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Alloying element like boron, even in small addition, is well known to improve hardenability of steels. Its 
application can improve mechanical properties of steels and reduce alloying costs. Despite these benefits is not 
easy to cast boron steels, mainly in dynamical solidification process like continuous casting, due to their crack 
susceptibility1,2. The strategy of using Phase-Field simulation of the solidification process is based on its proved 
capacity of predicting realistic microstructure that emerge during solidification under conditions even far from 
equilibrium3-5. Base on this, some comparative simulations were performed using a three component dilute 
alloy in a two dimensional domain under unconstrained (isothermal) and constrained (directional) solidification. 
Simulation results suggested two fragile mechanisms: one related to a deep dendritic primary arms space and 
other due to the remelting of this region at low temperature. Both resulted mainly from the high boron segregation 
in interdendritic regions.
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1. Introduction

Phase-Field model is an approach based on the concept introduced 
by Gibbs and Van der Waals, which states that solid-liquid interface 
has a physical dimension of nanometer magnitude3,6,7. It is widely 
accepted for prediction of solidification microstructure of pure 
substance as well as alloys of different solute contents3-5. For two 
phases system it uses an order parameter (φ) as a state variable that 
identify the phases, i.e., it is constant inside the bulk phase (ex: 0 for 
liquid and 1 for solid) and change continuously between these values 
along the interface3. It does not have the disadvantage of tracking 
the interface all the time. In fact the model solution determines its 
position.

Developments of Phase-Field models can be addressed to Van der 
Waals who perceived that the addition of gradient term in free energy 
functional has an effect of creating interface with certain thickness6. 
Cahn and Hilliard8, after rediscovering this idea, associated it to 
the interfacial tension and solid-liquid interface thickness, allowing 
Phase-Field model parameters to be related to them.

Important contribution came from Langer6 who proposed the 
first Phase-Field model for solidification of pure substances. No 
less important was the pioneer work from Kobayachi9, whose first 
numerical simulation introduced the formalism to incorporate 
anisotropy that is used until present date. 

In general, Phase-Field models of solidification of three 
component alloys without convection in liquid or solid state tension 
effects are composed by four diffusion equations: one for the order 
parameter; one for temperature and two for the solutes. These can 
be phenomenological, based on free energy functional or developed 
from entropy functional3,7. Despite both approaches reproduce similar 
results3, the most used one is the phenomenological, mainly due to 
its faster convergence and its facility to obtain model parameters 
based on material properties3. Therefore, according to Cahn and 
Hilliard8 and Landau Ginsburg7 the free energy functional (F) can 
be formulated as follows:
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where f (φ, N
i
, T) is a free energy density that is function of order 

parameter (φ), concentrations of solutes (N
i
) and temperature (T); ξ 

is a energy density contribution from the gradient of order parameter 
and V is system’s volume.

The key point of the phenomenological Phase-Field model is to 
consider that free energy decreases monotonically as solidification 
advances, i.e:
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where t is time and M is a Phase-Field mobility term. From the 
derivative of this functional it follows the general expression for the 
diffusion of order parameter:
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In order to describe f (φ, N
i
, T) it has been used a weighing rule3, 

defined as followed:
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where h
p
 (φ) is an interpolation function which varies along solid-

liquid interface from a fixed value in solid (ex.: h
p
 (1) = 1) to a fixed 

value in liquid (ex.: h
p
 (0) = 0), W is the interface energy density and  

Φ(φ) is a double well function. In the above expression (Equation 4) 
the first term of right side is related to the interface energy and the 
others are the bulk free energy of solid (fS) and liquid (fL) phases, 
respectively.
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and isotropic material without noise in an one dimension domain, 
it is possible to relate these parameters to the interfacial tension (σ) 
and interface thickness (2λ) as follows11:
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The Phase-Field mobility term (M
0
) formulation was developed 

for alloys by Karma12 using asymptotic analysis and independently 
by Kim  et  al.13 using solidification kinetic consideration. 
Echebarria et al.14, based on work of Karma12, developed a model 
for 2 components alloy without diffusion in solid (one side model). 
Ode et al.15 proposed another approach for a three component alloy, 
however, considering the same simplification and vanishing inverse 
of kinetic coefficient (β). On the other side, Ramires et al.16 presented 
an alternative formulation for 2 components alloy, considering a non-
isothermal domain, no diffusion in solid and vanishing inverse of 
kinetic coefficient. More recently, Kim10 reviewed this development 
and proposed a new formulation for multicomponent alloy, however, 
considering the same simplifications of Ode et al.15. In this context, a 
recent work by Ohno et al.17 for a 2 component alloys was developed 
to deal with diffusion in solid. They17 considered an isothermal case 
and vanishing inverse of kinetic coefficient, obtaining results17 similar 
to the one side model.

Based on Kim10, Ramires at al16 and Ohno et al.17 the present work 
employs a custom developed approach to three component alloy, for 
non-isothermal conditions, non-vanishing kinetic coefficient and 
diffusion in solid described by the following expression:
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where DL
i
 (i = 1, 2) are liquid solute diffusivities and N

i
Le are 

equilibrium solute concentrations in liquid phase, which can be 
obtained from phase diagrams, K

T
 is the thermal conductivity and A is 

a constant. This formulation reduces to the one from Ramires et al.16 
for two components alloy as well as to the one from Karma Rappel18 
for pure materials.

The solute diffusion equations are based on conservative Onsager 
extrapolation without cross effect on diffusivities terms (D

i,l
), i.e.:
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Using Kim10 approach and the ‘antitrapping’ correction term 

from Karma12 ( )ij
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 the expression for non-dimensional solute 
concentrations (U

i
) can be written as follows:
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Hence, it is possible to obtain a general formulation for the order 
parameter diffusion equation, i.e.:
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where Φ´ is the derivative of Φ in relation to φ and source depends 
on the bulk free energy of solid and liquid phases.

Following the multicomponent approach from Kim10 and 
considering constants solutes activity coefficients of infinite dilution, 
it is possible to obtain the following expression (see detailed 
development in Appendix A):
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where T
m
 is the melting temperature of pure solvent, R is the universal 

gas constant, DH
f
 is the enthalpy of fusion of pure solvent, V

m
 is the 

alloy molar volume, k
i
 are the solutes equilibrium solute partition 

coefficients, N
i∞ are the initial alloy solute concentrations and h

r
(φ) 

is another interpolation function with the same properties of h
P
(φ).

In order to simulate complex microstructure, anisotropy was 
included in the model as proposed by Kobayachi9, where the 
parameters ξ and M were made to vary according the angle (θ) 
between solid-liquid interface normal vector and horizontal axis (x) 
in the present domain of two dimensions (2D). The final diffusion 
Equation for the order parameter is as follows:
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In this case the following expressions were used7:
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where δξ and δ
M
 are the strength of anisotropy, j is the number of 

anisotropy, θ
0
 is the main growth angle, A is the amplitude of noise 

and ν is random number obtained from a uniform distribution.
Predictions for ξ

0
 and W follows from the work of Cahn and 

Hilliard8 on surface tension. In that case and considering the analytical 
solution of Equation 8, simplified to describe the equilibrium of pure 
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avoids joint thermodynamic and Phase-Field calculations inside each 
time step, reducing the numerical processing time.

Isothermal solidification constitutes the maximum rate of 
solidification of unconstrained dendrite growth. The alloys were 
submitted to different undercoolings and their solid-liquid interface 
evolutions were determined until reaching steady state condition. The 
interface thickness (2λ) was set up to 8 × 10–8 m and the inverse of 
kinetic coefficient was estimated as an arithmetic average between 
pure iron, determined by collision limited teory22, and the value 
reported by Ogushi e Suzuki23 for a higher carbon Fe-C alloy, i.e.: 
0.54 s.m/K. The properties used in simulation are summarized in 
Table 1. The results presented in Figure 3 show that boron addition 
has the effect of narrowing the dendrite primary arm thickness. That 
phenomenon can be attributed to the tip radius selection, associated 
to the boron solute gradient around the solid-liquid interface.

In order to determine the dendrite tip radius, a parabolic function 
(fy) was fitted to data close to the main dendrite tip arm. This is a 
plausible approach which is based on experimental evidences24. 

Thus tip radii (r) formed in different solidification velocity were 
determined using the following formulas:

1r
K

= − 	 (22)
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Here fy´ and fy´´ are the first and the second order spatial 
derivative of fy in relation to x direction (horizontal direction) and  
K is the curvature of the dendrite main tip arm. The results of this 
analysis are summarized in Figure 4. It shows that the dendrite tip 
radius decrease as solidification velocity increases until a limit where 
it starts to increase. This point is related to the high velocity dendrite-
cellular morphological transition24. It is a common behavior of all 
three alloys. In these cases, the increase of boron addition reduced 
the dendrite tip radius and also it seems to reduce the velocity where 
this transition should happen.

According to the marginal stability theory, the tip selection 
is a result of stabilizing forces (e.g.: solute gradients) and non-
stabilizing forces (interfacial tension), modulated by the selection 
parameter24, which is commonly used in one dimensional analytical 
tip model as a easier tool to map the morphological transition of 
materials under solidification. However is not easy to determine this 
parameter because it can depend on alloy composition and anisotropy. 
Nonetheless, Phase-Field simulation can be used to estimate it, and 
for the three alloys under consideration the results are summarized 
in Table 3. It seems that the higher the boron content the higher the 
selection parameter.
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  are solid solute diffusivities and h

d
(φ) is another interpolation 

function with the same properties of h
P
(φ) and h

r
(φ).

In order to describe the temperature field in directional 
solidification, a quasi-steady state approximation was used14. It takes 
in consideration a sample traveling in one direction (ex. z) with a 
constant pulling velocity (ex. V

P
) under a fixed thermal gradient (G). 

This approach can be implemented as follows:

( )0 . .pT T G z V t= + − 	 (21)

where T
0
 is the initial temperature.

Equations 8 and 18 were solved using finite volume method19 
with uniform grid. For the time derivative, the explicit scheme was 
used. Despite some limitation regarding the definition of the time step, 
it is easy to implement and has the advantage that the Phase-Field 
Equation does not need to be solved outside the interface region.

2. Results and Discussion

This model was already validated against analytical solution and 
experimental data for pure material and 2 components alloys20,21. 
However, some new calculations were first performed in order to 
compare their results with equilibrium thermodynamic data for dilute 
ternary alloys. As far as the rate of solidification is small, solute 
concentration should approach the values given by phase diagrams. 
That constitutes an additional validation procedure.

The first analysis was performed for Fe (BCC)-C-P dilute alloy. 
Input data are summarized in Table 1. Phase-Field model was set up 
to use a flat interface thickness (2λ) of 8,0 × 10–8 m and vanishing 
inverse kinetic coefficient. The domain was defined with 3 nodes in 
horizontal direction. Anisotropy effect and noise were set up to zero. A 
flat solid-liquid interface was allowed to advance in vertical direction 
until reaching steady state. The resulting solute concentration profiles 
of carbon and phosphorus are presented in Figure 1 together with 
three isothermal slices of dilute Fe(BCC)-C-P phase diagram reported 
by Ode et al.15. The agreement is remarkable.

A second Phase-Field calculation was focused on Fe(BCC)-
C-B dilute alloy. The procedure was similar to that applied to the 
Fe(BCC)-C-P dilute alloy. Again, input data are from Table 1. As it 
can be seen from Figure 2, a good agreement was obtained between 
the present Phase-Field calculations and phase diagram data obtained 
from Blasek et al.1.

In order to analyze the effect of boron on the solidification 
microstructure, the present work simulated three alloys with different 
boron contents (Table 2). Their equilibrium solute concentrations 
necessary to determine the mobility parameter M (Equation 16) were 
determined previously as function of temperature. This procedure 

Table 1. Data used in the present Phase-Field calculation.

Properties Fe-C15 Fe-P15 Fe-B1

Melting temperature of pure iron (K) 1811 1811 1811

Equilibrium solute partition coefficient 0.204 0.102 0.053

Liquidus slope (K.mole–1) –1802 –1836 –1964

Interfacial tension (J.m–2) 0.204 0.204 0.204

Solute diffusivity in liquid phase (m2/s) 2.0 × 10–8 1.7 × 10–9 1.0 × 10–8

Solute diffusivity in solid phase (m2/s) 6.0 × 10–9 5.5 × 10–11 2.05 × 10–10

Molar volume (m3.mole–1) 7.7 × 10–6 7.7 × 10–6 7.7 × 10–6
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Figure 1. Solid-liquid equilibrium solute concentration in dilute Fe(BCC)-C-P alloy: points determined by the present Phase-Field model; lines are from 
equilibrium phase-diagram.

Figure 2. Solid-liquid equilibrium solute concentration in dilute Fe(BCC)-C-B alloy: points determined by the present Phase-Field model; lines are from 
equilibrium phase-diagram.
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The addition of boron in the dilute Fe(BCC)-C alloy should 
increase the non-stabilizing forces during solidification because 
it creates an extra solute diffusion field. Therefore one should 
expect an increase of solid-liquid interface disturbances at a certain 
solidification velocity. In order to verify this effect, the domain and 
the simulation time were expanded. The way to perform this is to 
increase the solid-liquid interface thickness. It has been shown that 
is possible to obtain convergence of Phase-Field simulation to the 
analytical solution of Mullins Sekerka instability theory, and therefore 
to obtain consistent results, using interface thickness smaller than 
dendrite tip radius14. In order to make this simulation feasible with 
the present model, the interface thickness (2λ) was increased to 
2 × 10–7 m. The grid size and the time step were set up to 5.0 × 10–8 m 
and 5.0 × 10–9 s, respectively. Morphological results on the three alloys 
under analysis can be compared in Figure 5. Actually, it seems that, 
for similar solidification time, the increase of boron addition lead to 
an intensification of secondary arms growth. Also, it can be observed 
some indication of secondary arms dynamic coalescence phenomena, 
where larger arms grow faster and smaller ones are melted back. This 
suggests that boron addition can lead to an increase in the secondary 
arms spaces due to increasing dynamic coalescence, which is in 
agreement with the theory of secondary arms growth22.

Solute segregation is an important phenomenon that can strongly 
influence macroscopic properties of materials. Regarding this, 
Figure 6 and 7 show the carbon and boron segregation resulting from 
morphologies presented before (Figure 5). It is clear the increase of 
carbon and boron concentrations in the interdendritic regions. These 
higher concentrations could lead, according to Blasek et al.1, to a 
low temperature remelting (around 1200 °C) of already solidified 
interdendritic region. This phenomenon has been associated to the 
ductility loss and crack formation during continuous casting of 
boron steel1.

In directional solidification (constrained growth) the solidification 
front is inside the range defined by solidus and liquidus temperature. 
At steady state, pulling velocity is equal to the solidification velocity 
and morphology is mainly columnar, which is the most common 
microstructure in continuous casting process. In order to simulate this 
process, Equation 21 was included in the present Phase-Field model. 
However, typical continuous casting cooling rate is not feasible to be 
simulated with the present implementation due to the large domain 
and time required to resolve the microstructure, which would result 
in a huge processing time (ex.: a system with 108 grid points and 
107 time steps). Therefore a faster cooling rate was set up based on 
work of Miettinen25. In this case, fixed values of temperature gradient 
(G), pulling velocity (Vp) and initial temperature (T

0
) were set up. 

Two seeds were implemented in both upper and lower left corner 
of the domain. The distance between them was defined by primary 
arms space as determined by Miettinen25 for these conditions, i.e.: 
1.5 × 10–5 m. The dimension of the domain in the other direction (now 
z direction) was set up in order to have a well developed microstructure 
and, at same time, ensure a certain superheat at the high side of the 
domain, i.e.: 7.5 × 10–5m. Interface thickness, grid size and time step 
were defined as 3 × 10–7 m, 7.5 × 10–8 m, 2 × 10–8 s, respectively.

Table 2. Iron–carbon alloys simulated in present work.

Alloy C (mole fraction) B(mole fraction)

FeC 0.00232 0.000000

FeCB1 0.00232 0.000515

FeCB2 0.00232 0.001030

Table 3. Selection parameter for the 3 alloys simulated by the present 
Phase‑Field model.

Alloy Range of solidification 
velocity (m/s)

Selection
parameter

FeC 0.054 to 0.298 0.0446

FeCB1 0.016 to 0.020 0.0598

FeCB2 0.027 to 0.204 0.0762

Figure 4. Effect of boron addition on tip radius-solidification velocity relation.

Figure 3. Phase-Field calculation of the effect of boron addition on dilute 
Fe-C alloy: a) FeC alloy; b) FeCB1 alloy; and c) FeCB2 alloy.
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Figure 5. The effect of boron addition on dendrite secondary arms growth: a) alloy FeC; b) alloy FeCB1; and c) alloy FeCB2.

Figure 6. Solute concentration field (mole fraction) of alloy FeCB1 solidification: a) boron; and b) carbon.
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Field simulations. Therefore, in order to reduce the susceptibility 
for crack formation in this steel one should focus on minimizing 
boron segregation. As product hardenability improvement is due 
to the presence of solid soluble boron1 and, as reported before, its 
solubility in this phase is very low (figures 8 and 9), the first approach 
should be the reduction of its addition to a minimum defined by its 
solubility limit in solid phase. Another possible strategy would be 
the use of another element capable of forming a high temperature 
third phase with boron.

It is important to point out that present simulation were performed 
using properties independent of temperature and concentrations. 
Nonetheless, the excellent agreement of Phase Field results with 
equilibrium phase diagrams indicates that this simplification can 
work properly concerning dilute solution. 

Another point is on some larger values used in present work to 
define interface thickness necessary to extend the simulation domains. 
In this regard, the present Phase-Field model were implemented using 
the ‘antitraping’ flux (Equation 20), therefore one can not expect any 
artificial solute trapping, which could reduce solute segregation close 
do solid-liquid interface. Besides, these values were always kept lower 
enough to resolve dendritic arms.

In actual continuous casting process the solidification front is 
expected to be sensitive to the liquid convection that can affect solute 
segregation. This phenomenon can be driven by fluid flow of liquid 
steel entering in the mould in the first stage of solidification and also 
by shrinkage of solid. Also, change in liquid density and surface 
tension gradient (Maragoni’s convection) can provoke convection, 
both due to concentration gradient formed at solidification front. As 
these phenomena were not include in the present Phase-Field model 
one should expect some differences between present results and 
actual process. Nonetheless, based on sample presented in Figure 10, 

The solid-liquid interface growth in directional solidification 
is driven by constitutional undercooling, which in turn is defined 
by solute segregation at the interface. Simulation results on solute 
segregation using the present Phase-Field model can be seen in 
Figure 8, where the darkest areas correspond to the solid phase and 
the solute gradients between the two arms comes from segregation 
phenomena, where solid phase rejects solute to the liquid phase. 
From these results it is possible to determine the constitutional 
undercoolings, which are presented in Figure 9 (negative values). As it 
can be seen, the interdendritic region is not totally undercooled in the 
present simulation. Additionally it is noticeable that boron addition 
increases the interdendritic region making the main dendrite arms 
thinner. On the other side, close to dendrite tip, the constitutional 
undercoolings become higher as boron addition increases. 

As a consequence of the above results, liquid fraction between 
the thinner arms increases, resulting in more fragile microstructure, 
which would be under transverse tensile stress common in continuous 
casting. Indeed, it has been reported severe crack formation parallel 
to the dendrite main axis during casting of high boron content steel, 
as shown in Figure 10, which is consistent with present Phase-Field 
simulations.

Based on simulation of present work, it can be concluded that two 
mechanisms making high boron alloyed steel to be more sensitive 
to crack formation during continuous casting could be present: 
one occurring at solidification front and other at lower temperature 
(around 1200 °C). The fist one could be related to a deep dendritic 
primary arms space that would concentrate the tensile stress common 
to the continuous casting process. The second one could be due to 
the remelting of this region at low temperature resulting in a large 
localized ductility loss. Both mechanisms resulted mainly from the 
high boron segregation in interdendritic regions, predicted by Phase-

Figure 7. Solute concentration field (mole fraction) of alloy FeCB2 solidification: a) boron; and b) carbon.
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Figure 8. Segregation fields of carbon and boron (mole): a) alloy FeC; b) alloy FeCB1; and c) alloy FeCB2.

Figure 9. Constitutional undercoolings determined from solute concentration 
profiles: a) alloy FeC; b) alloy FeCB1; and c) alloy FeCB2.

Figure 10. Sulfur print of a transversal slice of continuously casted slab of 
high boron steel2.

one can speculate that convection could be acting to accelerate the 
primary arm growth in its main axis direction, where convection is 
more effective, due to an increase of constitutional undercooling 
(increase in latent heat removal and concentration gradient). On the 
other side, in interdendritic region, where space limits convection 
one could expect results similar to the present work, i.e., without 
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convection. Therefore the final results could be a thinner dendritic 
primary arm than that predicted by the present work and, therefore, 
a deepest interdendritic region. i.e., the presence of convection could 
induce an increase in the fragility of solid-liquid front. However, in 
order to confirm the above comments it is important to include in the 
Phase-Field model the convection phenomenon.

3. Conclusions

The present Phase-Field model reproduced remarkably well the 
equilibrium solute concentration of rich iron size of Fe(BCC)-C-P 
and Fe(BCC)-C-B ternary phase diagrams.

Isothermal simulations reported a decrease of arm thickness, and 
dendrite tip radius with incremental addition of boron.

The relation between dendrite tip radius and solidification 
velocity were reproduced for the three alloys simulated. In this regard 
incremental addition of boron seems to reduce the velocity where 
dendrite-cellular transition can occur.

According to the isothermal simulation, boron addition increases 
solid-liquid interface instability, inducing faster secondary arms 
formation and its dynamic coalescence. That phenomenon could 
increase secondary arms spaces.

Interdendritic carbon and boron segregations and the equilibrium 
phase diagram from Brasek et al.1 suggest that remelting of already 
solidified interdendrite region could occur in lower temperature range 
(around 1200 °C), decreasing hot ductility of the material.

Directional solidification process simulation showed the effect 
of incremental boron addition in narrowing the dendrite main arms 
and the increasing of interdendritic liquid fraction. These results 
can be attributed to the carbon and boron segregation that influence 
constitutional undercoolings. 

Present Phase-Field model predicted two mechanisms that make 
high boron alloyed steel to be more sensitive to crack formation 
during continuous casting: one related to a deep dendritic primary 
arms space that would concentrate the tensile stress common to the 
continuous casting process and other due to the remelting of this 
region at low temperature resulting in a large localized ductility loss. 
Both mechanisms resulted mainly from the high boron segregation 
in interdendritic regions. 

Even though the present model did not consider convection effect 
present in actual process, the sample of high boron alloyed steel 
took from it showed cracks consistent with the fragility mechanism 
present above.

In order to reduce the sensitivity for crack formation during 
continuous casting of boron steel, segregation of this element should 
be minimized. The ideal value would be the maximum solubility of 
boron in solid phase. Another approach could be the use of another 
element that reacts with boron to yield a third phase. 
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Appendix A. Development of diffusion Equation for the order parameter.

The general formulation for the order parameter was previously presented by Equation 5, where:

( ) ( ) ( )( ) ( )., 1 ,S L
p i p isource h f N T h f N T∂  = φ + − φ ∂φ

	 (A1)

Following Kim10 approach one can obtain the following expression for alloys with two solutes:

( ) ( ) ( ) ( ) ( )1 1 1 2 2 2.. ., ,p S S L L L S L S
i i

h
source f N T f N T N N N N

∂ φ  = − − + − µ + − µ ∂φ
  	 (A2)

where 1 2 and µ µ   are chemical potentials of solutes 1 and 2, defined by the flowing relations:

( ) ( ), ,S S L L
i i

i S L
i i

f N T f N T

N N

∂ ∂
µ = =

∂ ∂


	 (A3)

In order to describe f S(NS
i
,T) and f L(NL

i
,T) it was used the dilute solute approximation. A general formulation can be described as follows:

( ) ( ) ( )3 30 0

1 1

.. . . ., lnS S S S S S S
i i i i i i

i im

R Tf N T N f N N
V= =

 = + γ∑ ∑   	 (A4)

and

( ) ( ) ( )3 30 0

1 1
, lnL L L L L L L

i i i i i i
i im

R Tf N T N f N N
V= =

⋅  = ⋅ + ⋅ ⋅ ⋅ γ∑ ∑   	 (A5)

where f
i
0S and f

i
0L are free energy of elements that compose the alloy (1 and 2 represent solutes and 3 represents the solvent) in solid and liquid 

phases respectively; g
i
0S and g

i
0L are activity coefficient of infinite dilution (constant values) of solutes in solid and liquid phases respectively.

From Equation A3 and making proper determination of 1 2 and µ µ   one can obtain the following equation:

( ) ( )( ) ( )( )0 0
3 3 1 2 1 2ln 1 ln 1P S L S S L L

m

h R Tsource f f N N N N
V

 ∂ ϕ ⋅  = − ⋅ − + − − − − −   ∂ϕ  
	 (A6)

In dilute approach, ( )( ) ( )1 2 1 2ln 1 .P P P PN N N N− − ≅ − −  Therefore Equation A6 can be approximated by:

( ) ( ) ( )0
3 1 2 1 2

P S S L L

m

h R Tsource f N N N N
V

 ∂ ϕ ⋅  = − ⋅ −∆ + − − + −  ∂ϕ  
	 (A7)

Close to solid-liquid transformation one can estimate de free energy variation of pure solvent as a linear function as follow:

0
3

f
f

m

H
f H T

T
∆

∆ = ∆ − ⋅ 	 (A8)

Therefore Equation A7 becomes:

( ) ( ) ( ) ( )1 2 1 2
mP S S L L

f
m m

T Th R Tsource H N N N N
T V

 −∂ ϕ ⋅  = − ⋅ ⋅ ∆ + − − + −  ∂ϕ   
	 (A9)

Considering that the solute concentrations obey a mixing rule of the following form:

( )1S L
i r i r iN h N h N= ⋅ + − ⋅ 	 (A10)

and solute concentrations in solid phase are related to the liquid phase ones through the respective solute partitions coefficients, one can 
express Equation A9 as a function of solute concentration field (N

i
), i.e:

( ) ( )
( ) ( )( ) ( ) ( )( )

1 2

1 21 1
m

P f
m m r r r r

T T N NR Tsource h H
T V k h h k h h

  − ⋅ = − φ ⋅ ⋅ ∆ + +′  
⋅ φ + − φ ⋅ φ + − φ    

	 (A11)
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Following Karma12, Echebarria et al.14, Ramires et al16 and Ohno et al.17 one can define a non dimensional composition as follow:

( ) ( ) ( )( )
1 1

1 1
i i

i
i i r r

N N
U

k k h h
∞

 
= ⋅ − 

− ⋅ φ + − φ  
	 (A12)

Introducing formulation A12 into Equation A11 results the final expression used in Equation 6, i.e:

( ) ( ) ( ) ( )
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1
1 1m i i
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im m
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