
Article J. Braz. Chem. Soc. 2024, 35, 5, e-20230173, 1-17
©2024  Sociedade Brasileira de Química

https://dx.doi.org/10.21577/0103-5053.20230173

*e-mail: caiocheohen@ufrj.br; manuleal@gmail.com 
#Both authors contributed equally to this work.
Editor handled this article: Paula Homem-de-Mello (Associate)

In silico Analysis of Natural Products from Brazilian Biodiversity in COVID-19 
Treatment: NuBBE Database against SARS-CoV-2 Papain-Like Protease

Caio Felipe A. R. Cheohen, *,#,a Maria Eduarda A. Esteves, #,b,c Vinnícius M. S. Gomes, a 
Diego Allonso d and Manuela L. da Silva *,a,b,c

aLaboratório Integrado de Biologia Computacional e Pesquisa em Ciências Farmacêuticas (LAMCIFAR),  
Instituto de Biodiversidade e Sustentabilidade NUPEM, Centro de Ciências da Saúde,  

Universidade Federal do Rio de Janeiro, 27965-045 Macaé-RJ, Brazil

bLaboratório de Macromoléculas (LAMAC), Instituto Nacional de Metrologia, Qualidade e Tecnologia,  
Av. Nossa Sra. das Graças, 50, Xerém, 25250-020 Duque de Caxias-RJ, Brazil

cPrograma de Pós-Graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz/Fiocruz,  
Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro-RJ, Brazil

dDepartamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde,  
Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-902 Rio de Janeiro-RJ, Brazil

Coronavirus disease (COVID-19) pandemic has infected 630 million people and led to 
6.59 million deaths worldwide since its outbreak. To control COVID-19 advance, finding new 
molecules with potential to inhibit viral spread is pivotal. Papain-like protease (PLpro) is one of 
the most interesting targets of pharmacological inhibition since it is implicated not only in viral 
replication but also in modulation of host immune response. Natural products are of great interest to 
the pharmaceutical industry due to their diverse structure and biological activities. The NuBBEDB 
(Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products Database) is an excellent 
source of natural products (NPs) from the Brazilian flora. In this study, we performed virtual 
screening, molecular dynamics, and binding energy analyses of the NuBBEDB library to target 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) papain-like protease (PLpro), the 
virus’s protease essential for replication. Among the top-ranked molecules, the indole alkaloids 
raputindoles  A, C, and D emerged as potential SARS-CoV-2 inhibitors, showing significant 
interactions with the pivotal Beta-Loop-2 (BL2) region, including the catalytic Y268 residue. 
Notably, raputindole D displayed enhanced stabilization of the BL2 region, while raputindole C 
exhibited superior overall stability. These in silico findings suggest that raputindoles, especially D, 
might offer therapeutic value against COVID-19, laying the groundwork for further experimental 
evaluations.
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Introduction 

In March 2020, the World Health Organization 
declared the coronavirus disease (COVID-19) pandemic.1 
Since then, the severe acute respiratory syndrome 
coronavirus  2  (SARS‑CoV-2), the etiologic agent of 
COVID-19, has infected over 766 million individuals 
worldwide, from which approximately 6.9 million deaths 
occurred.2 Among COVID-19 survivors, symptoms such as 
fatigue, dyspnea, headaches, and palpitations become usual, 

what is now classified as post-covid syndrome.3 Therefore, 
identifying molecules that inhibit viral infection and its 
deleterious effects on human health is crucial. Vaccination 
has played a crucial role in controlling COVID-19 advance; 
however, the quick decrease of neutralizing antibodies 
induced by vaccine along the time with the emergence of 
new virus variants4 make alternative strategies to inhibit viral 
replication urgent and relevant. Vaccines and drugs have 
different objectives, while vaccines stimulate the production 
of antibodies and prevent infection, drugs treat patients who 
are already infected.5 In this context, inhibition of key viral 
enzymes, such as virus proteases, plays a significant role in 
the context of antiviral inhibitors.6
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Papain-like protease (PLpro) is a SARS-CoV-2 protease 
that cleaves interferon-stimulated gene 15 (ISG15), 
hijacking its amino terminal ubiquitin-like domain, thus 
compromising type I interferon (IFN) response,7,8 which 
drives immune cells into pro-inflammatory profile.9 
In addition, PLpro plays another role in SARS-CoV-2 
infection. During the course of infection, a single-stranded 
positive-sense viral ribonucleic acid (RNA) is processed, 
which generates two polypeptides: pp1a and pp1b.9,10 PLpro 
cleaves the polyproteins at nsp1, nsp2 and nsp3 sites, 
generating individual and functional enzymes, therefore, 
its activity is pivotal for proper viral transcription and 
replication processes.9,11 Thus, PLpro inhibition hampers 
not only viral replication but also virus-induced host 
immune modulation, making it a potential pharmacological 
target to be explored.7,12 Several studies have already 
targeted PLpro for drug development,13-15 using natural 
products (NPs)-bioactive compounds derived from plants, 
animals, and microorganisms-as a potential and relevant 
source of new inhibitor compounds.11,16

NPs are of great interest to the pharmaceutical industry 
due to their numerous and diverse biological structures 
and activities. Among them, plants are one of the most 
remarkable sources of these products.17 Brazil is a hotspot for 
natural products (NPs) due to its huge biodiversity.18 Several 
NPs are included in the NuBBEDB (Nuclei of Bioassays, 
Biosynthesis and Ecophysiology of Natural Products 
Database), a database created in 2013 that has grown and 
improved since then.18,19 It contains not only NPs but also 
their sources, such as species phylogenetic information, 
correlation heatmaps between sources/metabolic classes 
and their therapeutic effects, among some other features.19 

Therefore, in this study, we searched at NuBBEBD 
potential PLpro inhibitors using in silico approaches. We 
found twenty-one potential molecules, including three 
raputindoles, which is a group of indoles isolated from 
a dichloromethane extract of Raputia praetermissa that 
proved to be the most promising molecules analyzed in 
this study.20

 
Methodology

Construction of receptors and ligands models 

The in silico interactions between PLpro against the 
NuBBEDB were evaluated through docking simulations 
using the AutoDock (Vina),21 and GOLD Suite software 
(score function: ChemPLP and GoldScore),22 while the 
final consensus score was calculated through the results 
of Vina, ChemPLP, and GoldScore. 

Redocking parameters were established for screening 

substances using the three scoring functions. To carry 
out step (Vina), the pKa of the PLpro (PDBid 7JRN) was 
performed using the PROPKA 3.0 software23 through 
PDB2PQR24 with AMBER force field, and pKa of ionizable 
protein residues at pH 7.4. The probable protonation states 
of this GRL0617 ligand that is complexed to 7JRN were 
adjusted. The conversion of the PLpro structure into the 
pdbqt file format was performed using the PDB2PQR 
output in UCSF Chimera.25

Molecular docking and virtual screening 

The redocking of PLpro was simulated in exhaustiveness 
100 in (Vina) and the root mean square deviation (RMSD) 
was calculated with OpenBabel between the first pose from 
the docking of each exhaustiveness and the original ligand, 
GRL0617 (PDBid 7JRN), which was extracted from the A 
chain of the three-dimensional structure of PLpro. 

Redocking was also performed for steps ChemPLP and 
GoldScore). Binding site parameters were set to a radius 
of 10 Å from the center of GRL0617 and had its water 
molecules removed for redocking. The protonation states 
of the residues were adjusted to pH 7.4 according to the 
pKa prediction calculated by the PDB2PQR. 

Following these parameters, the simulation was 
performed using ChemPLP and GoldScore. The GOLD 
software performed a re-score through “ASP” score 
function, whereupon the RMSD value was calculated, and 
the selection of the best ligand pose was generated for each 
simulation. GOLD function values were exhibited as the 
name “score” for the GOLD/CHEMPLP, and “fitness” for 
the GOLD/GoldScore. 

The interactions of amino acid residues N267, Y268 
and Q269, with ligand GRL0617, were evaluated using 
Discovery Studio Visualizer (DSV)26 and compared to the 
redocking results performed on the AutoDock (Vina) and 
GOLD complexed to the receptor protein.21,22,27 

 
Classification model 

The virtual screening results were classified following 
a penalty score. The penalty score was performed as the 
higher classification of the molecule in the molecular docking 
results, the lower the penalty suffered. The penalty score 
had a range between zero and one, where values closer to 
zero indicate a better molecule in the final consensus score. 

Filtering by pharmacokinetic parameters

Pharmacokinetic parameters were predicted by using the 
SwissADME28 and the pkCSM29 servers, and DataWarrior 
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software,30 and ADMETlab 2.0.31 Thus, through the 
prediction of programs, we applied filters related to molecular 
size: molecular  weight  (MW)  ≤  1000  Da, absorption: 
hydrogen bond donors (HBD) ≤ 6, hydrogen bond acceptors 
(HBA) ≤ 15 and number of rotatable bonds (NRotB) ≤ 20. 
Other parameters were analyzed in a complementary 
way. Acceptable values for lipophilicity are -2 ≤ cLogP 
(calculated Log partition coefficient) ≤ 10, absorption:  
Caco2 > 0.90 (pkCSM) or ≤ -5.15 log cm s-1 
(ADMETlab 2.0), intestinal absorption > 30% (pkCSM) 
or < 0.3 (ADMETlab 2.0). In addition to the ability to be a 
P-glycoprotein (Pgp) inhibitor or substrate, for ADMETlab 
2.0 < 0.3. Likewise, blood-brain barrier (BBB) permeability, 
the probability of being a cytochrome P450 (CYP) inhibitor 
or substrate, and the ability to cause respiratory toxicity 
are represented as high for values < 0.3. In addition, we 
evaluated the toxicological parameters: hepatotoxicity, 
mutagenicity and tumorigenicity. 

Interaction analysis 

Interaction analysis of the NPs previously classified as 
promising was re-evaluated. The best-ranked molecules 
from steps (Vina), (ChemPLP) and (GoldScore) were 
analyzed using DSV based on the receptor-ligand complex 
interaction and residues of interest (Y268, N267 and 
Q269). 

Molecular dynamics and molecular mechanics/Poisson-
Boltzmann surface area (MM/PBSA) analysis

We conducted three replicates of molecular dynamics 
simulations using the GROMACS 2020.4 package for 
protein-ligand complexes comprising the PLpro receptor 
and raputindoles A, C, and D. These complexes were 
generated through virtual screening using Autodock Vina. 
Additionally, to enable comparison with the values obtained 
for the hits, we performed the same set of simulations for 
GRL0617.32,33 The CHARMM36 (C36) force field (FF) 
was employed for these simulations.34,35

The ligands were prepared using the CHARMM 
General Force Field (CGenFF) program, accessed through 
the CGenFF.36,37

To configure the system, the “gmx editconf” utility 
was utilized. The system was then positioned within a 
dodecahedron box, ensuring a 1.0 nm distance from the 
box’s edge to any atom within the system. Subsequent 
solvation was done using the TIP3P water model. System 
neutralization was achieved by adding two chloride (Cl) ions.

Energy minimization employed the steepest descent 
method, which was halted when the maximum force dropped 

below 1000.0 KJ mol-1. The energy step was designated as 
0.01, with a cap placed at 50,000 minimization steps. A 
grid-based neighbor search was used, set with a list size 
of 1 and a 1.2 nm cutoff distance. Electrostatic interactions 
were managed using the Particle Mesh Ewald (PME)38 
method with a 1.2 nm cutoff. Van der Waals interactions 
were similarly processed with a 1.2 nm cutoff. The system 
was treated as fully periodic, and no long-range dispersion 
corrections were applied to energy or pressure calculations. 

The production molecular dynamics (MD) simulation 
ran for a total of 50 ns and was executed in  graphics 
processing unit (GPU) mode. Electrostatics over long-
ranges were managed using PME, with a configuration 
of 1 PME rank coupled with 5 OpenMP threads. The 
gmx hbond tool in GROMACS32,33 was used to calculate 
the number of hydrogen bonds between the protein-ligand 
complexes during the whole simulation. Furthermore, the  
gmx_MMPBSA39,40 script was employed to estimate 
binding free energy (ΔG) analysis. MM/PBSA was 
performed at every 50 ps from the molecular dynamics.41 
RMSD, root mean square fluctuation (RMSF), and 
hydrogen bond analyses were visualized using Matplotlib.42 

Results 

It was set a panel of 2,162 NPs from NuBBEDB and it 
was analyzed their potential to inhibit the PLpro activity, 
as determined by in silico analysis. NPs underwent 
virtual screening in Vina, ChemPLP and GoldScore. The 
compounds best ranked for the consensus (penalty) score 
had their absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) characteristics predicted. Analyses 
of interactions of PLpro residues with ligands were 
performed in order to elucidate the interaction profile of 
these NPs. 

Molecular docking and virtual screening

N267, Q269 and the main residue Y268 have been 
previously described in the Beta-Loop-2 (BL2) region of 
the PLpro enzyme. Interactions with these residues indicate 
that the testing compound would probably inhibit the 
enzyme catalytic activity and, therefore, has the potential 
to inhibit SARS-CoV-2 replication.43

The PLpro inhibitor GRL0617 is found in PDB 7JRN 
and has been used before to validate the selected method 
through molecular redocking.44 The first binding mode 
generated in the redocking (Figure 1) with Vina presented 
a binding energy of −9.6 kcal mol-1 and RMSD of 0.45 Å. 
When redocking was performed using ChemPLP, the score 
was 90.41 with an RMSD of 0.54 Å. In comparison, the 
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simulation with GoldScore yielded a score of 59.35 and 
an RMSD of 0.65 Å, when evaluated against GRL0617.

After virtual screening, it was selected 21 molecules 
that accomplished a penalty score value lower or equal 
to 0.05 to interaction analysis. These molecules belonged 
to six different chemical classes, namely flavonoids (8), 
alkaloids  (4), aromatic derivatives (4), chalcones (4), 
polyketides (3) and phenylpropanoids (1) (Table 1).

Among these chemical classes, flavonoids and alkaloids 
stood out for their already known capacity of viral 
inhibition.11,45,46

 In addition, our previous study11 showed that flavonoids 
from Siparuna cristata have properly inhibited PLpro based 
on virtual screening and in vitro analysis. Based on this, the 
identification of 8 flavonoids in the current study indicates 
that the applied methodology can mimic the real interactions 
occurring between the compounds and the PLpro enzyme.

Interestingly, we found that from four alkaloid 
molecules, three are raputindoles, with raputindoles C, 
A, and D ranking 11th, 15th, and 16th places, respectively. 
The other alkaloid on this list, named 1,3,5-trihydroxy-4-
methoxy-10-methyl-2,8-bis(3-methylbut-2-nyl)acridin-
9(10H)-one, ranked the 21st position. 

Analysis of the interactions between rapuntidoles and the 
PLpro enzyme

Raputindole C 
Raputindole C interacted with the main residue Y268 in 

all analysis performed (ChemPLP,  GoldScore, and Vina, 
Figures 2b, 2d and 2f, respectively). We observed that the 
interactions occurred between the aromatic rings of the pi-pi 

T-shaped type, and the amide-pi stacked occurring at 4.85 Å 
(Vina, Figure 2e) and 4.65 Å (GoldScore, Figure 2c), while  
for ChemPLP, two interactions of the pi-pi T-shaped type 
4.82 and 4.78 Å (Figure 2a) were simulated. A difference of 
only 0.20 Å between the longest and shortest distance were 
found among the three different methodologies applied in 
this study, which indicates a consensus, not only for the 
penalty scores but also for the interaction analyses. Alkyl 
and pi-alkyl interactions were also found to occur at 4.33 Å 
(GoldScore, Figure 2c), 4.82 Å (Vina, Figure 2e) and 5.43 Å 
(ChemPLP, Figure 2a). It was found pi-sigma interactions 
between the ligand and the Q269 residue in all simulations, 
at 3.88 Å (Vina, Figure 2e), 3.97 Å (ChemPLP, Figure 2a) 
and 3.86 Å (GoldScore, Figure 2c). Finally, it was also 
observed the occurrence of van der Waals interactions with 
residue N267 in (Vina) and (ChemPLP).

Raputindole A 
It was observed distances between 4.99 and 5.88 Å for the 

interactions between PLpro Y268 residue and raputindole A 
(Figures 3b, 3d and 3f). Pi-pi T-shaped and amide-pi stacked 
interactions occurred at 5.26 and 5.48 Å in Vina (Figure 3e), 
5.17 and 5.30 Å in ChemPLP (Figure 3b), and 5.03 and 5.50 Å 
in (GoldScore, Figure 3d). Alkyl and pi-alkyl interactions 
occurred between 4.99 and 5.79 Å (Vina, Figure 3f), a single 
interaction at 5.88 Å was seen in ChemPLP (Figure 3b), and 
at 5.97 Å in (GoldScore, Figure 3d). Only carbon-hydrogen 
interactions were found for Ans267, occurring between 
4.49 Å (Vina, Figure 3f), 3.92 Å (ChemPLP, Figure 3b) 
and 3.89 Å (GoldScore, Figure 3d). Simulated interactions 
with Q269 showed alkyl and pi-alkyl at 4.49 Å (ChemPLP), 
and pi-pi T-shaped while amide-pi stacked were observed at 

Figure 1. Redocking results: complex PLpro and ligand GRL0617 (PDB id: 7JRN) (in grey). (a) Gold score (magenta); (b) AutodockVina (ciano); 
(c) ChemPLP (orange); (d) redocking ligands overlap the PLpro binding site.
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4.68 Å (Vina, Figure 3f), 4.02 Å (ChemPLP, Figure 3b) and 
4.67 Å (GoldScore, Figure 3d).

Raputindole D 
A simulated interaction with raputindole D showed 

Y268 (Figures 4b, 4d and 4f) pi-pi T-shaped and amide-
pi stacked at 4.93 and 4.91 Å in (Vina, Figure 4f), 4.62 
and 4.72 Å in (ChemPLP, Figure 4b), and an interaction 
at 4.75  Å in (GoldScore, Figure 4d). Also, with the 
Y268 residue, alkyl and pi-alkyl interactions were 
found at 5.70  Å (Vina, Figure 4f), 5.24 Å (ChemPLP, 
Figure  4b), and 5.50  Å (GoldScore, Figure  4d). 
The molecule interacts with N267 through van der 
Waals forces (Vina and ChemPLP, Figures  4f and 4b, 
respectively) and  pi‑pi  T-shaped and amide-pi stacked 
at 6.27 Å (GoldScore, Figure 4d). This was the largest 
distance found in this study. The interactions with the 
Q269 residue occurred through pi-pi T-shaped and 
amide‑pi stacked at 6.21 Å (Vina, Figure 4f) and pi-sigma 
at 4.02 Å (ChemPLP, Figure 4b), and finally, van der Waals 
forces (GoldScore, Figure 4d) were seen.

The biological activity of PLpro, in conjunction with 
raputindoles and the docking position of alkaloid class 
molecules with PLpro, suggests their potential as protease 
inhibitors. 

Pharmacokinetics of NuBBEDB compounds 

The MW of raputindole C is 323.5 Da, according 
to the four programs used. Promiscuity by pan assay 
interference compounds (PAINS) is negative according 
to SwissADME and ADMETab 2.0. Table 2 contains the 
values of the physicochemical descriptors: LogP (pkCSM 
and ADMETlab 2.0), consensus LogP (DataWarrior and 
SwissADME), hydrogen acceptors and donors, NRotB and 
the polar surface relationship. The natural product shows 
satisfactory absorption with Caco2 > 0.90 (pkCSM). The 
opposite is seen for ADMETlab 2.0, in which the predicted 
value is less than -5.15 log cm s-1, which indicates low 
absorption. However, intestinal absorption, according to both 
programs, is high: 89.544% for pkCSM and high probability 
to be above 30% (< 0.3) with ADMETlab 2.0.

Table 1. NuBBEDB ID name and class of 21 molecules best ranking according to the penalty score (≤ 0.05), by order of classification

Classification NuBBEDB ID Molecule name Class

1 200 amentoflavone flavonoids

2 272 1,6-di-O-caffeyoyl-β-D-glucopyranoside phenylpropanoids

3 198 amentoflavone 7”,4”-dimethyl ether flavonoids

4 558 kaempferol-3-O-α-L(4”-Z-p-coumaroyl)-rhamnoside flavonoids

5 199 podocarpusflavone A flavonoids

6 2002 (2R)-7,4’-dibenzyl-5-hydroxy-3’-methoxy-6,8-dimethylflavanone flavonoids

7 875
1-[3-(3,7-dimethylocta-2,6-dien-1-yl)-2,4,6- trihydroxyphenyl]- 

3-(4-hydroxyphenyl)propan-1-one
chalcones

8 1639
2,6-nonadienoic acid, 9-[6-(acetyloxy)-3,4-dihydro-2,8-dimethyl- 
2H-1-benzopyran-2-yl]-6-methyl-2-(4-methyl-3-pentenyl)-,(Z,E)-

aromatic derivatives

9 119 pterogynoside; kaempferol-3-O-(3’’-O-4’’’-methylgallate-α-L-rhamnoside) flavonoids

10 197 heveaflavone flavonoids

11 1136 raputindole C alkaloids

12 2329
1-propanone, 3-[3-hydroxy-4-methoxy-5-(3-methyl-2-buten-1-yl)phenyl]-

1-[2,4,6-trihydroxy-3-(3-methyl-2-buten-1-yl)phenyl]-
chalcones

13 521 (S)-MPA-5’-epichaetoviridin A polyketides

14 279
7-methyl-sargachromenol; 2,7,8-trimethyl-2-[(3-E,7-Z)-4,12-dimethyl- 

8-carboxyl-3,7,11-tridecatrienyl]-3-chromen-6-ol, β-caroteno
aromatic derivatives

15 1138 raputindole A alkaloids

16 1139 raputindole D alkaloids

17 1646 3-geranylgeranyl, 5-acetoxy-benzofuranone aromatic derivatives

18 681 (R)-MPA-chaetoviridin H polyketides

19 1644
5-hydroxy-7-(3,7,11,15-tetramethyl-2,6,10,11-hexadecatetraenyl)- 

2(3H)-benzofuranone
aromatic derivatives

20 242 (-)-epigallocatechin-3-O-gallate flavonoids

21 951
1,3,5-trihydroxy-4-methoxy-10-methyl- 2,8-bis(3-methylbut-2-enyl)

acridin-9(10H)-one
alkaloids

MPA: monophosphoric acid.
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 The BBB permeability was negative for both SwisADME 
and pkCSM (below 0.3) while ADMETlab  2.0  < 0.3 
showed high probability of low penetration given by > 1. 
Raputindole C has a high probability to act as an inhibitor 
of CYP2C19, CYP2C9 and CYP3A4, and toxicity analysis 
revealed positive hepatoxicity and respiratory toxicity, 

while it showed negative mutagenicity and tumorigenicity 
capacities. 

Raputindole A has an MW of 366.5 Da and no PAINS 
alerts and the overall physical-chemical characteristics 
are described in Table 3. Worth noting that, it showed 
high intestinal absorption predicted by pkCSM and 

Figure 2. Raputindole C interactions. (a), (c) and (e) DSV interaction analysis maps (b), (d) and (f) docking orientation results between ligands and 
N267, Y268, and Q269 PLpro residues. Interactions celadon: C-H bond; tea green: van der Waals; moss green: hydrogen bond; lime green: pi lone pair; 
fuchsia: pi-pi; lavender pink: pi-alkyl; pastel purple: pi sigma; royal purple: amide-pi stacked; carrot orange: pi-anion; terra cotta: unfavorable.

Figure 3. Raputindole A interactions. (a), (c) and (e) DSV interaction analysis maps (b), (d) and (f) docking orientation results between ligands and 
N267, Y268 and Q269 PLpro residues. Interactions celadon: C-H bond; tea green: van der Waals; moss green: hydrogen bond; lime green: pi lone pair; 
fuchsia: pi-pi; lavender pink: pi-alkyl; pastel purple: pi sigma; royal purple: amide-pi stacked; carrot orange: pi-anion; terra cotta: unfavorable.
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ADMETlab  2.0 and seemed to be both a substrate and 
inhibitor of PgP. This alkaloid seems to be distributed 
in the central nervous system via the BBB (pkCSM and 
ADMETlab 2.0) and like raputindole C, it was hepatotoxic 
and had positive respiratory toxicity, but it was negative for 
mutagenic or tumorigenic activities.

In conclusion, raputindole D had the same MW 
as raputindole C. Like the other molecules, it had no 
PAINS alerts. Among them, it had the highest intestinal 
absorption value. Also, it was a Pgp substrate with low BBB 
permeability and had the same toxicological characteristics 
as the other two alkaloids. Table 4 summarizes the 
pharmacokinetic parameters related to its absorption, 
distribution, metabolism, and toxicity.

NPs tend to be large molecules and therefore have 
a higher molecular weight.29 However, the MWs of the 
alkaloids presented here do not impact their absorption, 
especially considering the topological polar surface 
area (TPSA) values, which are much lower than 250 Å. 
Predictors related to absorption and metabolism are 
indicators of how promising these substances are for 
inhibiting SARS-CoV-2 PLpro. 

Molecular dynamics and MM/PPBSA analysis

RMSD analysis
We evaluated the stability and dynamics of the 

protein’s interaction with raputindoles A, C, D, as well as 

GRL0617, by analyzing their RMSD profiles (Figure 5). In 
a comparative perspective against the simulation results of 
GRL0617 (Figure 5d), raputindoles A and D demonstrated 
similar average RMSD values in their interactions with the 
protein (Figures 5b and 5c). However, PLpro complexed 
with raputindole C showcased notable fluctuations between 
the three runs, particularly evident from its peak RMSD 
value in the first run of the simulation (Figure 5a). When 
evaluated individually, raputindole D emerged as the most 
stable compound, while raputindole C displayed the highest 
dynamism or flexibility.

RMSF analysis
The RMSF provides insights into the positional stability 

and dynamic behavior of individual residues relative to 
their average positions. Through RMSF analysis, we 
assessed the flexibility patterns of the backbone atoms in 
the native proteins as well as when they are complexed with 
ligands. The RMSF values for the complexes involving 
raputindoles A, C, D, and GRL0617, were evaluated to 
provide insights into their structural stability (Figure 6a). 

A thorough analysis was carried out on the BL2 region, 
which covers residues G266 to G271 (depicted in Figure 6b). 
The findings revealed distinct RMSF values within this 
region. Notably, raputindole A exhibited the highest RMSF 
value, measuring at 2.367  Å, whereas the lowest value 
of 0.742 Å was observed for the same compound. For 
raputindole C, its RMSF peaked at 2.569 Å, with a minimum 

Figure 4. Raputindole D interactions. (a), (c) and (e) DSV interaction analysis maps (b), (d) and (f) docking orientation results between ligands and 
N267, Y268, and Q269 PLpro residues. Interactions celadon: C-H bond; tea green: van der Waals; moss green: hydrogen bond; lime green: pi lone pair; 
fuchsia: pi-pi; lavender pink: pi-alkyl; pastel purple: pi sigma; royal purple: amide-pi stacked; carrot orange: pi-anion; terra cotta: unfavorable.
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of 0.75 Å. Similarly, raputindole D displayed a maximum 
RMSF of 1.814 Å and a minimum of 0.761 Å. In the case 
of GRL0617, its RMSF values ranged from 1.424 Å at its 
maximum to 0.719 Å at its minimum. Intriguingly, within 
the context of the BL2 region, raputindole D displayed the 
least flexibility among the compounds, as indicated by its 
smallest RMSF value. This suggests that the BL2 region 
remains most stable in the presence of raputindole D. On the 
other hand, raputindole A revealed the highest flexibility in 
the BL2 region among the three. Raputindole C showcased 
an intermediate level of flexibility for this specific region. 

A more detailed analysis was undertaken for residues 
N267, Y268, and Q269, which are part of the BL2 region 

and hotspots for PLpro inhibition. These values provide 
insights into the localized flexibilities of these specific 
residues across different ligand environments.

Hydrogen bonds analysis

The number of hydrogen bonds formed in a molecular 
complex can provide insights into its stability and 
interaction dynamics. In the case of raputindole C, the 
average number of hydrogen bonds formed was 3604, 
4030, and 7648, respectively, for each run (Figure 7a). 
This suggests a moderate level of interaction, potentially 
contributing to the stability of the complex. Raputindole A 

Table 2. Pharmacokinetic parameters predicted by DataWarrior, pkCSM, SwissADME and ADMETlab 2.0 for raputindole C

Physicochemical properties DataWarrior pkCSM SwissADME ADMETlab2.0

MW / Da 382.505 382.507 382.5 382.2

PAINS - - negative negative

cLogP 5.7925 - 5.13 -

LogP - 6.0462 - 5.806

H-Acceptors 3 1 1 3

H-Donors 3 3 3 3

NRotB - 4 4 4

Polar surface area / Å 51.81 - - -

Surface area / Å - 170.329 - -

Topological polar surface area / Å - 51.81 51.81

Absorption

Caco2 permeability - 0.974 - -5.315

Intestinal absorption (human) - 89.544 - 0.005

GI absorption - – high -

P-glycoprotein substrate - positive positive 0.997

P-glycoprotein inhibitor - − - 0.991

P-glycoprotein I inhibitor - positive − -

P-glycoprotein II inhibitor - positive − -

Distribution

BBB permeability - -0.068 negative 0.132

Metabolism

CYP1A2 inhibitor - - negative 0.886

CYP2C19 inhibitor - - positive 0.948

CYP2C9 inhibitor − − positive 0.894

CYP2D6 inhibitor − − negative 0.895

CYP3A4 inhibitor − − positive 0.925

Toxicity

Hepatotoxicity - positive − -

Mutagenic negative − − -

Tumorigenic negative − − -

Respiratory toxicity − − − 0.967

MW: molecular weight; PAINS: pan-assay interference compounds; cLogP: calculated log partition coefficient; logP: logarithm of the partition coefficient 
between octanol and water; NRotB: number of rotatable bonds; Caco2: Caco-2 permeability; GI: gastrointestinal absorption; BBB: blood-brain barrier; 
CYPs: cytochrome P450 enzymes.
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showed an average of 445, 989, 488 hydrogen bonds for 
each run (Figure 7b). This lower number indicates fewer 
interactions, which might suggest a more dynamic or 
less stable interaction pattern in comparison to the other 
datasets. Interestingly, the complex in raputindole D had 
the highest average number of hydrogen bonds, with a 
value of 8508, 7440, 8175 for each run (Figure 7c). This 
indicates robust interaction, possibly resulting in a more 
stable complex compared to the other two. Compared to 
the GRL0617 results, which were 7948, 7997, and 7917 
respectively, from runs 1 to 3, raputindole D exhibited a 
higher number of hydrogen bonds.

Overall, these results offer a comparative perspective 

on the stability of the complexes based on their hydrogen 
bonding patterns during the simulation.

MM/PBSA analysis

The binding free energies of PLpro-ligand complexes 
with raputindoles C, A, D, and GRL0617 were computed 
using the MM/PBSA method. The calculated energy 
components and the resulting binding energies are 
summarized in Table 5. 

Despi te  GRL0617,  raput indole  A complex 
demonstrated the most favorable binding energy, followed 
by raputindole D, suggesting the strongest interaction with 

Table 3. Pharmacokinetic parameters predicted by DataWarrior, pkCSM, SwissADME and ADMETlab 2.0 for raputindole A 

Physicochemical properties DataWarrior pkCSM SwissADME ADMETlab2.0

MW / Da 366.506 366.508 366.5 366.21

PAINS - - negative negative

cLogP 6.7192 - 5.99 -

LogP - 7.0738 - 6.403

H-Acceptors 2 0 0 2

H-Donors 2 2 2 2

NRotB - 3 3 3

Polar surface area / Å 31.58 - - -

Surface area / Å - 165.535 - -

Topological polar surface area / Å - - 31.58 31.58

Absorption

Caco2 permeability - 0.974 - -5.163

Intestinal absorption (human) - 89.66 - 0.005

GI absorption - − low -

P-glycoprotein substrate positive positive 0.118

P-glycoprotein inhibitor - − − 0.996

P-glycoprotein I inhibitor - positive − -

P-glycoprotein II inhibitor - positive − -

Distribution

BBB permeability - 0.72 negative 0.053

Metabolism

CYP1A2 inhibitor - - positive 0.918

CYP2C19 inhibitor - - positive 0.953

CYP2C9 inhibitor - - positive 0.926

CYP2D6 inhibitor - - negative 0.712

CYP3A4 inhibitor - - positive 0.95

Toxicity

Hepatotoxicity - positive - -

Mutagenic negative - - -

Tumorigenic negative - - -

Respiratory toxicity - - - 0.94

MW: molecular weight; PAINS: pan-assay interference compounds; cLogP: calculated log partition coefficient; logP: logarithm of the partition coefficient 
between octanol and water; NRotB: number of rotatable bonds; Caco2: Caco-2 permeability; GI: gastrointestinal absorption; BBB: blood-brain barrier; 
CYPs: cytochrome P450 enzymes.
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PLpro. This is consistent with the higher negative values 
observed for both van der Waals and electrostatic energies. 
Conversely, raputindole C had the least favorable binding 
energy, indicating the weakest interaction with PLpro.

Discussion 

PLpro is a protease crucial for multiple proteolytic 
functions and for processing viral polyproteins, viral 
maturation, and replication.47 Functionally, SARS-CoV-2 
PLpro is a potential drug target against COVID-19.48 Natural 
product-derived molecules are attractive as drug targets due 

to their ability to undergo rapid safety evaluation.49 In this 
study, we present an in silico investigation of NuBBEDB 
molecules and found that raputindoles exhibit inhibitory 
potential against SARS-CoV-2 PLpro. 

 
Molecular docking and virtual screening 

Figure 1 shows the redocking performed using the 
GRL0617 inhibitor found in PDB 7JRN,50 which was used 
here to validate our method. Redocking presented both 
docking energies and interactions between the residues of 
interest, especially Y268, which is similar to that observed 

Table 4. Pharmacokinetic parameters predicted by DataWarrior, pkCSM, SwissADME and ADMETlab 2.0 for raputindole D

Physicochemical properties DataWarrior pkCSM SwissADME ADMETlab2.0

MW / Da 382.505 382.507 382.5 382.2

PAINS - - negative negative

cLogP 5.7925 - 5.16 -

LogP - 6.0462 - 5.455

H-Acceptors 3 1 1 3

H-Donors 3 3 3 3

NRotB 4 4 4

Polar surface area / Å 51.81 - - -

Surface area / Å - 170.329 - -

Topological polar surface area / Å 51.81 51.81

Absorption

Caco2 permeability - 1.017 - -5.507

Intestinal absorption (human) - 92.617 0.006

GI absorption - - high -

P-glycoprotein substrate positive positive 0.994

P-glycoprotein inhibitor - − 1

P-glycoprotein I inhibitor - positive − -

P-glycoprotein II inhibitor - positive − -

Distribution

BBB permeability - -0.061 negative 0.199

Metabolism

CYP1A2 inhibitor - - negative 0.892

CYP2C19 inhibitor - - positive 0.948

CYP2C9 inhibitor - - positive 0.914

CYP2D6 inhibitor - - negative 0.837

CYP3A4 inhibitor - - positive 0.921

Toxicity

Hepatotoxicity − positive - -

Mutagenic negative − - -

Tumorigenic negative − - -

Respiratory toxicity - - - 0.957

MW: molecular weight; PAINS: pan-assay interference compounds; cLogP: calculated log partition coefficient; logP: logarithm of the partition coefficient 
between octanol and water; NRotB: number of rotatable bonds; Caco2: Caco-2 permeability; GI: gastrointestinal absorption; BBB: blood-brain barrier; 
CYPs: cytochrome P450 enzymes.
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Figure 5. Comparative root mean square deviations (RMSD) of raputindoles and GRL0617 interactions with proteins. (a) RMSD of PLpro receptor, and 
raputindole C, over the simulation time. (b) RMSD of PLpro receptor, and raputindole A. (c) RMSD of PLpro receptor, and raputindole D. (d) RMSD of 
PLpro receptor, and GRL0617.

in the crystal structure. Also, our in silico methodology is in 
line with our previous studies,11 especially for the in vitro 
description of the flavonoid inhibitory potential. 

Flavonoids were, together with alkaloids, at the top 
of our ranking (Table 1) and these findings are supported 
by previous in vitro studies.11 It is well known that NPs 

play a key role in the pharmacological industry, as a 
source of novel and unexplored molecular core, which 
is of utmost interest during the development of new drug 
processes. Our virtual screening results identified natural 
alkaloids as potential inhibitors of the SARS-CoV-2 
PLpro. Alkaloids are a class with at least one nitrogen as a 
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heteroatom, usually in a heterocyclic ring, known to have 
broad pharmacological activity and produce pronounced 
physiological responses, making them a powerful candidate 
to treat viral pathologies. Not surprisingly, they have 
been used as prototypes for the development of synthetic 
antiviral drugs.45 

Currently, more than 8,000 natural compounds are 
classified as alkaloids, among them 288 are found in 
NuBBEDB.19,51 Among alkaloids, our results show that 
indole raputindoles, which were first isolated in 2011 
from samples of Raputia simulans from Brazilian Amazon 
Forest20 are the most interesting candidates to PLpro 
inhibition. Indoles are active molecules that can be modified 
to generate a huge variety of derivatives, which makes this 
chemical class of great importance in pharma industry.52,53 
There are many studies about the medicinal applications of 
indoles, but descriptions of these molecules’ interactions 
with PLpro are still incipient.54 Alkaloids have already been 
reported as potential viral inhibitors,54,55 but we describe 
for the first time the potential of indole raputindoles as 
SARS- CoV-2 PLpro inhibitors. 

Analysis of the interactions between rapuntidoles and the 
PLpro enzyme

In all raputindoles simulations, we observed the 
formation of hydrogen bonds with PLpro residues 
(Figures  2, 3, and 4). The bridges formed indicate that 
raputindole D forms a greater amount of interactions when 
compared with the found with the inhibitor GRL0617.44 The 
most promising was the hydrogen bond that occurs in all 
simulations with residue Y268, which has been identified 
as a critical residue for protease function. Hydrogen 
interactions between PLpro Y268 and NPs have already 
been found and described for flavonoids, in which inhibition 
of enzymatic activity was observed.11

The pi-pi T-shaped interactions found in our simulations 
are considered a broad category of noncovalent interactions.56 
In the pi-pi T-shaped interaction there is an electron cloud 
interaction between two aromatic groups. In a T-shaped, 
there is a side electron cloud of a ring and an electron cloud 
of another ring.56,57 Also, in noncovalent interactions we 
observed the pi-alkyl, alkyl, and pi-sigma interactions, 

Figure 6. (a) RMSF values illustrating the positional stability and dynamic behavior of residues when complexed with raputindoles A, C, D, and GRL0617; 
(b) focused RMSF analysis of the Beta-Loop-2 (BL2) region (G266-G271). Residues N267, Y268, and Q269, which are critical for PLpro inhibition, show 
varied flexibilities across different ligand environments.
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Figure 7. Comparative analysis of the average number of hydrogen bonds formed in three different raputindole complexes. (a) Raputindole C complex 
with 3604, 4030, and 7648 hydrogen bonds; (b) raputindole A complex showing 445, 989, 48 hydrogen bonds; (c) raputindole D complex exhibiting the 
highest number of hydrogen bonds 8508, 7440, 8175. (d) GRL0617 with 7948, 7997, and 7917 hydrogen bonds.

where an electron cloud interacts with an aromatic group 
while an electron group interacts with an alkyl group.57 
Considering the hall of noncovalent interactions simulated 
in our study, pi-stacked amide interactions are known to 
result in an amplification of hydrogen bond energy.58 All 
interactions are hydrophobic and play a significant role 
as enzyme inhibitors.11,56,57 The observed van der Waals 

interactions indicate the inhibitory potential of this NP 
protein.59 

Physicochemical properties of raputindoles 

Drug-likeness properties play a crucial role in antiviral 
drug development. Currently, several drugs fall into the broad 
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druggable space determined by Beyonde Rule of 5 (bRO5). 
Among them is azithromycin, a well-known antibiotic 
with MW = 749 Da and protease inhibitors simeprevir and 
atazanavir, which also have MW greater than 700 Da.60 
Likewise, the physical-chemical characteristics of the NPs 
screened in this work go beyond the traditional Lipinski’s 
rule of 5.61 Therefore, the bRO5 druggable space allows 
larger and more complex substances, such as NPs, to be 
considered as drugs. For this reason, we based on the bRO5 
criteria to analyze those molecules that best interacted with 
the SARS-CoV-2 PLpro.62

The bioavailability of a drug is intrinsically connected to 
its ability to be absorbed through the intestinal epithelium 
and reach the systemic circulation.63 Among other 
absorption factors, P-glycoprotein is a type of ATPase 
that acts in the efflux of these substances, which can 
interfere with the efficiency of pharmacological activity.64 
Our results show that rapuntindoles A, B and C present 
satisfactory intestinal absorption, as calculated by pkCSM 
and ADMETlab 2.0. In addition, they are Pgp substrates and 
Pgp I and II inhibitors as well, which reinforce the epithelial 
transit to the intestinal lumen. The NPs in their raw structure 
may not show sustainable ADMET results. Therefore, the 
optimization of structure through the identification of hits 
and the elaboration of leads can be an alternative in the 

functionalization of structure and production of successful 
drugs.65,66 Through the predictions of physicochemical 
characteristics, we identified that the three raputindoles do 
not show mutagenicity or tumorigenic potential (Tables 2, 
3 and 4). However, they can have hepatotoxic effects and 
trigger respiratory toxicity. Manifestations of pulmonary 
drug toxicity may occur because of the use of certain 
anti-inflammatories and antimicrobials for weeks, being 
detected by imaging tests or histopathological findings.67 
Despite these characteristics, several studies68-70 discuss the 
antiviral activity of the alkaloids, which is reinforced by 
technological advances and the possibility of optimizing 
the structure of the raputindoles studied here.  

Molecular dynamics and MM/PBSA analysis

The molecular dynamics analyses indicate the stability of 
the formed complexes, particularly highlighting the stability 
of raputindole D in comparison to GRL0617, a well-known 
inhibitor of PLpro.71 This conclusion is drawn from the 
observed RMSD values. This is based on the premise that 
structures with consistently low RMSD values throughout 
the simulation are indicative of a likely interaction.72,73

The RMSF results suggest that, despite slight variations 
among them, raputindoles tend to maintain protein 

Table 5. Binding free energy calculations of PLpro-ligand complexes using MM/PBSA

Energy type / (kcal mol-1)

Raputindole A-run 1 Raputindole A-run 2 Raputindole A-run 3

Van der Waals energy -39.76 ± 4.51 -37.60 ± 6.62 -43.03 ± 3.11

Electrostatic energy -8.39 ± 3.95 -10.01 ± 3.00 -13.38 ± 3.62

Polar solvation energy 34.08 ± 6.65 32.40 ± 4.98 35.41 ± 5.66

Binding energy -14.07 ± 8.95 -21.24 ± 6.80 -21.00 ± 7.40

Raputindole D-run 1 Raputindole D-run 2 Raputindole D-run 3

Van der Waals energy -39.02 ± 3.98 -35.37 ± 4.35 -38.04 ± 3.12

Electrostatic energy -17.96 ± 4.20 -18.89 ± 5.05 -21.00 ± 3.78

Polar solvation energy 43.10 ± 5.97 40.84 ± 6.38 41.34 ± 5.25

Binding energy -13.88 ± 8.31 -13.42 ± 9.23 -17.70 ± 7.18

Raputindole C-run 1 Raputindole C-run 2 Raputindole C-run 3

Van der Waals energy -25.79 ± 4.78 -25.93 ± 7.42 -39.02 ± 3.98

Electrostatic energy -8.07 ± 4.19 -10.87 ± 4.47 -17.96 ± 4.20

Polar solvation energy 26.81 ± 4.50 25.54 ± 9.26 43.10 ± 5.97

Binding energy -7.05 ± 7.79 -11.26 ± 12.68 -13.88 ± 8.31

GRL0617-run 1 GRL0617-run 2 GRL0617-run 3

Van der Waals energy -35.71 ± 1.99 -35.89 ± 2.02 -35.90 ± 2.17

Electrostatic energy -18.17 ± 4.61 -17.75 ± 4.17 -17.62 ± 3.73

Polar solvation energy 32.29 ± 5.32 32.40 ± 4.98 32.07 ± 4.76

Binding energy -21.59 ± 7.32 -21.24 ± 6.80 -21.45 ± 6.42
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stability, particularly in the BL2 region, which is critical 
for inhibiting Plpro function.74 

Hydrogen bond interactions, essential for upholding the 
complex’s structure, are observed to be consistently stable.44 
This observation is especially pronounced in the case of 
raputindole D, which, in two out of the three runs, forms 
a greater number of hydrogen bonds compared to those 
identified in GRL0617. Both the results from hydrogen 
bond interactions and MM/PBSA analyses indicate that 
the interaction energies of the raputindoles are favorable 
and remain consistent with residues of interest N267, Y268, 
and Q269.73

While each ligand displays distinct properties, 
raputindole D consistently stands out as a potential 
candidate due to its favorable interactions, especially in 
stabilizing the pivotal BL2 loop region.75 This suggests 
potential implications for its efficiency as an inhibitor and 
underscores the need for further experimental validations. 
In reflecting on our research, it is important to acknowledge 
the potential importance of other classes of molecules 
that were not the primary focus of our study, such as 
phenylethanoid glycosides (PGs), chalcones, and aromatic 
derivates. These molecules, although outside our primary 
scope of investigation, could potentially offer additional or 
complementary pathways to inhibit SARS-CoV-2. Notably, 
PGs have been reported to possess potential as selective 
inhibitors of SARS-CoV-2 PLpro.76 We strongly believe 
in the need for a comprehensive approach to COVID-19 
research, and as such, encourage further investigation into 
these compounds to fully realize their potential.

Conclusions

In summary, this study suggests that NPs, especially 
indole raputindoles that interact with the BL2 loop region of 
PLpro have the potential to act as SARS-CoV-2 inhibitors. 
Although these results were obtained from in silico analysis, 
the formation of the simulated interactions allows us to 
predict the inhibitory potential of this NP compound. Our 
analysis revealed that raputindole C displayed the highest 
stability with the protein, as evidenced by its lowest RMSD 
and RMSF values, suggesting consistent positioning 
and structural stability. A detailed study of the BL2 
region pinpointed raputindole D as the most effective in 
stabilizing this crucial segment. The presence of significant 
hydrogen bonds further emphasizes the stability of these 
complexes. Collectively, the findings underline the potential 
of raputindoles, particularly D, as promising candidates 
for SARS-CoV-2 therapeutic interventions, given their 
favorable interactions with PLpro.
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