samples were pressed to 250 kgf cm-2 in an hydraulic
press for a period of 1 minute, resulting in the cane juice
for subsequent analysis. Finally, before the spectra
acquisition, the samples were filtered in cotton to eliminate
suspended particles.

Spectra were collected at a NIRSystems spectrometer,
model 5000 monochromator, equipped with a tungsten
filament source, quartz cuvette of 1 mm of optical path
and a PbS detector. Acquisition of the spectra was
accomplished in the range of 1100 - 2500 nm by using
the ISIScan software.

A total of 1381 samples of sugar cane juice were used
in this work. Each sample was submitted to conventional
analysis and the results were used as reference values for
model development.

The BRIX values were obtained directly, using a digital
densimeter with a precision of 0.01 oBRIX. The POL
measurements were obtained in a digital saccharimeter with
precision of 0.01. The samples of cane juice were initially
cleared with lead sub-acetate (Pb(CH

3
COO)

2
.Pb(OH)

2
) and

filtered before the measurements. The degree of polarization
of the sample, expressed as % of juice, was calculated based
on the saccharimeter reading (SR) and equation 1.

POL = SR (0.2605 – 0.0009882 BRIX)  (1)

In RS determination, the standard methodology used
was proposed by Eynon & Lane, which consists in the
oxidation-reduction titration of the Fehling Liqueur by
the filtered cane juice. RS (also expressed as % of juice)
present in each sample was obtained by equation 2, taking
into consideration the standard volume spent in the
titration of the Felhling Liqueur solution by a solution of
1% of inverted sugar and the BRIX measurement.3

(2)

where VS is the volume of cane juice spent in the titration
and Vs is the standard volume of the inverted sugar.

Figure 1 shows the spectra of all 1381 samples. These
samples, for calculations purposes, were split in 1003
calibration samples and 378 validation ones, by using the
Kennard-Stone algorithm.14 The intense band in the region
around 1900 nm was eliminated due the high water
absorption15 and mean centering was used for data pre-
processing. Calibrations models were developed using the
PLS-Toolbox version 3.5 from Eigen_Vector Technology
for Matlab 6.5, based on PLS1 method. The validation
was accomplished by the calculation of figures of merit
using Matlab routines developed in our laboratory.

Theory

The data matrix X is formed by the NIR spectra of the
sugar cane juice and the vector y contains the reference
values for each property of interest. One PLS model for
each property was built and the net analyte signal (NAS)
was calculated.
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For the calculation of the NAS, the matrix X is rebuilt
based on A latent variables calculated by PLS, yielding
the matrix X̂

A
. Subsequently, the matrix free from the

contribution of the analyte of interest k (X̂
A,-k

) is calculated
as:16

(3)

where ŷ
A,k

 is the concentration vector y
k
projected down

onto the A-dimensional space calculated by PLS and
the ‘+’ superscript is the Moore-Penrose pseudoinverse.

The NAS vector for the ‘i’ calibration or validation
sample x̂ n

A,
a
k,
s
i
 can be written as:

(4)

where I is the identity matrix of appropriate size and
x̂ n

A,
a
k,
s
i
  is the NAS vector. It is important to note that x̂ n

A,
a
k,
s
i

contains only the information of analyte k (BRIX, POL
or RS), thus it is possible to replace it by its Euclidean
norm, generating a scalar nas:

(5)

Since the experimental responses of analyte k can be
expressed as a scalar value, an univariate inverse
calibration model can be built by the least squares method
as:

(6)

where nâs
cal.k

 and y
cal,k

 are the NAS and the reference values
for the calibration samples and ̂b

nas,k
 is the regression coefficient

of the pseudo univariate model. If the data matrix was mean-
centered, before of the determination of  b̂

nas,k
, the nâs

i,k
 needs

to be changed to avoid a signal error that is inserted by
implementation of the Euclidean norm. This correction can
be performed by multiplication of the nâs

i,k
  by the signal of

(y
i
 – y–

cal
), where  y–

cal
is the respective analyte concentration

average of the calibration samples.17 The pseudo-univariate
model represents faithful the multivariate model in a simple
form that can be presented as an usual analytical curve.

Analytical figures of merit

Accuracy reports the closeness of agreement between
the reference value and the value found by the calibration
model. In Chemometrics, this is generally expressed as
the root mean square error of the prediction samples
(RMSEP), that is an approximation of the standard error
of the prediction samples, obtained as:18

(7)

where n is the number of prediction samples. The
accuracy expressed by equation 7 assumes that the error
in the reference values is neglected. In applications
where this assumption can not be made this error should
be taking count, as is discussed by Faber and
Kowalski.19

Precision represents the degree of scatter between a series
of measurements for the same sample under prescribed
conditions. It is usually expressed as a standard deviation, or
relative standard deviation, of a series of measurements.20

(8)

where n is the number of samples and m the number of
replicates. In agreement with ASTM20 it should be determined
as the mean of the standard deviation of a minimum of six
measurements on a minimum of three samples.

Signal-to-Noise Ratio in the univariate case this
parameter represents how much the signal of the analyte
k is larger than the instrumental noise. In the present case,
this is calculated as:21

(9)

where x is an estimate for the instrumental noise,
calculated as the standard deviation of 15 blank samples.

Figure 1. NIR spectra of sugar cane juice.
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Sensitivity this parameter informs what fraction of
analytical signal that is due to the increase of the concentration
of a particular analyte at unitary concentration. In inverse
multivariate calibration models, it is defined as:21, 23

(10)

where the vector of sensitivities Sn
k

as must be the same
for all calibration samples,X

^n
A,

a
k
s is the vector for the net

analyte signal for the k analyte and y
i
 is the reference

value of the sample i. The sensitivity can be estimated
as:

(11)

Analytical Sensitivity defined as the ratio between the
sensitivity and the instrumental noise:

(12)

The inverse of this parameter (γ-1) reports the minimum
concentration difference between two samples that can
be determined by the model.24

Selectivity in univariate calibration, selectivity is
defined as the extent to which the method can be used to
determine particular analytes in mixtures or matrices
without interferences from other components with similar
behavior.24 Otherwise, in multivariate calibration with the
use of NAS, it is calculated as a ratio of the scalar nas

i

and the Euclidean norm of the original vector of the
instrumental responses x

k,un
:21

(13)

SÊL indicates the portion of the instrumental signal that
is used for the multivariate calibration model.

Confidence Intervals defined as the range within which
it is possible to assume, with a given degree of confidence
(it, a certain probability), that the true value of the
concentration of the analyte of interest is included. It can
be determined by a t-test and an approximate estimate for
the variance of the prediction error (V(PE)). The V(PE)
can be determined by the Errors in Variables (EIV)
theory,25 that under simplifications reduces to the equation
adopted in ASTM E1655-00,20 expressed as:

(14)

where MSEC is the mean squared error of calibration and
h

un
is a leverage for the prediction sample, defined as:18, 20

(15)

where T
A
 is the score matrix of the calibration samples

and t
un,A

 the score of an unknown sample. The number of
degrees of freedom used in the calculation of MSEC is
determined by the approach of pseudo degrees of freedom
proposed by Van Der Voet.26

After V(PE) calculation of confidence intervals (f) can
be obtained by:

(16)

where t is the statistical parameter of the t-Student
distribution.

Bias according to the IUPAC definition,23 bias is the
difference between the population mean and the true value.
Systematic errors are all error components that are not
random. Then, it is possible to equate systematic errors
with the fixed bias of the chemical measurement process.
The occurrence of systematic errors was investigated by
a t-test described in the ASTM E1655-00.20 First, an
average bias is calculated for the validation set:

(17)

where lv is the number of samples in the validation set.
Then the standard deviation of validation (SDV) is
obtained by:

(18)

Finally, the t value is given by:

(19)

If the t calculated is greater than the critical t value at
the 95% confidence level, there is an evidence that the
bias included in the multivariate model is significant.

Goodness of fit the evaluation of this parameter is
usually accomplished by a curve fitting of the prediction
values versus the reference ones, calculation of the
correlation coefficient, y-intercept and the slop of the
regression line.18 Another way to do this evaluation is to
use the net analyte signal calibration line, obtained by a
regression of the nâs

k,un
 against the reference values.21,27
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Linearity the evaluation of this figure of merit is
problematic in multivariate calibration using PLS, because
the variables are previously decomposed by principal
component analysis. The plot of residuals and scores
versus the reference values is a qualitative estimate of the
linearity of the model, where they must present random
and linear behaviours, respectively. However, the score
plot only can be used when the PLS model requires a few
latent variables to describe the data set.18

Limit of Detection (LOD) following the IUPAC
recommendations, the LOD can be defined as the
minimum detectable value of net signal (or concentration)
for which the probabilities of false negatives (β) and false
positives (α) are 0.05.23 The LOD can be calculated
analogously as for univariate calibration:28-30

(20)

Limit of Quantification (LOQ) the ability of
quantification is generally expressed in terms of the signal
or analyte concentration value that will produce estimates
having a specified relative standard deviation.23 Following
the same assumptions described above, the LOQ in
multivariate calibration has been calculated by:28

(21)

Results and Discussion

The calibration set was optimized by outlier
elimination, based on data with extreme leverage18 in
calibration, unmodelled residuals in spectral data20 and
unmodelled residuals in concentration (property of
interest).18 The outliers in validation set were determinated
by estimation of the extreme leverage and unmodelled
residuals in spectral data. This procedures resulted in 897,
924 and 857 calibration samples and 362, 358 and 368
validation samples for BRIX, POL and RS, respectively.

The optimum model dimension was determined by
the minimum RMSECV (Root Mean Squares Error of
Cross Validation) for the calibration samples, obtained
by contiguos block cross validation of 10 samples. Four,
six and four PLS factors for BRIX, POL and RS,
respectively, were necessary to retain a significant variance
in the data and to avoid a significant bias in the model.
The presence of relevant bias was tested with the
prediction results for the validation samples by the t-test
suggested by ASTM E1655-00.20 The results showed that
the bias included in the model was not significant, since

the t values obtained 2.07, 1.37 and 2.17 for BRIX, POL
and RS, respectively, were lower that the critical value of
2.576 with 99% of confidence.

Results for the figures of merit are presented in the
Table 1. Accuracy values represented by RMSEC (Root
Mean Square Error of Calibration) and RMSEP (Root
Mean Square Error of Prediction) showed that the
estimated values of all multivariate models presented good
agreement with reference methods.

Precision, at level of repeatability, was assessed by
analysis of three samples with six replicates each, in
measurements made in the same day. The results for BRIX
and POL showed that the multivariate models were better
than the regulated norms of evaluation of the quality of
the cane sugar that is 0.3% for BRIX and 0.6% for POL.
For RS, feasible results were also observed, but there is
no regulated norm for precision of this parameter, since
in industry it is not determined experimentally but just
estimated by an equation that takes in consideration the
BRIX and POL parameters.2 However, the value of RS is
important for grower payment in the industry.

For sensitivity and analytical sensitivity good results
were observed for the three parameters studied, taking
into account the analytical range of the models. Analytical
sensitivity is simpler and more informative for comparison
and to judge the sensitivity of an analytical method. It is
possible to establish a minimum concentration difference
which, in the absence of errors in the property of interest,
is discernible by the analytical method in the range where
it was applied. Based on this result, for BRIX it is possible
to distinguish between samples with value differences of
around 0.22×10-2 % / juice.

Results for signal-noise ratio showed in Table 1 are
the maximum values observed for each parameter. These
values, apparently low, did not present a direct relation
with the prediction errors. A feasible explanation for these
results is that the estimates of the instrumental noise ( x)
do not represent the whole data set. This result suggests
that the estimated LD and LQ presented in Table 1 might
be optimistic values.

Figures 2, 3 and 4, show the goodness of fit of the
models for BRIX, POL and RS, respectively. The slope,
intercept and correlation coeficient for the models are also
shown in Table 1. Models for BRIX and POL presented a
similar fit that is clearly better than the one observed for
RS. Inferior fit for RS might be explained due the presence
of errors in the reference values. Unfortunately, in this
work, it was not possible to estimate these errors. Another
possibility for the inferior fit is a non-linear behavior in
the relation between the NIR spectra and the concentration
of reducing sugars.
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The error distribution for BRIX and POL parameters
presented a random behavior, while for the RS parameter it
a tendency (bias) was observed that reinforces the suspicion
of non-linearity in the data set. Figures 5, 6 and 7 show the
histograms for the student residuals for BRIX, POL and RS.
These distributions resemble a gaussian behavior, but by using
a Jarque-Bera test,31 only for BRIX the student residuals are
normally distributed while for POL and RS significant
differences from normality were observed. The CL values,
estimated at 95% of probability by equation 16, demonstrated
a level of coverage near the nominal values, since the results
for BRIX, POL and RS were: 96.9; 95.8 and 95.6,
respectively. This good agreement confirms the concordance
of the estimate of uncertainties given by equation 14 for all
properties and the observed prediction errors, despite the
distribution of the residuals observed for POL and RS. For
each sample a specific CL is obtained, and the mean CL

Table 1. Analytical figures of merit for the calibration model

Figures of merit BRIX POL RS

Accuracya RMSEC 0.30 0.44 0.28
RMSEP 0.28 0.42 0.26

Precisiona 0.02 0.08 0.08
Sensitivityb 0.06 0.02 0.32

Analytical Sensitivitya 0.22×10-2 0.87×10-2 0.23×10-3

Selectivity 0.30 9.56×10-2 0.27
Signal-noise Ratio 6.69×103 2.18×103 6.05×103

Goodness of fit Slope 0.99±0.01 0.99±0.01 0.76±0.01
Intercept 0.18±0.06 0.23±0.02 0.19±0.01

Corr. Coef.(R2) 0.99 0.99 0.76
Goodness of fit NAS Slope 15.00±0.06 56.00±4.51 2.90±0.05

Intercept 8.90±0.04 4.40±1.01 -0.21±0.02
Corr. Coef.(R2) 0.99 0.99 0.81

Limit of Detectiona 0.69×10-2 2.62×10-2 0.13×10-2

 Limit of Quantificationa 0.02 0.09 0.44×10-2

aResults in % of juice and b % of juice-1.

Figure 2. Plot of NAS versus references values for BRIX. Calibration (o)
and Validation (+) samples.

Figure 3. Plot of NAS versus references values for POL. Calibration (o)
and Validation (+) samples.

Figure 4. Plot of NAS versus references values for RS. Calibration (o)
and Validation (+) samples.
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obtained for BRIX, POL and RS were ±0.60, ±0.87 and
±0.54, respectively. These results show that for BRIX and
POL there are acceptable uncertainties compatible with the
analytical range of the calibration models. Otherwise, for
RS parameter, the CL calculated is incompatible with the
concentration range studied, indicating that the proposed
methodology based on NIR is not suitable for this parameter
determination.

Conclusions

Determinations of BRIX, POL and RS were accessed by
PLS models based on NIR spectroscopy. The models were
built and validated using a representative set of samples
obtaining feasible and acceptable results. The prediction
errors obtained for BRIX and POL were lower than claimed
at regulated norm. Confidence limits determined at the 95%
confidence level for prediction samples, showed a good
agreement with the expected probability of coverage. The
models showed a large sensitivity capacity, differentiating
samples with a low difference of concentrations. The values
for accuracy, precision and other figures of merit presented
promising results, indicating that the model developed by
near infrared spectroscopy for BRIX and POL can be used
in the sugar cane industry as an alternative to refractometry
and polarization measurements (standard methods for BRIX
and POL, respectively). The NIR-PLS procedure present the
advantage of simpler sample preparation, since is not required
that the samples of cane juice have been cleared with lead
sub-acetate. Other advantages are simultaneous determination
of BRIX and POL with the same NIR spectra and the
possibility for on-line monitoring. For RS, using the
oxidation-reduction titration method as a reference, the results
of the NIR method present a better agreement than the values
from the industrial equation. Therefore, the NIR method can
be indicated for RS estimate in the industry, however, it should
be approved for the official regulatory agency.
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