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ABSTRACT. The aim of multicriteria decision aiding is to give the decision maker a recommendation

concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision

maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one

must identify decision maker’s preferences. In this paper, we focus on preference discovery from data

concerning some past decisions of the decision maker. We consider the preference model in the form of a

set of “if..., then...” decision rules discovered from the data by inductive learning. To structure the data prior

to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology

for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic

relationships between these evaluations and the decision. We review applications of DRSA to a large variety

of multicriteria decision problems.

Keywords: multicriteria decision aiding, ordinal classification, choice, ranking, Dominance-based Rough

Set Approach, preference modeling, decision rules.

1 INTRODUCTION

In this paper, we review a multicriteria decision aiding methodology which employs decision
maker’s (DM’s) preference model in form of a set of decision rules discovered from some prefer-
ence data. Multicriteria decision problems concern a finite set of objects (also called alternatives,
actions, acts, solutions, etc.) evaluated by a finite set of criteria (also called attributes, features,
variables, etc.), and raise one of the following questions: (i) how to assign the objects to some
ordered classes (ordinal classification), (ii) how to choose the best subset of objects (choice or
optimization), or (iii) how to rank the objects from the best to the worst (ranking). The answer
to everyone of these questions involves an aggregation of the multicriteria evaluations of objects,
which takes into account preferences of the DM. In consequence, the aggregation formula is at
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the same time the DM’s preference model. Thus, any recommendation referring to one of the
above questions must be based on the DM’s preference model. The preference data used for
building this model, as well as the way of building and using it in the decision process, are main
factors distinguishing various multicriteria decision aiding methodologies.

In our case, we assume that the preference data includes either observations of DM’s past deci-
sions in the same decision problem, or examples of decisions consciously elicited by the DM on
demand of an analyst. This way of preference data elicitation is called indirect, by opposition
to direct elicitation when the DM is supposed to provide information leading directly to defini-
tion of all preference model parameters, like weights and discrimination thresholds of criteria,
trade-off rates, etc. (see, e.g., Roy, 1996).

Past decisions or decision examples may be, however, inconsistent with the dominance principle
commonly accepted for multicriteria decision problems. Decisions are inconsistent with the
dominance principle if:

• in case of ordinal classification: object a has been assigned to a worse decision class than
object b, although a is at least as good as b on all the considered criteria, i.e. a dominates
b;

• in case of choice and ranking: pair of objects (a, b) has been assigned a degree of pref-
erence worse than pair (c, d), although differences of evaluations between a and b on all
the considered criteria is at least as good as respective differences of evaluations between
c and d, i.e. pair (a, b) dominates pair (c, d).

Thus, in order to build a preference model from partly inconsistent preference data, we had an
idea to structure this data using the concept of a rough set introduced by Pawlak (1982, 1991).
Since its conception, rough set theory has often proved to be an excellent mathematical tool for
the analysis of inconsistent description of objects. Originally, its understanding of inconsistency
was different, however, than the above inconsistency with the dominance principle. The original
rough set philosophy is based on the assumption that with every object of the universe U there
is associated a certain amount of information (data, knowledge). This information can be ex-
pressed by means of a number of attributes. The attributes describe the objects. Objects which
have the same description are said to be indiscernible (or similar) with respect to the available
information. The indiscernibility relation thus generated constitutes the mathematical basis of
rough set theory. It induces a partition of the universe into blocks of indiscernible objects, called
elementary sets, which can be used to build knowledge about a real or abstract world. The use of
the indiscernibility relation results in information granulation.

Any subset X of the universe may be expressed in terms of these blocks either precisely (as a
union of elementary sets) or approximately. In the latter case, the subset X may be character-
ized by two ordinary sets, called the lower and upper approximations. A rough set is defined
by means of these two approximations, which coincide in the case of an ordinary set. The lower
approximation of X is composed of all the elementary sets included in X (whose elements, there-
fore, certainly belong to X ), while the upper approximation of X consists of all the elementary
sets which have a non-empty intersection with X (whose elements, therefore, may belong to X ).
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The difference between the upper and lower approximation constitutes the boundary region of
the rough set, whose elements cannot be characterized with certainty as belonging or not to X
(by using the available information). The information about objects from the boundary region is,
therefore, inconsistent or ambiguous. The cardinality of the boundary region states, moreover,
the extent to which it is possible to express X in exact terms, on the basis of the available informa-
tion. For this reason, this cardinality may be used as a measure of vagueness of the information
about X .

Some important characteristics of the rough set approach makes it a particularly interesting tool
in a variety of problems and concrete applications. For example, it is possible to deal with both
quantitative and qualitative input data and inconsistencies need not to be removed prior to the
analysis. In terms of the output information, it is possible to acquire a posteriori information
regarding the relevance of particular attributes and their subsets to the quality of approximation
considered within the problem at hand. Moreover, the lower and upper approximations of a par-
tition of U into decision classes, prepare the ground for inducing certain and possible knowledge
patterns in the form of “if... then...” decision rules.

Several attempts have been made to employ rough set theory for decision aiding (Slowinski,
1993; Pawlak & Slowinski, 1994). The Indiscernibility-based Rough Set Approach (IRSA) is not
able, however, to deal with preference ordered attribute scales and preference ordered decision
classes. In multicriteria decision analysis, an attribute with a preference ordered scale (value set)
is called a criterion.

An extension of the IRSA which deals with inconsistencies with respect to dominance principle,
typical for preference data, was proposed by Greco, Matarazzo & Slowinski (1998a, 1999a,b).
This extension, called the Dominance-based Rough Set Approach (DRSA) is mainly based on the
substitution of the indiscernibility relation by a dominance relation in the rough approximation
of decision classes. An important consequence of this fact is the possibility of inferring (from
observations of past decisions or from exemplary decisions) the DM’s preference model in terms
of decision rules which are logical statements of the type “if..., then...”. The separation of certain
and uncertain knowledge about the DM’s preferences is carried out by the distinction of different
kinds of decision rules, depending upon whether they are induced from lower approximations of
decision classes or from the difference between upper and lower approximations (composed of
inconsistent examples). Such a preference model is more general than the classical functional
models considered within multi-attribute utility theory or the relational models considered, for
example, in outranking methods (Greco et al., 2002c, 2004; Slowinski et al., 2002b).

This paper is a review based on previous publications. In the next section, we present some
basics on the Indiscernibility-based Rough Set Approach (IRSA) as well as on its extension to
similarity relation. In Section 3, we explain the need of replacing indiscernibility or similarity
relation by dominance relation in the definition of rough sets, when considering preference data.
This leads us to Section 4, where Dominace-based Rough Set Approach (DRSA) is presented
with respect to multicriteria ordinal classification. This section also includes two special versions
of DRSA: Variable Consistency DRSA (VC-DRSA) and Stochastic DRSA. Section 5 presents
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DRSA with respect to multicriteria choice and ranking. In Sections 4 and 5, application of DRSA
to all three categories of multicriteria decision problems is explained by the way of examples.
Section 6 groups conclusions and characterizes other relevant extensions and applications of
DRSA to decision problems. Finally, Section 7 provides information about additional sources of
information about rough set theory and applications.

2 SOME BASICS ON INDISCERNIBILITY-BASED ROUGH SET APPROACH (IRSA)

2.1 Definition of rough approximations by IRSA

For algorithmic reasons, we supply the information regarding the objects in the form of a data
table, whose separate rows refer to distinct objects and whose columns refer to the different
attributes considered. Each cell of this table indicates an evaluation (quantitative or qualitative)
of the object placed in that row by means of the attribute in the corresponding column.

Formally, a data table is the 4-tuple S = 〈U, Q, V, f 〉, where U is a finite set of objects (uni-
verse), Q = {q1, q2, . . . , qm} is a finite set of attributes, Vq is the value set of the attribute q,
V = ∪q∈Q Vq and f : U × Q → V is a total function such that f (x, q) ∈ Vq for each q ∈ Q,
x ∈ U , called the information function.

Each object x of U is described by a vector (string)

DesQ(x) =
[

f (x, q1), f (x, q2), . . . , f (x, qm)
]
,

called the description of x in terms of the evaluations of the attributes from Q. It represents the
available information about x .

To every (non-empty) subset of attributes P we associate an indiscernibility relation on U , de-
noted by IP and defined as follows:

IP =
{
(x, y) ∈ U × U : f (x, q) = f (y, q), for each q ∈ P

}
.

If (x, y) ∈ IP , we say that the objects x and y are P-indiscernible. Clearly, the indiscernibility
relation thus defined is an equivalence relation (reflexive, symmetric and transitive). The family
of all the equivalence classes of the relation IP is denoted by U |IP and the equivalence class
containing an object x ∈ U is denoted by IP (x). The equivalence classes of the relation IP are
called the P-elementary sets or granules of knowledge encoded by P .

Let S be a data table, X be a non-empty subset of U and ∅ 6= P ⊆ Q. The set X may be
characterized by two ordinary sets, called the P-lower approximation of X (denoted by P(X))
and the P-upper approximation of X (denoted by P(X)) in S. They can be defined, respectively,
as:

P(X) =
{

x ∈ U : IP (x) ⊆ X
}
, P(X) =

{
x ∈ U : IP (x) ∩ X 6= ∅

}
.

The family of all the sets X ⊆ U having the same P-lower and P-upper approximations is called
a P-rough set. The elements of P(X) are all and only those objects x ∈ U which belong to the
equivalence classes generated by the indiscernibility relation IP contained in X . The elements of
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P(X) are all and only those objects x ∈ U which belong to the equivalence classes generated by
the indiscernibility relation IP containing at least one object x belonging to X . In other words,
P(X) is the largest union of the P-elementary sets included in X , while P(X) is the smallest
union of the P-elementary sets containing X .

The lower and upper approximations can be written in an equivalent form, in terms of unions of
elementary sets as follows:

P(X) =
⋃

x∈U,IP (x)⊆X

IP (x), P(X) =
⋃

x∈X

IP (x) .

The P-boundary of X in S, denoted by Bn P (X), is defined as:

Bn P (X) = P(X)− P(X) .

The term rough approximation is a general term used to express the operation of the P-lower
and P-upper approximation of a set or of a union of sets. The rough approximations obey the
following basic laws (cf. Pawlak, 1991):

• the inclusion property: P(X) ⊆ X ⊆ P(X),

• the complementarity property: P(X) = U − P(U − X).

Directly from the definitions, we can also get the following properties of the P-lower and P-
upper approximations (Pawlak, 1982, 1991):

1) P(∅) = P(∅), P(U ) = P(U ) = U ,

2) P(X ∪ Y ) = P(X) ∪ P(Y ),

3) P(X ∩ Y ) = P(X) ∩ P(Y ),

4) X ⊆ Y ⇒ P(X) ⊆ P(Y ),

5) X ⊆ Y ⇒ P(X) ⊆ P(Y ),

6) P(X ∪ Y ) ⊇ P(X) ∪ P(Y ),

7) P(X ∩ Y ) ⊆ P(X) ∩ P(Y ),

8) P(P(X)) = P(P(X)) = P(X),

9) P(P(X)) = P(P(X)) = P(X).

Therefore, if an object x belongs to P(X), it is also certainly contained in X , while if x belongs
to P(X), it is only possibly contained in X . Bn P (X) constitutes the doubtful region of X :
using the knowledge encoded by P nothing can be said with certainty about the inclusion of its
elements in set X .
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If the P-boundary of X is empty (i.e. Bn P (X) = ∅) then the set X is an ordinary set, called the
P-exact set. By this, we mean that it may be expressed as the union of some P-elementary sets.
Otherwise, if Bn P (X) 6= ∅, then the set X is a P-rough set and may be characterized by means
of P(X) and P(X).

The following ratio defines an accuracy measure of the approximation of X (X 6= ∅) by means
of the attributes from P: αP (X) = |P(X)|

|P(X)|
, where |Y | denotes the cardinality of a (finite) set Y .

Obviously, 0 ≤ αP (X) ≤ 1. If αP (X) = 1, then X is a P-exact set. If αP (X) < 1, then X is a
P-rough set.

Another ratio defines a quality measure of the approximation of X by means of the attributes
from P: γP (X) = |P(X)|

|X | . The quality γP (X) represents the relative frequency of the objects
correctly assigned by means of the attributes from P . Moreover, 0 ≤ αP (X) ≤ γP (X) ≤ 1, and
γP (X) = 0 iff αP (X) = 0, while γP (X) = 1 iff αP (X) = 1.

The definition of approximations of a subset X ⊆ U can be extended to a classification, i.e. a par-
tition Y = {Y1, . . . , Yn} of U . The subsets Yi , i = 1, . . . , n, are disjunctive classes of Y . By the
P-lower and P-upper approximations of Y in S we mean the sets P(Y ) = {P(Y1), . . . , P(Yn)}

and P(Y ) = {P(Y1), . . . , P(Yn)}, respectively. The coefficient γP (Y ) =
∑n

i=1 |P(Yi )|
|U | is called

the quality of approximation of classification Y by the set of attributes P , or in short, the quality
of classification. It expresses the ratio of all P-correctly classified objects to all objects in the
data table.

The main issue in rough set theory is the approximation of subsets or partitions of U , repre-
senting knowledge about U , with other sets or partitions that have been built up using available
information about U . From the perspective of a particular object x ∈ U , it may be interesting,
however, to use the available information to assess the degree of its membership to a subset X of
U . The subset X can be identified with the knowledge to be approximated. Using the rough set
approach one can calculate the membership function μP

X (x) (rough membership function) as

μP
X (x) =

|X ∩ IP (x)|

|IP (x)|

The value of μP
X (x) may be interpreted analogously as conditional probability and may be un-

derstood as the degree of certainty (credibility) to which x belongs to X . Observe that the value
of the membership function is calculated from the available data, and not subjectively assumed,
as it is in the case of membership functions of fuzzy sets.

Between the rough membership function and the rough approximations of X the following rela-
tionships hold:

P(X) =
{

x ∈ U : μP
X (x) = 1

}
, P(X) =

{
x ∈ U : μP

X (x) > 0
}
,

Bn P (X) =
{

x ∈ U : 0 < μP
X (x) < 1

}
, P(U − X) =

{
x ∈ U : μP

X (x) = 0
}
.

In rough set theory there is, therefore, a close link between the granularity connected with the
rough approximation of sets and the uncertainty connected with the rough membership of objects
to sets.
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A very important concept for concrete applications is that of the dependence of attributes. Intu-
itively, a set of attributes T ⊆ Q totally depends upon a set of attributes P ⊆ Q if all the values
of the attributes from T are uniquely determined by the values of the attributes from P . In other
words, this is the case if a functional dependence exists between evaluations by the attributes
from P and by the attributes from T . This means that the partition (granularity) generated by
the attributes from P is at least as “fine” as that generated by the attributes from T , so that it is
sufficient to use the attributes from P to build the partition U |IT . Formally, T totally depends on
P iff IP ⊆ IT .

Therefore, T is totally (partially) dependent on P if all (some) objects of the universe U may be
univocally assigned to granules of the partition U |IT , using only the attributes from P .

Another issue of great practical importance is that of knowledge reduction. This concerns the
elimination of superfluous data from the data table, without deteriorating the information con-
tained in the original table.

Let P ⊆ Q and p ∈ P . It is said that attribute p is superfluous in P if IP = IP−{p}; otherwise,
p is indispensable in P .

The set P is independent if all its attributes are indispensable. The subset P ′ of P is a reduct of
P (denoted by RE D(P)) if P ′ is independent and IP ′ = IP .

A reduct of P may also be defined with respect to an approximation of the classification Y of
objects from U . It is then called a Y -reduct of P (denoted by RE DY (P)) and it specifies a
minimal (with respect to inclusion) subset P ′ of P which keeps the quality of the classification
unchanged, i.e. γP ′(Y ) = γP (Y ). In other words, the attributes that do not belong to a Y -reduct
of P are superfluous with respect to the classification Y of objects from U .

More than one Y -reduct (or reduct) of P may exist in a data table. The set containing all the
indispensable attributes of P is known as the Y -core (denoted by C O REY (P)). In formal
terms, C O REY (P) = ∩RE DY (P). Obviously, since the Y -core is the intersection of all the
Y -reducts of P , it is included in every Y -reduct of P . It is the most important subset of at-
tributes of Q, because none of its elements can be removed without deteriorating the quality of
the classification.

2.2 Decision rules induced from rough approximations

In a data table the attributes of the set Q are often divided into condition attributes (set C 6= ∅)
and decision attributes (set D 6= ∅). Note that C ∪ D = Q and C ∩ D = ∅. Such a table is called
a decision table. The decision attributes induce a partition of U deduced from the indiscernibility
relation ID in a way that is independent of the condition attributes. D-elementary sets are called
decision classes. There is a tendency to reduce the set C while keeping all important relationships
between C and D, in order to make decisions on the basis of a smaller amount of information.
When the set of condition attributes is replaced by one of its reducts, the quality of approximation
of the classification induced by the decision attributes does not deteriorate.
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Since the tendency is to underline the functional dependencies between condition and decision
attributes, a decision table may also be seen as a set of decision rules. These are logical state-
ments of the type “if..., then...”, where the antecedent (condition part) specifies values assumed
by one or more condition attributes (describing C-elementary sets) and the consequence (de-
cision part) specifies an assignment to one or more decision classes (describing D-elementary
sets). Therefore, the syntax of a rule can be outlined as follows:

if f (x, q1) is equal to rq1 and f (x, q2) is equal to rq2 and... f (x, qp) is equal to rqp,
then x belongs to Y j1 or Y j2 or . . . Y jk ,

where {q1, q2, . . . , qp} ⊆ C, (rq1, rq2, . . . , rqp) ∈ Vq1 × Vq2 × ∙ ∙ ∙ × Vqp and Y j1, Y j2, . . . , Y jk

are some decision classes of the considered classification (D-elementary sets). If there is only
one possible consequence, i.e. k = 1, then the rule is said to be certain, otherwise it is said to be
approximate or ambiguous.

An object x ∈ U supports decision rule r if its description is matching both the condition part
and the decision part of the rule. We also say that decision rule r covers object x if it matches
at least the condition part of the rule. Each decision rule is characterized by its strength defined
as the number of objects supporting the rule. In the case of approximate rules, the strength is
calculated for each possible decision class separately.

Let us observe that certain rules are supported only by objects from the lower approximation of
the corresponding decision class. Approximate rules are supported, in turn, only by objects from
the boundaries of the corresponding decision classes.

Procedures for the generation of decision rules from a decision table use an inductive learning
principle. The objects are considered as examples of decisions. In order to induce decision rules
with a unique consequent assignment to a D-elementary set, the examples belonging to the D-
elementary set are called positive and all the others negative. A decision rule is discriminant
if it is consistent (i.e. if it distinguishes positive examples from negative ones) and minimal
(i.e. if removing any attribute from a condition part gives a rule covering negative objects). It
may be also interesting to look for partly discriminant rules. These are rules that, besides positive
examples, could cover a limited number of negative ones. They are characterized by a coefficient,
called the level of confidence, which is the ratio of the number of positive examples (supporting
the rule) to the number of all examples covered by the rule.

The generation of decision rules from decision tables is a complex task and a number of proce-
dures have been proposed to solve it (see, for example, Grzymala-Busse, 1992, 1997; Skowron,
1993; Ziarko & Shan, 1994; Skowron & Polkowski, 1997; Stefanowski, 1998; Slowinski, Ste-
fanowski, Greco & Matarazzo, 2000). The existing induction algorithms use one of the following
strategies:

(a) The generation of a minimal set of rules covering all objects from a decision table.

(b) The generation of an exhaustive set of rules consisting of all possible rules for a decision
table.
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(c) The generation of a set of ‘strong’ decision rules, even partly discriminant, covering rela-
tively many objects from the decision table (but not necessarily all of them).

To summarize the above description of IRSA, let us list particular benefits one can get when
applying the rough set approach to analysis of data presented in decision tables:

• a characterization of decision classes in terms of chosen attributes through lower and upper
approximation,

• a measure of the quality of approximation which indicates how good the chosen set of
attributes is for approximation of the classification,

• a reduction of the knowledge contained in the table to a description by relevant attributes
i.e. those belonging to reducts; at the same time, exchangeable and superfluous attributes
are also identified,

• a core of attributes, being an intersection of all reducts, indicates indispensable attributes,

• a set of decision rules which is induced from the lower and upper approximations of the
decision classes; this shows classification patterns which exist in the data set.

A tutorial example illustrating all these benefits has been given in (Slowinski et al., 2005). For
more details about IRSA and its extensions, the reader is referred to Pawlak (1991), Polkowski
(2002), Slowinski (1992b) and many others (see Section 7). Internet addresses to freely available
software implementations of these algorithms can also be found in the last section of this paper.

2.3 From indiscernibility to similarity

As mentioned above, the classical definitions of lower and upper approximations are based on the
use of the binary indiscernibility relation which is an equivalence relation. The indiscernibility
implies the impossibility of distinguishing between two objects of U having the same descrip-
tion in terms of the attributes from Q. This relation induces equivalence classes on U , which
constitute the basic granules of knowledge. In reality, due to the imprecision of data describing
the objects, small differences are often not considered significant for the purpose of discrimina-
tion. This situation may be formally modeled by considering similarity or tolerance relations (see
e.g. Nieminen, 1988; Marcus, 1994; Slowinski, 1992a; Polkowski, Skowron & Zytkow, 1995;
Skowron & Stepaniuk, 1995; Slowinski & Vanderpooten, 1995, 2000; Stepaniuk, 2000; Yao &
Wong, 1995).

Replacing the indiscernibility relation by a weaker binary similarity relation has considerably
extended the capacity of the rough set approach. This is because, in the least demanding case, the
similarity relation requires reflexivity only, relaxing the assumptions of symmetry and transitivity
of the indiscernibility relation.

In general, a similarity relation R does not generate a partition but a cover of U . The information
regarding similarity may be represented using similarity classes for each object x ∈ U . More
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precisely, the similarity class of x , denoted by R(x), consists of the set of objects which are
similar to x :

R(x) = {y ∈ U : y Rx} .

It is obvious that an object y may be similar to both x and z, while z is not similar to x , i.e.
y ∈ R(x) and y ∈ R(z), but z /∈ R(x), x, y, z ∈ U . The similarity relation is of course reflexive
(each object is similar to itself). Slowinski & Vanderpooten (1995, 2000) have proposed a simi-
larity relation which is only reflexive. The abandonment of the transitivity requirement is easily
justifiable. For example, see Luce’s paradox of the cups of tea (Luce, 1956). As for the symme-
try, one should notice that y Rx , which means “y is similar to x”, is directional. There is a subject
y and a referent x , and in general this is not equivalent to the proposition “x is similar to y”, as
maintained by Tversky (1977). This is quite immediate when the similarity relation is defined
in terms of a percentage difference between evaluations of the objects compared on a numeri-
cal attribute in hand, calculated with respect to evaluation of the referent object. Therefore, the
symmetry of the similarity relation should not be imposed. It then makes sense to consider the
inverse relation of R, denoted by R−1, where x R−1 y means again “y is similar to x”. R−1(x),
x ∈ U , is the class of referent objects to which x is similar:

R−1(x) = {y ∈ U : x Ry} .

Given a subset X ⊆ U and a similarity relation R on U , an object x ∈ U is said to be non-
ambiguous in each of the two following cases:

• x belongs to X without ambiguity, that is x ∈ X and R−1(x) ⊆ X ; such objects are also
called positive;

• x does not belong to X without ambiguity (x clearly does not belong to X ), that is x ∈
U − X and R−1(x) ⊆ U − X (or R−1(x)∩ X 6= ∅); such objects are also called negative.

The objects which are neither positive nor negative are said to be ambiguous. A more general
definition of lower and upper approximation may thus be offered (see Slowinski & Vanderpooten,
2000). Let X ⊆ U and let R be a reflexive binary relation defined on U . The lower approximation
of X , denoted by R(X), and the upper approximation of X , denoted by R(X), are defined,
respectively, as:

R(X) =
{

x ∈ U : R−1(x) ⊆ X
}
,

R(X) =
⋃

x∈X

R(x) .

It may be demonstrated that the key properties – inclusion and complementarity – still hold and
that

R(X) =
{

x ∈ U : R−1(x) ∩ X 6= ∅
}
.

Moreover, the above definition of rough approximation is the only one that correctly characterizes
the set of positive objects (lower approximation) and the set of positive or ambiguous objects
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(upper approximation) when a similarity relation is reflexive, but not necessarily symmetric nor
transitive.

Using a similarity relation, we are able to induce decision rules from a decision table. The syntax
of a rule is represented as follows:

If f (x, q1) is similar to rq1 and f (x, q2) is similar to rq2 and... f (x, qp) is similar
to rqp, then x belongs to Y j1 or Y j2 or... Y jk ,

where {q1, q2, . . . , qp} ⊆ C , (rq1, rq2, . . . , rqp) ∈ Vq1 × Vq2 × . . .× Vqp and Y j1, Y j2, . . . , Y jk

are some classes of the considered classification (D-elementary sets). As mentioned above, if
k = 1 then the rule is certain, otherwise it is approximate or ambiguous. Procedures for genera-
tion of decision rules follow the induction principle described in point 2.2. One such procedure
has been proposed by Krawiec, Slowinski & Vanderpooten (1998) – it involves a similarity rela-
tion that is learned from data. We would also like to point out that Greco, Matarazzo & Slowin-
ski (1998b, 2000b) proposed a fuzzy extension of the similarity, that is, rough approximation of
fuzzy sets (decision classes) by means of fuzzy similarity relations (reflexive only).

3 THE NEED OF REPLACING INDISCERNIBILITY RELATION BY DOMINANCE
RELATION WHEN REASONING ABOUT PREFERENCE DATA

When trying to apply the rough set concept based on indisceribility or similarity to reasoning
about preference ordered data, it has been noted that IRSA ignores not only the preference order
in the value sets of attributes but also the monotonic relationship between evaluations of objects
on such attributes (called criteria) and the preference ordered value of decision (classification
decision or degree of preference) (see Greco, Matarazzo & Slowinski, 1998a, 1999b, 2001a;
Slowinski, Greco & Matarazzo, 2000a).

In order to explain how important is the above monotonic relationship for data describing multi-
criteria decision problems, let us consider an example of a data set concerning pupils’ achieve-
ments in a high school. Suppose that among the attributes describing the pupils there are results
in Mathematics (Math) and Physics (Ph). There is also a General Achievement (GA) result,
which is considered as a classification decision. The domains of all three attributes are com-
posed of three values: bad, medium and good. The preference order of the attribute values is
obvious: good is better than medium and bad, and medium is better than bad. Such attributes
are called criteria because they involve an evaluation. One can also notice a semantic corre-
lation between the two criteria and the classification decision, which means that an improve-
ment on one criterion should not worsen the classification decision, while the other criterion
is unchanged. Precisely, an improvement of a pupil’s score in Math or Ph, with other crite-
rion value unchanged, should not worsen the pupil’s general achievement (GA), but rather im-
prove it. In general terms, this requirement is concordant with the dominance principle defined
in the Introduction.
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This semantic correlation is also called monotonicity constraint, and thus, an alternative name of
the classification problem with semantic correlation between evaluation criteria and classification
decision is ordinal classification with monotonicity constraints.

Two questions naturally follow consideration of this example:

• What classification rules can be drawn from the pupils’ data set?

• How does the semantic correlation influences the classification rules?

The answer to the first question is: monotonic “if..., then...” decision rules. Each decision rule
is characterized by a condition profile and a decision profile, corresponding to vectors of thresh-
old values on evaluation criteria and on classification decision, respectively. The answer to the
second question is that condition and decision profiles of a decision rule should observe the
dominance principle (monotonicity constraint) if the rule has at least one pair of semantically
correlated criteria spanned over the condition and decision part. We say that one profile domi-
nates another if the values of criteria of the first profile are not worse than the values of criteria
of the second profile.

Let us explain the dominance principle with respect to decision rules on the pupils’ example.
Suppose that two rules induced from the pupils’ data set relate Math and Ph on the condition
side, with GA on the decision side:

rule#1: if Math=medium and Ph=medium, then GA=good,

rule#2: if Math=good and Ph=medium, then GA=medium.

The two rules do not observe the dominance principle because the condition profile of rule #2
dominates the condition profile of rule #1, while the decision profile of rule #2 is dominated by
the decision profile of rule #1. Thus, in the sense of the dominance principle, the two rules are
inconsistent, i.e. they are wrong.

One could say that the above rules are true because they are supported by examples of pupils
from the analyzed data set, but this would mean that the examples are also inconsistent. The
inconsistency may come from many sources. Examples include:

• Missing attributes (regular ones or criteria) in the description of objects. Maybe the data set
does not include such attributes as the opinion of the pupil’s tutor expressed only verbally
during an assessment of the pupil’s GA by a school assessment committee.

• Unstable preferences of decision makers. Maybe the members of the school assessment
committee changed their view on the influence of Math on GA during the assessment.

Handling these inconsistencies is of crucial importance for knowledge discovery about prefer-
ences. They cannot be simply considered as noise or error to be eliminated from data, or amalga-
mated with consistent data by some averaging operators. They should be identified and presented
as uncertain rules.
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If the semantic correlation was ignored in prior knowledge, then the handling of the above men-
tioned inconsistencies would be impossible. Indeed, there would be nothing wrong with rules #1
and #2. They would be supported by different examples discerned by considered attributes.

It has been acknowledged by many authors that rough set theory provides an excellent framework
for dealing with inconsistencies in knowledge discovery (Grzymala-Busse, 1992; Pawlak, 1991;
Pawlak, Grzymala-Busse, Slowinski & Ziarko, 1995; Polkowski, 2002; Polkowski & Skowron,
1999; Slowinski, 1992b; Slowinski & Zopounidis, 1995; Ziarko, 1998). As we have shown in
Section 2, the paradigm of rough set theory is that of granular computing, because the main
concept of the theory (rough approximation of a set) is built up of blocks of objects which are
indiscernible by a given set of attributes, called granules of knowledge. In the space of regular
attributes, the indiscernibility granules are bounded sets. Decision rules induced from rough
approximation of a classification are also built up of such granules.

The authors have proposed an extension of the granular computing paradigm that enables us
to take into account prior knowledge, either about evaluation of objects on multiple criteria
only (Greco, Matarazzo, Slowinski & Stefanowski, 2002), or about multicriteria evaluation with
monotonicity constraints (Greco, Matarazzo & Slowinski, 1998a, 1999b, 2000d, 2001a, 2002a,
2002b; Slowinski, Greco & Matarazzo, 2002a, 2009). The combination of the new granules with
the idea of rough approximation is called the Dominance-based Rough Set Approach (DRSA).

In the following, we present the concept of granules which permit us to handle prior knowledge
about multicriteria evaluation with monotonicity constraints when inducing decision rules.

Let U be a finite set of objects (universe) and let Q be a finite set of attributes divided into a set
C of condition attributes and a set D of decision attributes, where C ∩ D = ∅. Also, let

XC =
|C |∏

q=1

Xq and X D =
|D|∏

q=1

Xq

be attribute spaces corresponding to sets of condition and decision attributes, respectively. The
elements of XC and X D can be interpreted as possible evaluations of objects on attributes from
set C = {1, . . . , |C |} and from set D = {1, . . . , |D|}, respectively. Therefore, Xq is the set of
possible evaluations of considered objects with respect to attribute q. The value of object x on
attribute q ∈ Q is denoted by xq . Objects x and y are indiscernible by P ⊆ C if xq = yq for all
q ∈ P and, analogously, objects x and y are indiscernible by R ⊆ D if xq = yq for all q ∈ R.
The sets of indiscernible objects are equivalence classes of the corresponding indiscernibility
relation IP or IR . Moreover, IP (x) and IR(x) denote equivalence classes including object x .
ID generates a partition of U into a finite number of decision classes Cl = {Clt , t = 1, . . . , n}.
Each x ∈ U belongs to one and only one class Clt ∈ Cl.

The above definitions are valid for regular attributes, not involving monotonicity relationships
between values of condition and decision attributes. In this case, the granules of knowledge are
bounded sets in X P and X R (P ⊆ C and R ⊆ D), defined by partitions of U induced by the
indiscernibility relations IP and IR , respectively. Then, classification rules to be discovered are
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functions representing granules IR(x) by granules IP (x) in the condition attribute space X P , for
any P ⊆ C and for any x ∈ U .

If value sets of some condition and decision attributes are preference ordered (i.e. they are evalua-
tion criteria), and there are known monotonic relationships between value sets of these condition
and decision attributes, then the indiscernibility relation is unable to produce granules in XC and
X D that would take into account the preference order. To do so, the indiscernibility relation has
to be substituted by a dominance relation in X P and X R (P ⊆ C and R ⊆ D). Suppose, for
simplicity, that all condition attributes in C and all decision attributes in D are criteria, and that
C and D are semantically correlated.

Let �q be a weak preference relation on U (often called outranking) representing a preference
on the set of objects with respect to criterion q ∈ {C ∪ D}. Now, xq � yq means “xq is at least as
good as yq with respect to criterion q”. On the one hand, we say that x dominates y with respect
to P ⊆ C (shortly, x P-dominates y) in the condition attribute space X P (denoted by x DP y) if
xq � yq for all q ∈ P . Assuming, without loss of generality, that the domains of the criteria are
numerical (i.e. Xq ⊆ R for any q ∈ C) and that they are ordered so that the preference increases
with the value, we can say that x DP y is equivalent to xq ≥ yq for all q ∈ P , P ⊆ C . Observe
that for each x ∈ X P , x DP x , i.e. P-dominance is reflexive. On the other hand, the analogous
definition holds in the decision attribute space X R (denoted by x DR y), where R ⊆ D.

The dominance relations x DP y and x DR y (P ⊆ C and R ⊆ D) are directional statements
where x is a subject and y is a referent.

If x ∈ X P is the referent, then one can define a set of objects y ∈ X P dominating x , called the
P-dominating set (denoted by D+

P (x)) and defined as D+
P (x) = {y ∈ U : y DP x}.

If x ∈ X P is the subject, then one can define a set of objects y ∈ X P dominated by x , called the
P-dominated set (denoted by D−

P (x)) and defined as D−
P (x) = {y ∈ U : x DP y}.

P-dominating sets D+ P(x) and P-dominated sets D−
P (x) correspond to positive and negative

dominance cones in X P , with the origin x .

With respect to the decision attribute space X R (where R ⊆ D), the R-dominance relation
enables us to define the following sets:

Cl≥x
R =

{
y ∈ U : y DR x

}
, Cl≤x

R =
{

y ∈ U : x DR y
}
.

Cltq = {x ∈ X D : xq = tq} is a decision class with respect to q ∈ D. Cl≥x
R is called the upward

union of classes, and Cl≤x
R is the downward union of classes. If x ∈ Cl≥x

R , then x belongs to
class Cltq , xq = tq , or better, on each decision attribute q ∈ R. On the other hand, if x ∈ Cl≤x

R ,
then x belongs to class Cltq , xq = tq , or worse, on each decision attribute q ∈ R. The downward
and upward unions of classes correspond to the positive and negative dominance cones in X R ,
respectively.

In this case, the granules of knowledge are open sets in X P and X R defined by dominance cones
D+

P (x), D−
P (x) (P ⊆ C) and Cl≥x

R , Cl≤x
R (R ⊆ D), respectively. Then, classification rules
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to be discovered are functions representing granules Cl≥x
R , Cl≤x

R by granules D+
P (x), D−

P (x),
respectively, in the condition attribute space X P , for any P ⊆ C and R ⊆ D and for any
x ∈ X P .

4 THE DOMINANCE-BASED ROUGH SET APPROACH (DRSA) TO
MULTICRITERIA ORDINAL CLASSIFICATION

4.1 Granular computing with dominance cones

When discovering classification rules, a set D of decision attributes is, usually, a singleton, D =
{d}. Let us take this assumption for further presentation, although it is not necessary for the
Dominance-based Rough Set Approach. The decision attribute d makes a partition of U into a
finite number of classes, Cl = {Clt , t = 1, . . . , n}. Each object x ∈ U belongs to one and only
one class, Clt ∈ Cl. The upward and downward unions of classes boil down, respectively, to:

Cl≥t =
⋃

s≥t

Cls

Cl≤t =
⋃

s≤t

Cls

where t = 1, . . . , n. Notice that for t = 2, . . . , n we have Cl≥t = U − Cl≤t−1, i.e. all the objects
not belonging to class Clt or better, belong to class Clt−1 or worse.

Let us explain how the rough set concept has been generalized to the Dominance-based Rough
Set Approach in order to enable granular computing with dominance cones (for more details,
see Greco, Matarazzo & Slowinski (1998a, 1999b, 2000d, 2001a, 2002a), Slowinski, Greco &
Matarazzo (2009), Slowinski, Stefanowski, Greco & Matarazzo (2000)).

Given a set of criteria, P ⊆ C , the inclusion of an object x ∈ U to the upward union of classes
Cl≥t , = 2, . . . , n, is inconsistent with the dominance principle if one of the following conditions
holds:

• x belongs to class Clt or better but it is P-dominated by an object y belonging to a class
worse than Clt , i.e. x ∈ Cl≥t but D+

P (x) ∩ Cl≤t−1 6= ∅,

• x belongs to a worse class than Clt but it P-dominates an object y belonging to class Clt

or better, i.e. x /∈ Cl≥t but D−
P (x) ∩ Cl≥t−1 6= ∅.

If, given a set of criteria P ⊆ C , the inclusion of x ∈ U to Cl≥t , where t = 2, . . . , n, is
inconsistent with the dominance principle, we say that x belongs to Cl≥t with some ambiguity.
Thus, x belongs to Cl≥t without any ambiguity with respect to P ⊆ C , if x ∈ Cl≥t and there is no
inconsistency with the dominance principle. This means that all objects P-dominating x belong
to Cl≥t , i.e. D+

P (x) ⊆ Cl≥t . Geometrically, this corresponds to the inclusion of the complete set
of objects contained in the positive dominance cone originating in x , in the positive dominance
cone Cl≥t originating in Clt .
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Furthermore, x possibly belongs to Cl≥t with respect to P ⊆ C if one of the following conditions
holds:

• according to decision attribute d , x belongs to Cl≥t ,

• according to decision attribute d , x does not belong to Cl≥t , but it is inconsistent in the
sense of the dominance principle with an object y belonging to Cl≥t .

In terms of ambiguity, x possibly belongs to Cl≥t with respect to P ⊆ C , if x belongs to Cl≥t
with or without any ambiguity. Due to the reflexivity of the P-dominance relation DP , the above
conditions can be summarized as follows: x possibly belongs to class Clt or better, with respect
to P ⊆ C , if among the objects P-dominated by x there is an object y belonging to class Clt or
better, i.e.

D−
P (x) ∩ Cl≥t 6= ∅.

Geometrically, this corresponds to the non-empty intersection of the set of objects contained in
the negative dominance cone originating in x , with the positive dominance cone Cl≥t originating
in Clt .

For P ⊆ C , the set of all objects belonging to Cl≥t without any ambiguity constitutes the P-
lower approximation of Cl≥t , denoted by P(Cl≥t ), and the set of all objects that possibly belong
to Cl≥t constitutes the P-upper approximation of Cl≥t , denoted by P(Cl≥t ). More formally:

P(Cl≥t ) =
{

x ∈ U : D+
P (x) ⊆ Cl≥t

}

P(Cl≥t ) =
{

x ∈ U : D−
P (x) ∩ Cl≥t 6= ∅

}

where t = 1, . . . , n. Analogously, one can define the P-lower approximation and the P-upper
approximation of Cl≤t :

P(Cl≤t ) =
{

x ∈ U : D−
P (x) ⊆ Cl≤t

}

P(Cl≤t ) =
{

x ∈ U : D+
P (x) ∩ Cl≤t 6= ∅

}

where t = 1, . . . , n.

The P-lower and P-upper approximations of Cl≥t , t = 1, . . . , n, can also be expressed in terms
of unions of positive dominance cones as follows:

P(Cl≥t ) =
⋃

D+
P (x)⊆Cl≥t

D+
P (x)

P(Cl≥t ) =
⋃

x∈Cl≥t

D+
P (x) .

Analogously, the P-lower and P-upper approximations of Cl≤t , t = 1, . . . , n, can be expressed
in terms of unions of negative dominance cones as follows:

P(Cl≤t ) =
⋃

D−
P (x)⊆Cl≤t

D−
P (x)
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P(Cl≤t ) =
⋃

x∈Cl≤t

D−
P (x) .

The P-lower and P-upper approximations so defined satisfy the following inclusion properties
for each t ∈ {1, . . . , n} and for all P ⊆ C :

P(Cl≥t ) ⊆ Cl≥t ⊆ P(Cl≥t ) ,

P(Cl≤t ) ⊆ Cl≤t ⊆ P(Cl≤t ) .

All the objects belonging to Cl≥t and Cl≤t with some ambiguity constitute the P-boundary of
Cl≥t and Cl≤t , denoted by Bn P (Cl≥t ) and Bn P (Cl≤t ), respectively. They can be represented, in
terms of upper and lower approximations, as follows:

Bn P (Cl≥t ) = P(Cl≥t )− P(Cl≥t ) ,

Bn P (Cl≤t ) = P(Cl≤t )− P(Cl≤t ) ,

where t = 1, . . . , n. The P-lower and P-upper approximations of the unions of classes Cl≥t and
Cl≤t have an important complementarity property. It says that if object x belongs without any
ambiguity to class Clt or better, then it is impossible that it could belong to class Clt−1 or worse,
i.e.

P(Cl≥t ) = U − P(Cl≤t−1), t = 2, . . . , n .

Due to the complementarity property, Bn P
(
Cl≥t

)
= Bn P

(
Cl≤t−1

)
, for t = 2, . . . , n, which means

that if x belongs with ambiguity to class Clt or better, then it also belongs with ambiguity to class
Clt−1 or worse.

Considering application of the lower and the upper approximations based on dominance DP ,
P ⊆ C , to any set X ⊆ U , instead of the unions of classes Cl≥t and Cl≤t , one gets upward
lower and upper approximations P≥(X) and P

≤
(X), as well as downward lower and upper

approximations P≥(X) and P
≤
(X), as follows:

P≥(X) =
{

x ∈ U : D+
P (x) ⊆ X

}
,

P
≥
(X) =

{
x ∈ U : D−

P (x) ∩ X 6= ∅
}
,

P≤(X) =
{

x ∈ U : D−
P (x) ⊆ X

}
,

P
≤
(X) =

{
x ∈ U : D+

P (x) ∩ X 6= ∅
}
.

From the definition of rough approximations P≥(X), P
≥
(X), P≤(X) and P

≤
(X), we can get

also the following properties of the P-lower and P-upper approximations (see Greco, Matarazzo
& Slowinski, 2007, 2012):

1) P≥(∅) = P
≥
(∅) = P≤(∅) = P

≤
(∅) = ∅,

P≥(U ) = P
≥
(U ) = P≤(U ) = P

≤
(U ) = U ,
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2) P
≥
(X ∪ Y ) = P

≥
(X) ∪ P

≥
(Y ),

P
≤
(X ∪ Y ) = P

≤
(X) ∪ P

≤
(Y ),

3) P≥(X ∩ Y ) = P
≥
(X) ∩ P

≥
(Y ),

P
≤
(X ∩ Y ) = P

≤
(X) ∩ P

≤
(Y ),

4) X ⊆ Y ⇒ P
≥
(X) ⊆ P

≥
(Y ),

X ⊆ Y ⇒ P
≤
(X) ⊆ P

≤
(Y ),

5) X ⊆ Y ⇒ P≥(X) ⊆ P≥(Y ),

X ⊆ Y ⇒ P≤(X) ⊆ P≤(Y ),

6) P≥(X ∪ Y ) ⊇ P≥(X) ∪ P≥(Y )

P≤(X ∪ Y ) ⊇ P≤(X) ∪ P≤(Y ),

7) P
≥
(X ∩ Y ) ⊆ P

≥
(X) ∩ P

≥
(Y )

P
≤
(X ∩ Y ) ⊆ P

≤
(X) ∩ P

≤
(Y ),

8) P≥(P≥(X)) = P
≥
(P≥(X)) = P≥(X)

P≤(P≤(X)) = P
≤
(P≤(X)) = P≤(X),

9) P
≥
(P

≥
(X)) = P≥(P

≥
(X)) = P

≥
(X)

P
≤
(P

≤
(X)) = P≤(P

≤
(X)) = P

≤
(X),

From the knowledge discovery point of view, P-lower approximations of unions of classes rep-
resent certain knowledge provided by criteria from P ⊆ C , while P-upper approximations rep-
resent possible knowledge and the P-boundaries contain doubtful knowledge provided by the
criteria from P ⊆ C .

4.2 Variable Consistency Dominance-based Rough set Approach

The above definitions of rough approximations are based on a strict application of the dominance
principle. However, when defining non-ambiguous objects, it is reasonable to accept a limited
proportion of negative examples, particularly for large data tables. This extended version of
the Dominance-based Rough Set Approach is called the Variable Consistency Dominance-based
Rough Set Approach (VC-DRSA) model (Greco, Matarazzo, Slowinski & Stefanowski, 2001a).

For any P ⊆ C , we say that x ∈ U belongs to Cl≥t with no ambiguity at consistency level
l ∈ (0, 1], if x ∈ Cl≥t and at least l ∗ 100% of all objects y ∈ U dominating x with respect to P
also belong to Cl≥t , i.e.

|D+
P (x) ∩ Cl≥t |

|D+
P (x)|

≥ l .
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The term |D+
P (x) ∩ Cl≥t |

/
|D+

P (x)| is called rough membership and can be interpreted as condi-
tional probability Pr(y ∈ Cl≥t |y ∈ D+

P (x)). The level l is called the consistency level because
it controls the degree of consistency between objects qualified as belonging to Cl≥t without any
ambiguity. In other words, if l < 1, then at most (1 − l) ∗ 100% of all objects y ∈ U dominating
x with respect to P do not belong to Cl≥t and thus contradict the inclusion of x in Cl≥t .

Analogously, for any P ⊆ C we say that x ∈ U belongs to Cl≤t with no ambiguity at consistency
level l ∈ (0, 1], if x ∈ Cl≤t and at least l ∗ 100% of all the objects y ∈ U dominated by x with
respect to P also belong to Cl≤t , i.e.

|D−
P (x) ∩ Cl≤t |

|D−
P (x)|

≥ l .

The rough membership |D−
P (x) ∩ Cl≤t |

/
|D−

P (x)| can be interpreted as conditional probability
Pr(y ∈ Cl≤t |y ∈ D−

P (x)). Thus, for any P ⊆ C , each object x ∈ U is either ambiguous or
non-ambiguous at consistency level l with respect to the upward union Cl≥t (t = 2, . . . , n) or
with respect to the downward union Cl≤t (t = 1, . . . , n − 1).

The concept of non-ambiguous objects at some consistency level l leads naturally to the defi-
nition of P-lower approximations of the unions of classes Cl≥t and Cl≤t which can be formally
presented as follows:

Pl(Cl≥t ) =

{

x ∈ Cl≥t :
|D+

P (x) ∩ Cl≥t |

|D+
P (x)|

≥ l

}

,

Pl(Cl≤t ) =

{

x ∈ Cl≤t :
|D−

P (x) ∩ Cl≤t |

|D−
P (x)|

≥ l

}

.

Given P ⊆ C and consistency level l, we can define the P-upper approximations of Cl≥t and
Cl≤t , denoted by P

l
(Cl≥t ) and P

l
(Cl≤t ), respectively, by complementation of Pl(Cl≤t−1) and

Pl(Cl≥t+1) with respect to U as follows:

P
l
(Cl≥t ) = U − Pl(Cl≤t−1) ,

P
l
(Cl≤t ) = U − Pl(Cl≥t+1) .

P
l
(Cl≥t ) can be interpreted as the set of all the objects belonging to Cl≥t , which are possibly

ambiguous at consistency level l. Analogously, P
l
(Cl≤t ) can be interpreted as the set of all

the objects belonging to Cl≤t , which are possibly ambiguous at consistency level l. The P-
boundaries (P-doubtful regions) of Cl≥t and Cl≤t are defined as:

Bn P (Cl≥t ) = P
l
(Cl≥t )− Pl(Cl≥t )

Bn P (Cl≤t ) = P
l
(Cl≤t )− Pl(Cl≤t )

Pesquisa Operacional, Vol. 32(2), 2012



“main” — 2012/8/21 — 12:23 — page 232 — #20

232 ROUGH SET AND RULE-BASED MULTICRITERIA DECISION AIDING

where t = 1, . . . , n. The VC-DRSA model provides some degree of flexibility in assigning
objects to lower and upper approximations of the unions of decision classes. It can easily be
demonstrated that for 0 < l ′ < l ≤ 1 and t = 2, . . . , n,

Pl(Cl≥t ) ⊆ Pl ′(Cl≥t ) and P
l ′
(Cl≥t ) ⊆ P

l
(Cl≥t ) .

The VC-DRSA model is inspired by Ziarko’s model of the variable precision rough set ap-
proach (Ziarko, 1993, 1998). However, there is a significant difference in the definition of rough
approximations because Pl(Cl≥t ) and P

l
(Cl≥t ) are composed of non-ambiguous and ambiguous

objects at the consistency level l, respectively, while Ziarko’s Pl(Clt ) and P
l
(Clt ) are composed

of P-indiscernibility sets such that at least l ∗ 100% of these sets are included in Clt or have
an non-empty intersection with Clt , respectively. If one would like to use Ziarko’s definition
of variable precision rough approximations in the context of multiple-criteria classification, then
the P-indiscernibility sets should be substituted by P-dominating sets D+

P (x). However, then the
notion of ambiguity that naturally leads to the general definition of rough approximations (see
Slowinski & Vanderpooten (2000)) loses its meaning. Moreover, a bad side effect of the direct
use of Ziarko’s definition is that a lower approximation Pl(Cl≥t ) may include objects y assigned
to Clh , where h is much less than t , if y belongs to D+

P (x), which was included in Pl(Cl≥t ).
When the decision classes are preference ordered, it is reasonable to expect that objects assigned
to far worse classes than the considered union are not counted to the lower approximation of this
union.

The VC-DRSA model presented above has been generalized in (Greco, Matarazzo & Slowinski,
2008b; Blaszczynski, Greco, Slowinski & Szelag, 2009). The generalized model applies two
types of consistency measures in the definition of lower approximations:

• gain-type consistency measures f P
≥t (x), f P

≤t (x):

Pα≥t (Cl≥t ) = {x ∈ Cl≥t > f P
≥t (x) ≥ α≥t }

Pα≤t (Cl≤t ) = {x ∈ Cl≤t > f P
≤t (x) ≥ α≤t }

• cost-type consistency measures gP
≥t (x), gP

≤t (x):

Pβ≥t (Cl≥t ) = {x ∈ Cl≥t > gP
≥t (x) ≥ β≥t }

Pβ≤t (Cl≤t ) = {x ∈ Cl≤t > gP
≤t (x) ≥ β≤t }

where α≥t , α≤t , β≥t , β≤t , are threshold values on the consistency measures which are condi-
tioning the inclusion of object x in the P-lower approximation of Cl≥t , or Cl≤t . Here are the
consistency measures considered in (Blaszczynski, Greco, Slowinski & Szelag, 2009): for all
x ∈ U and P ⊆ C

μP
≥t (x) =

|D+
P (x) ∩ Cl≥t |

|D+
P (x)|

, μP
≤t (x) =

|D−
P (x) ∩ Cl≤t |

|D−
P (x)|

,

Pesquisa Operacional, Vol. 32(2), 2012



“main” — 2012/8/21 — 12:23 — page 233 — #21

ROMAN SLOWINSKI, SALVATORE GRECO and BENEDETTO MATARAZZO 233

μP
≥t (x) = max

R⊆P,

z∈D−
R (x)∩Cl≥t

|D+
R (z) ∩ Cl≥t |

|D+
R (z)|

, μP
≤t (x) = max

R⊆P,

z∈D+
R (x)∩Cl≤t

|D−
R (z) ∩ Cl≤t |

|D−
R (z)|

,

B P
≥t (x) =

|D+
P (x) ∩ Cl≥t | |Cl≤t−1|

|D+
P (x) ∩ Cl≤t−1| |Cl≥t |

, t = 2, . . . ,m,

B P
≤t (x) =

|D−
P (x) ∩ Cl≤t | |Cl≥t+1|

|D−
P (x) ∩ Cl≥t+1| |Cl≤t |

, t = 1, . . . ,m − 1,

εP
≥t (x) =

|D+
P (x) ∩ Cl≤t−1|

|Cl≤t−1|
, t = 2, . . . ,m , εP

≤t (x) =
|D−

P (x) ∩ Cl≥t+1|

|Cl≥t+1|
, t = 1, . . . ,m − 1,

ε
′ P
≥t (x) =

|D+
P (x) ∩ Cl≤t−1|

|Cl≥t |
, t = 2, . . . ,m , ε

′ P
≤t (x) =

|D−
P (x) ∩ Cl≥t+1|

|Cl≤t |
, t = 1, . . . ,m − 1,

ε∗P
≥t (x) = max

r≤t
εP
≥r (x), ε∗P

≤t (x) = max
r≥t

εP
≤r (x) ,

with
μP

≥t (x), μ
P
≤t (x), μ

P
≥t (x), μ

P
≤t (x), B P

≥t (x), B P
≤t (x)

being gain-type consistency measures and

εP
≥t (x), ε

P
≤t (x), ε

′ P
≥t (x), ε

′ P
≤t (x), ε

∗P
≥t (x), ε

∗P
≤t (x)

being cost-type consistency measures.

To be concordant with the rough set philosophy, consistency measures should enjoy some mono-
tonicity properties (see Table 1). A consistency measure is monotonic if it does not decrease (or
does not increase) when:

(m1) the set of attributes is growing,

(m2) the set of objects is growing,

(m3) the union of ordered classes is growing,

(m4) x improves its evaluation, so that it dominates more objects.

As to the consistency measures ε
′ P
≥t (x) and ε

′ P
≤t (x) which enjoy all four monotonicity properties,

they can be interpreted as estimates of conditional probability, respectively:

Pr(y ∈ D+
P (x)|y ∈ ¬Cl≥t ) , Pr(y ∈ D−

P (x)|y ∈ ¬Cl≤t ) .

They say how far the implications

y ∈ D+
P (x) ⇒ y ∈ Cl≥t , y ∈ D−

P (x) ⇒ y ∈ Cl≤t

are not supported by the data.
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Table 1 – Monotonicity properties of consistency measures

(Blaszczynski, Greco, Slowinski & Szelag, 2009).

Consistency measure (m1) (m2) (m3) (m4)

μP
≥t (x), μ

P
≤t (x) no yes yes no

(rough membership)

μP
≥t (x), μ

P
≤t (x) yes yes yes yes

B P
≥t (x), B P

≤t (x) no no no no
(Bayesian)

εP
≥t (x), ε

P
≤t (x) yes yes no yes

ε∗P
≥t (x), ε

∗P
≤t (x) yes yes yes yes

ε
′ P
≥t (x), ε

′ P
≤t (x) yes yes yes yes

For every P ⊆ C , the objects being consistent in the sense of the dominance principle with all
upward and downward unions of classes are called P-correctly classified. For every P ⊆ C , the
quality of approximation of classification Cl by the set of criteria P is defined as the ratio between
the number of P-correctly classified objects and the number of all the objects in the decision
table. Since the objects which are P-correctly classified are those that do not belong to any P-
boundary of unions Cl≥t and Cl≤t , t = 1, . . . , n, the quality of approximation of classification
Cl by set of criteria P , can be written as

γP (Cl) =

∣
∣
∣
∣
∣

(

U −

(
⋃

t∈{1,...,n}
Bn P (Cl≥t )

)

∪

(
⋃

t∈{1,...,n}
Bn P (Cl≤t )

))∣
∣
∣
∣
∣

|U |

=

∣
∣
∣
∣
∣

(

U −

(
⋃

t∈{1,...,n}
Bn P (Cl≥t )

))∣
∣
∣
∣
∣

|U |

γP (Cl) can be seen as a measure of the quality of knowledge that can be extracted from the
decision table, where P is the set of criteria and Cl is the considered classification.

Each minimal subset P ⊆ C , such that γP (Cl) = γC (Cl), is called a reduct of Cl and is denoted
by RE DCl . Note that a decision table can have more than one reduct. The intersection of all
reducts is called the core and is denoted by C O RECl . Criteria from C O RECl cannot be removed
from the decision table without deteriorating the knowledge to be discovered. This means that in
set C there are three categories of criteria:

• indispensable criteria included in the core,

• exchangeable criteria included in some reducts but not in the core,

• redundant criteria being neither indispensable nor exchangeable, thus not included in any
reduct.
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Note that reducts are minimal subsets of criteria conveying the relevant knowledge contained in
the decision table. This knowledge is relevant for the explanation of patterns in a given decision
table but not necessarily for prediction.

It has been shown in (Greco, Matarazzo & Slowinski, 2001d) that the quality of classification
satisfies properties of set functions which are called fuzzy measures. For this reason, we can
use the quality of classification for the calculation of indices which measure the relevance of
particular attributes and/or criteria, in addition to the strength of interactions between them. The
useful indices are: the value index and interaction indices of Shapley and Banzhaf; the interaction
indices of Murofushi-Soneda and Roubens; and the Möbius representation. All these indices can
help to assess the interaction between the considered criteria, and can help to choose the best
reduct.

4.3 Stochastic dominance-based rough set approach

From a probabilistic point of view, the assignment of object xi to “at least” class t can be made
with probability Pr(yi ≥ t |xi ), where yi is classification decision for xi , t = 1, . . . , n. This
probability is supposed to satisfy the usual axioms of probability:

Pr(yi ≥ 1|xi ) = 1 , Pr(yi ≤ t |xi ) = 1 − Pr(yi ≥ t + 1|xi ),

and Pr(yi ≥ t |xi ) ≤ Pr(yi ≥ t ′|xi ) for t ≥ t ′.

These probabilities are unknown but can be estimated from data.

For each class t = 2, . . . , n, we have a binary problem of estimating the conditional probabilities
Pr(yi ≥ t |xi ) = 1, Pr(yi < t |xi ). It can be solved by isotonic regression (Kotlowski, Dem-
bczynski, Greco & Slowinski, 2008). Let yit = 1 if yi ≥ t , otherwise yit = 0. Let also pit be
the estimate of the probability Pr(yi ≥ t |xi ). Then, choose estimates p∗

i t which minimize the
squared distance to the class assignment yit , subject to the monotonicity constraints:

Minimize
|U |∑

i=1
(yit − pit )

2

subject to xi � x j → pit ≥ p jt for all xi , x j ∈ U

where xi � x j means that xi dominates x j .

Then, stochastic α-lower approximations for classes “at least t” and “at most t−1” can be defined
as:

Pα(Cl≥t ) =
{

xi ∈ U : Pr(yi ≥ t |xi } ≥ α
}
,

Pα(Cl≤t−1) =
{

xi ∈ U : Pr(yi < t |xi } ≥ α
}
.

Replacing the unknown probabilities Pr(yi ≥ t |xi ), Pr(yi < t |xi ), by their estimates p∗
i t ob-

tained from isotonic regression, we get:

Pα(Cl≥t ) =
{

xi ∈ U : p∗
i t ≥ α

}
,

Pα(Cl≤t−1) =
{

xi ∈ U : p∗
i t ≤ 1 − α

}
,
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where parameter α ∈ [0.5, 1] controls the allowed amount of inconsistency.

Solving isotonic regression requires O(|U |4) time, but a good heuristic needs only O(|U |2).

In fact, as shown in (Kotlowski, Dembczynski, Greco & Slowinski, 2008), we don’t really need
to know the probability estimates to obtain stochastic lower approximations. We only need to
know for which object xi , p∗

i t ≥ α and for which xi , p∗
i t ≤ 1 − α. This can be found by solving

a linear programming (reassignment) problem.

As before, yit = 1 if yi ≥ t , otherwise yit = 0. Let dit be the decision variable which determines
a new class assignment for object xi . Then, reassign objects from union of classes indicated by
yit to union of classes indicated by d∗

i t , such that the new class assignments are consistent with the
dominance principle, where d∗

i t results from solving the following linear programming problem:

Minimize
|U |∑

i=1
wyit |yit − dit |

subject to xi � x j → dit ≥ d jt for all xi , x j ∈ U

where wi t are arbitrary positive weights and xi � x j means that xi dominates x j .

Due to unimodularity of the constraint matrix, the optimal solution of this linear programming
problem is always integer, i.e. d∗

i t ∈ {0, 1}. For all objects consistent with the dominance
principle, d∗

i t = yit . If we set w0 = α and w1 = α − 1, then the optimal solution d∗
i t satisfies:

d∗
i t = 1 ⇔ p∗

i t ≥ α. If we set w0 = 1 − α and w1 = α, then the optimal solution d∗
i t satisfies:

d∗
i t = 0 ⇔ p∗

i t ≤ 1 − α.

For each t = 2, . . . , n, solving the reassignment problem twice, we can obtain the lower approx-
imations Pα(Cl≥t ), Pα(Cl≤t−1), without knowing the probability estimates!

4.4 Induction of decision rules

Using the terms of knowledge discovery, the dominance-based rough approximations of upward
and downward unions of classes are applied on the data set in the pre-processing stage. In result
of this stage, the data are structured in a way facilitating induction of “if..., then...” decision rules
with a guaranteed consistency level. For a given upward or downward union of classes, Cl≥t or
Cl≤s , the decision rules induced under a hypothesis that objects belonging to P(Cl≥t ) or P(Cl≤s )
are positive and all the others are negative, suggests an assignment to “class Clt or better”, or
to “class Cls or worse”, respectively. On the other hand, the decision rules induced under a
hypothesis that objects belonging to the intersection P(Cl≥s ) ∩ P(Cl≥t ) are positive and all the
others are negative, are suggesting an assignment to some classes between Cls and Clt (s < t).

In the case of preference ordered data it is meaningful to consider the following five types of
decision rules:

1) Certain D≥-decision rules. These provide lower profile descriptions for objects belonging
to Cl≥t without ambiguity: if xq1 �q1 rq1 and xq2 �q2 rq2 and... xqp �qp rqp, then
x ∈ Cl≥t , where for each wq , zq ∈ Xq , “wq �q zq” means “wq is at least as good as zq”;
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2) Possible D≥-decision rules. Such rules provide lower profile descriptions for objects
belonging to Cl≥t with or without any ambiguity: if xq1 �q1 rq1 and xq2 �q2 rq2 and...
xqp �qp rqp, then x possibly belongs to Cl≥t ;

3) Certain D≥-decision rules. These give upper profile descriptions for objects belonging to
Cl≤t without ambiguity: if xq1 �q1 rq1 and xq2 �q2 rq2 and... xqp �qp rqp, then
x ∈ Cl≤t , where for each wq , zq ∈ Xq , “wq �q zq , means “wq is at most as good as zq”;

4) Possible D≥-decision rules. These provide upper profile descriptions for objects belong-
ing to Cl≤t with or without any ambiguity: if xq1 �q1 rq1 and xq2 �q2 rq2 and...
xqp �qp rqp, then x possibly belongs to Cl≥t ;

5) Approximate D≥≤-decision rules. These represent simultaneously lower and upper profile
descriptions for objects belonging to Cls ∪ Cls+1 ∪ ∙ ∙ ∙ ∪ Clt without the possibility of
discerning the actual class: if xq1 �q1 rq1 and... xqk �qk rqk and xqk+1 �qk+1 rqk+1

and... xqp �qp rqp, then x ∈ Cls ∪ Cls+1 ∪ ∙ ∙ ∙ ∪ Clt .

In the left hand side of a D≥≤-decision rule we can have “xq �q rq” and “xq �q r ′
q”, where

rq ≤ r ′
q , for the same q ∈ C . Moreover, if rq = r ′

q , the two conditions boil down to “xq ∼q rq”,
where for each wq , zq ∈ Xq , “wq ∼q zq” means “wq is indifferent to zq”.

A minimal rule is an implication where we understand that there is no other implication with
a left hand side which has at least the same weakness (which means that it uses a subset of
elementary conditions and/or weaker elementary conditions) and which has a right hand side
that has at least the same strength (which means, a D≥- or a D≤-decision rule assigning objects
to the same union or sub-union of classes, or a D≥≤-decision rule assigning objects to the same
or larger set of classes).

The rules of type 1) and 3) represent certain knowledge extracted from the decision table, while
the rules of type 2) and 4) represent possible knowledge. Rules of type 5) represent doubtful
knowledge.

The rules of type 1) and 3) are exact if they do not cover negative examples; they are probabilis-
tic, otherwise. In the latter case, each rule is characterized by a confidence ratio, representing
the probability that an object matching left hand side of the rule matches also its right hand
side. Probabilistic rules concord with the Variable-Consistency Dominance-based Rough Set
Approach model mentioned above.

4.5 Rule-based classification algorithms

We will now comment upon the application of decision rules to some objects described by criteria
from C . When applying D≥-decision rules to an object x , it is possible that x either matches the
left hand side of at least one decision rule or it does not. In the case of at least one such match, it
is reasonable to conclude that x belongs to class Clt , because it is the lowest class of the upward
union Cl≥t which results from intersection of all the right hand sides of the rules covering x . More
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precisely, if x matches the left hand side of rules ρ1, ρ2, . . . , ρm , having right hand sides x ∈ C≥
t1,

x ∈ Cl≥t2, . . . , x ∈ Cl≥tm , then x is assigned to class Clt , where t = max{t1, t2, . . . , tm}. In the
case of no matching, we can conclude that x belongs to Cl1, i.e. to the worst class, since no rule
with a right hand side suggesting a better classification of x is covering this object.

Analogously, when applying D≤-decision rules to the object x , we can conclude that x belongs
either to class Clz (because it is the highest class of the downward union Cl≤t resulting from
the intersection of all the right hand sides of the rules covering x), or to class Cln , i.e. to the
best class, when x is not covered by any rule. More precisely, if x matches the left hand side
of rules ρ1, ρ2, . . . , ρm , having right hand sides x ∈ C≤

t1, x ∈ Cl≤t2, . . . , x ∈ Cl≤tm , then x is
assigned to class Clt , where t = min{t1, t2, . . . , tm}. In the case of no matching, it is concluded
that x belongs to the best class Cln because no rule with a right hand side suggesting a worse
classification of x is covering this object. Finally, when applying D≥≤-decision rules to x , it is
possible to conclude that x belongs to the union of all the classes suggested in the right hand side
of the rules covering x .

A new classification algorithm has been proposed in (Blaszczynski, Greco & Slowinski, 2007).
Let ϕ1 → ψ1, . . . , ϕk → ψk , be the rules matching object x . Then, Rt (x) = { j : Clt ∈ ψ j , j =
1, . . . , k} denotes the set of rules matching x , which are recommending assignment of object x
to a union including class Clt , and R¬t (x) = { j : Clt /∈ ψ j , j = 1, . . . , k} denotes the set of
rules matching x , which are not recommending assignment of object x to a union including class
Clt . ||ϕ j ||, ||ψ j || are sets of objects with property ϕ j and ψ j , respectively, j = 1, . . . , k. For a
classified object x , one has to calculate the score for each candidate class:

score(Clt , x) = score+(Clt , x)− score−(Clt , x) ,

where

score+(Clt , x) =

∣
∣
∣
∣
∣

⋃

j∈Rt (x)
(||ϕ j || ∩ Clt )

∣
∣
∣
∣
∣

2

∣
∣
∣
∣
∣

⋃

j∈Rt (x)
||ϕ j ||

∣
∣
∣
∣
∣
× |Clt |

and

score−(Clt , x) =

∣
∣
∣
∣
∣

⋃

j∈R¬t (x)
(||ϕ j || ∩ ||ψ j ||)

∣
∣
∣
∣
∣

2

∣
∣
∣
∣
∣

⋃

j∈R¬t (x)
||ϕ j ||

∣
∣
∣
∣
∣
×

∣
∣
∣
∣
∣

⋃

j∈R¬t (x)
||ψ j ||

∣
∣
∣
∣
∣

score+(Clt , x) and score−(Clt , x) can be interpreted in terms of conditional probability as a
product of confidence and coverage of the matching rules:

score+(Clt , x) = Pr
(
{ϕ j : j ∈ Rt (x)}|Clt

)
× Pr

(
Clt {ϕ j : j ∈ Rt (x)}

)
,

score−(Clt , x) = Pr
(
{ϕ j : j ∈ R¬t (x)}|¬Clt

)
× Pr

(
¬Clt |{ϕ j : j ∈ R¬t (x)}

)
.
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The recommendation of the univocal classification x → Clt is such that:

Clt = arg max
t∈{1,...,n}

[score(Clt , x)] .

A set of decision rules is complete if it is able to cover all objects from the decision table in such
a way that consistent objects are re-classified to their original classes and inconsistent objects are
classified to clusters of classes which refer to this inconsistency. Each set of decision rules that is
complete and non-redundant is called minimal. Note that an exclusion of any rule from this set
makes it non-complete.

In the case of the Variable-Consistency Dominance-based Rough Set Approach, the decision
rules are induced from the P-lower approximations whose composition is controlled by the user-
specified consistency level l. Consequently, the value of confidence α for the rule should be
constrained from the bottom. It is reasonable to require that the smallest accepted confidence
level of the rule should not be lower than the currently used consistency level l. Indeed, in the
worst case, some objects from the P-lower approximation may create a rule using all the criteria
from P thus giving a confidence α ≥ l.

Observe that the syntax of decision rules induced from dominance-based rough approximations
uses the concept of dominance cones: each condition profile is a dominance cone in XC , and
each decision profile is a dominance cone in X D . In both cases the cone is positive for D≥-rules
and negative for D≤-rules.

Also note that dominance cones which correspond to condition profiles can originate in any
point of XC , without the risk of being too specific. Thus, in contrast to granular computing based
on indiscernibility (or similarity) relation, in case of granular computing based on dominance,
the condition attribute space XC need not be discretized (Greco, Matarazzo & Slowinski, 2007,
2008a, 2009).

Procedures for induction of rules from dominance-based rough approximations have been
proposed in (Greco, Matarazzo, Slowinski & Stefanowski, 2001b; Blaszczynski, Slowinski &
Szelag, 2011).

The utility of decision rules is threefold: they explain (summarize) decisions made on objects
from the dataset, they can be used to make decisions with respect to new (unseen) objects which
are matching conditions of some rules, and they permit to build up a strategy of intervention
(Greco, Matarazzo, Pappalardo & Slowinski, 2005). Attractiveness of particular decision rules
can be measured in many different ways, however, the most convincing measures are Bayesian
confirmation measures enjoying a special monotonicity property, as reported in (Greco, Pawlak
& Slowinski, 2004).

In Giove, Greco, Matarazzo & Slowinski (2002), a new methodology for the induction of mono-
tonic decision trees from dominance-based rough approximations of preference-ordered decision
classes has been proposed.

It is finally worth noting that several algebraic models have been proposed for Dominance-based
Rough Set Approach (Greco, Matarazzo & Slowinski, 2010a, 2010g, 2012) – the algebraic struc-
tures are based on bipolar disjoint representation (positive and negative) of interior and exterior of
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a concept. These algebra models give elegant representations of basic properties of Dominance-
based Rough Sets. Moreover, a topology for Dominance-based Rough Set Approach in a bitopo-
logical space has been proposed in (Greco, Matarazzo & Slowinski, 2010b).

4.6 An illustrative example

To illustrate the application of the Dominanced Based Rough Set Approach to multicriteria clas-
sification, we will use a part of some data provided by a Greek industrial bank ETEVA which
finances industrial and commercial firms in Greece (Slowinski & Zopounidis, 1995; Slowinski
et al., 2005). A sample composed of 39 firms has been chosen for the study in co-operation with
the ETEVA’s financial manager. The manager has classified the selected firms into three classes
of bankruptcy risk. The classification decision is represented by decision attribute d making a
trichotomic partition of the 39 firms:

d = A means “acceptable”, d = U means “uncertain”, d = N A means “non-acceptable”.

The partition is denoted by Cl = {ClA,ClU ,ClN A} and, obviously, class ClA is better than ClU
which is better than ClN A.

The firms were evaluated using the following twelve criteria (↑ means preference increasing with
value and ↓ means preference decreasing with value):

• A1 = earnings before interests and taxes/total assets, ↑

• A2 = net income/net worth, ↑

• A3 = total liabilities/total assets, ↓

• A4 = total liabilities/cash flow, ↓

• A5 = interest expenses/sales, ↓

• A6 = general and administrative expense/sales, ↓

• A7 = managers’ work experience, ↑ (very low = 1, low = 2, medium = 3, high = 4, very
high = 5)

• A8 = firm’s market niche/position, ↑ (bad = 1, rather bad = 2, medium = 3, good = 4,
very good = 5)

• A9 = technical structure-facilities, ↑ (bad = 1, rather bad = 2, medium = 3, good = 4,
very good =5)

• A10 = organization-personnel, ↑ (bad=1, rather bad = 2, medium = 3, good = 4, very
good = 5)

• A11 = special competitive advantage of firms, ↑ (low =1, medium =2, high = 3, very
high = 4)

• A12 = market flexibility, ↑ (very low = 1, low = 2, medium = 3, high = 4, very
high = 5)

The first six criteria are cardinal (financial ratios) and the last six are ordinal. The data table is
presented in Table 2.
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Table 2 – Financial data table.

Firm A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 d

F1 16.4 14.5 59.82 2.5 7.5 5.2 5 3 5 4 2 4 A

F2 35.8 67.0 64.92 1.7 2.1 4.5 5 4 5 5 4 5 A

F3 20.6 61.75 75.71 3.6 3.6 8.0 5 3 5 5 3 5 A

F4 11.5 17.1 57.1 3.8 4.2 3.7 5 2 5 4 3 4 A

F5 22.4 25.1 49.8 2.1 5.0 7.9 5 3 5 5 3 5 A

F6 23.9 34.5 48.9 1.7 2.5 8.0 5 3 4 4 3 4 A

F7 29.9 44.0 57.8 1.8 1.7 2.5 5 4 4 5 3 5 A

F8 8.7 5.4 27.4 3.3 4.5 4.5 5 2 4 4 1 4 A

F9 25.7 29.7 46.8 1.7 4.6 3.7 4 2 4 3 1 3 A

F10 21.2 24.6 64.8 3.7 3.6 8.0 4 2 4 4 1 4 A

F11 18.32 31.6 69.3 4.4 2.8 3.0 4 3 4 4 3 4 A

F12 20.7 19.3 19.7 0.7 2.2 4.0 4 2 4 4 1 3 A

F13 9.9 3.5 53.1 4.5 8.5 5.3 4 2 4 4 1 4 A

F14 10.4 9.3 80.9 9.4 1.4 4.1 4 2 4 4 3 3 A

F15 17.7 19.8 52.8 3.2 7.9 6.1 4 4 4 4 2 5 A

F16 14.8 15.9 27.94 1.3 5.4 1.8 4 2 4 3 2 3 A

F17 16.0 14.7 53.5 3.9 6.8 3.8 4 4 4 4 2 4 A

F18 11.7 10.01 42.1 3.9 12.2 4.3 5 2 4 2 1 3 A

F19 11.0 4.2 60.8 5.8 6.2 4.8 4 2 4 4 2 4 A

F20 15.5 8.5 56.2 6.5 5.5 1.8 4 2 4 4 2 4 A

F21 13.2 9.1 74.1 11.21 6.4 5.0 2 2 4 4 2 3 U

F22 9.1 4.1 44.8 4.2 3.3 10.4 3 4 4 4 3 4 U

F23 12.9 1.9 65.02 6.9 14.01 7.5 4 3 3 2 1 2 U

F24 5.9 –27.7 77.4 –32.2 16.6 12.7 3 2 4 4 2 3 U

F25 16.9 12.4 60.1 5.2 5.6 5.6 3 2 4 4 2 3 U

F26 16.7 13.1 73.5 7.1 11.9 4.1 2 2 4 4 2 3 U

F27 14.6 9.7 59.5 5.8 6.7 5.6 2 2 4 4 2 4 U

F28 5.1 4.9 28.9 4.3 2.5 46.0 2 2 3 3 1 2 U

F29 24.4 22.3 32.8 1.4 3.3 5.0 2 3 4 4 2 3 U

F30 29.7 8.6 41.8 1.6 5.2 6.4 2 3 4 4 2 3 U

F31 7.3 –64.5 67.5 –2.2 30.1 8.7 3 3 4 4 2 3 NA

F32 23.7 31.9 63.6 3.5 12.1 10.2 3 2 3 4 1 3 NA

F33 18.9 13.5 74.5 10.0 12.0 8.4 3 3 3 4 3 4 NA

F34 13.9 3.3 78.7 25.5 14.7 10.1 2 2 3 4 3 4 NA

F35 –13.3 –31.1 63.0 –10.0 21.2 23.1 2 1 4 3 1 2 NA

F36 6.2 –3.2 46.1 5.1 4.8 10.5 2 1 3 3 2 3 NA

F37 4.8 –3.3 71.9 34.6 8.6 11.6 2 2 4 4 2 3 NA

F38 0.1 –9.6 42.5 –20.0 12.9 12.4 1 1 4 3 1 3 NA

F39 13.6 9.1 76.0 11.4 17.1 10.3 1 1 2 1 1 2 NA
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The main questions to be answered by the knowledge discovery process were the following:

• Is the information contained in Table 2 consistent?

• What are the reducts of criteria ensuring the same quality of approximation of the multi-
criteria classification as the whole set of criteria?

• What decision rules can be extracted from Table 2?

• What are the minimal sets of decision rules?

We will answer these questions using the Dominance-based Rough Set Approach. The first result
from this approach is a discovery that the financial data table is consistent for the complete set
of criteria C . Therefore, the C-lower and C-upper approximations of C≤

N A, C≤
U and C≥

U , C≥
A are

the same. In other words, the quality of approximation of all upward and downward unions of
classes, as well as the quality of classification, is equal to 1.

The second discovery is a set of 18 reducts of criteria ensuring the same quality of classification
as the whole set of 12 criteria:

RE D1
Cl = {A1, A4, A5, A7}, RE D2

Cl = {A2, A4, A5, A7},

RE D3
Cl = {A3, A4, A6, A7}, RE D4

Cl = {A4, A5, A6, A7},

RE D5
Cl = {A4, A5, A7, A8}, RE D6

Cl = {A2, A3, A7, A9},

RE D7
Cl = {A1, A3, A4, A7, A9}, RE D8

Cl = {A1, A5, A7, A9},

RE D9
Cl = {A2, A5, A7, A9}, RE D10

Cl = {A4, A5, A7, A9},

RE D11
Cl = {A5, A6, A7, A9}, RE D12

Cl = {A4, A5, A7, A10},

RE D13
Cl = {A1, A3, A4, A7, A11}, RE D14

Cl = {A2, A3, A4, A7, A11},

RE D15
Cl = {A4, A5, A6, A12}, RE D16

Cl = {A1, A3, A5, A6, A9, A12},

RE D17
Cl = {A3, A4, A6, A11, A12}, RE D18

Cl = {A1, A2, A3, A6, A9, A11, A12}.

All the eighteen subsets of criteria are equally good and sufficient for the perfect approximation
of the classification performed by ETEVA’s financial manager on the 39 firms. The core of Cl
is empty (C O RECl = ∅) which means that no criterion is indispensable for the approximation.
Moreover, all the criteria are exchangeable and no criterion is redundant.

The third discovery is the set of all decision rules. We obtained 74 rules describing Cl≤N A, 51
rules describing Cl≤U , 75 rules describing Cl≥U and 79 rules describing Cl≥A .

The fourth discovery is the finding of minimal sets of decision rules. Several minimal sets were
found. One of them is shown below. The number in parenthesis indicates the number of objects
which support the corresponding rule, i.e. the rule strength:

1. if f (x, A3) ≥ 67.5 and f (x, A4) ≥ −2.2 and f (x, A6) ≥ 8.7, then x ∈ Cl≤N A, (4),

2. if f (x, A2) ≤ 3.3 and f (x, A7) ≤ 2, then x ∈ Cl≤N A, (5),

3. if f (x, A3) ≥ 63.6 and f (x, A7) ≤ 3 and f (x, A9) ≤ 3, then x ∈ Cl≤N A, (4),
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4. if f (x, A2) ≤ 12.4 and f (x, A6) ≥ 5.6, then x ∈ Cl≤U , (14),

5. if f (x, A7) ≤ 3, then x ∈ Cl≤U , (18),

6. if f (x, A2) ≥ 3.5 and f (x, A5) ≤ 8.5, then x ∈ Cl≥U , (26),

7. if f (x, A7) ≥ 4, then x ∈ Cl≥U , (21),

8. if f (x, A1) ≥ 8.7 and f (x, A9) ≥ 4, then x ∈ Cl≥A , (27),

9. if f (x, A2) ≥ 3.5 and f (x, A7) ≥ 4, then x ∈ Cl≥A , (20).

As the minimal set of rules is complete and composed of D≥-decision rules and D≤-decision
rules only, application of these rules to the 39 firms will result in their exact re-classification to
classes of risk.

Minimal sets of decision rules represent the most concise and non-redundant knowledge repre-
sentations. The above minimal set of 9 decision rules uses 8 criteria and 18 elementary condi-
tions, i.e. 3.85% of descriptors from the data table.

The well-known machine discovery methods cannot deal with multicriteria classification because
they do not consider preference orders in the domains of attributes and among the classes. There
are multicriteria decision analysis methods for such classification. However, they are not dis-
covering classification rules from data. They simply apply a preference model, like the utility
function in scoring methods (see, e.g., (Thomas, Crook & Edelman, 1992)), to a set of objects to
be classified. In this sense, they are not knowledge discovery methods at all.

Comparing the Dominance-based Rough Set Approach to the Indiscernibility-based Rough Set
Approach, we can notice the following differences between the two approaches. The Indiscern-
ibility-based Rough Set Approach extracts knowledge about a partition of U into classes which
are not preference-ordered. The granules used for knowledge representation are sets of objects
which are indiscernible by a set of condition attributes.

In the case of the Dominance-based Rough Set Approach and multicriteria classification, the
condition attributes are criteria and the classes are preference-ordered. The extracted knowl-
edge concerns a collection of upward and downward unions of classes and the granules used
for knowledge representation are sets of objects defined using the dominance relation. This is
the main difference between the Indiscernibility-based Rough Set Approach and the Dominance-
based Rough Set Approach.

There are three notable advantages of the Dominance-based Rough Set Approach over the
Indiscernibility-based Rough Set Approach. The first one is the ability to handle criteria, pref-
erence-ordered classes and inconsistencies in the set of decision examples that the Indiscern-
ibility-based Rough Set Approach is simply not able to discover. Consequently, the rough ap-
proximations separate the certain information from the doubtful, which is taken into account
in rule induction. The second advantage is the ability to analyze a data table without any pre-
processing of data. The third advantage lies in the richer syntax of decision rules that are in-
duced from rough approximations. The elementary conditions of decision rules resulting from
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Dominance-based Rough Set Approach use relations from {≤,=,≥}, while those resulting from
the Indiscernibility-based Rough Set Approach only use =. The Dominance-based Rough Set
Approach syntax is more understandable to practitioners. The minimal sets of decision rules are
smaller than the minimal sets which result from the Indiscernibility-based Rough Set Approach.

5 THE DOMINANCE-BASED ROUGH SET APPROACH TO MULTICRITERIA
CHOICE AND RANKING

One of the very first extensions of the Dominance-based Rough Set Approach concerned pref-
erence-ordered data representing pairwise comparisons (i.e. binary relations) between objects on
both, condition and decision attributes (Greco, Matarazzo & Slowinski, 1999a, 1999b, 2000d,
2001c). Note that while classification is based on the absolute evaluation of objects, choice and
ranking refer to pairwise comparisons of objects. In this case, the decision rules to be discovered
from the data characterize a comprehensive binary relation on the set of objects. If this relation
is a preference relation and if, among the condition attributes, there are some criteria which are
semantically correlated with the comprehensive preference relation, then the data set (serving as
the learning sample) can be considered to be preference information for a decision maker in a
multicriteria choice or ranking problem. In consequence, the comprehensive preference relation
characterized by the decision rules discovered from this data set can be considered as a preference
model for the decision maker. It may be used to explain the decision policy of the decision maker
and to recommend a good choice or preference ranking with respect to new objects.

Let us consider a finite set A of objects evaluated by a finite set C of criteria. The best choice
(or the preference ranking) in set A is semantically correlated with the criteria from set C . The
preference information concerning the multicriteria choice or ranking problem is a data set in
the form of a pairwise comparison table which includes pairs of some reference objects from
a subset B ⊆ A × A. This is described by preference relations on particular criteria and a
comprehensive preference relation. One such example is a weak preference relation called the
outranking relation. By using the Dominance-based Rough Set Approach for the analysis of the
pairwise comparison table, we can obtain a rough approximation of the outranking relation by a
dominance relation. The decision rules induced from the rough approximation are then applied
to the complete set A of the objects associated with the choice or ranking. As a result, one
obtains a four-valued outranking relation on this set. In order to obtain a recommendation, it is
advisable to use an exploitation procedure based on the net flow score of the objects. We present
this methodology in more detail below.

5.1 The pairwise comparison table as input preference information

Given a multicriteria choice or ranking problem, a decision maker can express the preferences by
pairwise comparisons of the reference objects. In the following, x Sy will denote the presence,
while x Sc y denotes the absence of the outranking relation for a pair of objects (x, y) ∈ A × A.

For each pair of reference objects (x, y) ∈ B ⊆ A × A, the decision maker can select one of the
three following possibilities:
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1) object x is as good as y, i.e. x Sy,

2) object x is worse than y, i.e. x Sc y,

3) the two objects are incomparable at the present stage.

A pairwise comparison table, denoted by SPCT , is then created on the basis of this informa-
tion. The first m columns correspond to the criteria from set C . The last, i.e. the (m + 1)-th
column, represents the comprehensive binary preference relation S or Sc. The rows correspond
to the pairs from B. For each pair in SPCT , a difference between criterion values is put in the
corresponding column. If the decision maker judges that two objects are incomparable, then the
corresponding pair does not appear in SPCT .

We will define SPCT more formally. For any criterion gi ∈ C , let Ti be a finite set of binary
relations defined on A on the basis of the evaluations of objects from A with respect to the
considered criterion gi , such that for every (x, y) ∈ A × A exactly one binary relation t ∈ Ti

is verified. More precisely, given the domain Vi of gi ∈ C , if v′
i , v

′′
i ∈ Vi are the respective

evaluations of x, y ∈ A by means of gi and (x, y) ∈ t , with t ∈ Ti , then for each w, z ∈ A
having the same evaluations v′

i , v
′′

i by means of gi , (w, z) ∈ t . Furthermore, let Td be a set of
binary relations defined on set A (comprehensive pairwise comparisons) such that at most one
binary relation t ∈ Td is verified for every (x, y) ∈ A × A.

The pairwise comparison table is defined as data table SPCT = 〈B,C ∪ {d}, TG ∪ Td , f 〉,
where B ⊆ A × A is a non-empty set of exemplary pairwise comparisons of reference objects,
TG =

⋃
gi ∈G Ti , d is a decision corresponding to the comprehensive pairwise comparison (com-

prehensive preference relation), and f : B × (C ∪ {d}) → TG ∪ Td is a total function such that
f [(x, y), q] ∈ Ti for every (x, y) ∈ A × A and for each gi ∈ C , and f [(x, y), q] ∈ Td for
every (x, y) ∈ B. It follows that for any pair of reference objects (x, y) ∈ B there is verified one
and only one binary relation t ∈ Td . Thus, Td induces a partition of B. In fact, the data table
SPCT can be seen as decision table, since the set of considered criteria C and the decision d are
distinguished.

We are considering a pairwise comparison table where the set Td is composed of two binary
relations defined on A:

• x outranks y (denoted by x Sy or (x, y) ∈ S), where (x, y) ∈ B,

• x does not outrank y (denoted by x Sc y or (x, y) ∈ Sc), where (x, y) ∈ B, and S∪ Sc = B.

Observe that the binary relation S is reflexive, but not necessarily transitive or complete.

5.2 Rough approximation of preference relations specified in the pairwise
comparison table

In the following we will distinguish between two types of evaluation scales of criteria: cardinal
and ordinal. Let C N be the set of criteria expressing preferences on a cardinal scale, and let C O ,
be the set of criteria expressing preferences on an ordinal scale, such that C N ∪ C O = C and
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C N ∩ C O = ∅. Moreover, for each P ⊆ C , we denote by P O the subset of P composed of
criteria expressing preferences on an ordinal scale, i.e. P O = P ∩C O , and by P N we denote the
subset of P composed of criteria expressing preferences on a cardinal scale, i.e. P N = P ∩ C N .
Of course, for each P ⊆ C , we have P = P N ∪ P O and P N ∩ P O = ∅.

The meaning of the two scales is such that in the case of the cardinal scale we can specify the
intensity of preference for a given difference of evaluations, while in the case of the ordinal scale,
this is not possible and we can only establish an order of evaluations.

5.2.1 Multigraded dominance

We assume that the pairwise comparisons of reference objects on cardinal criteria from set C N

can be represented in terms of graded preference relations (for example “very weak preference”,
“weak preference”, “strict preference”, “strong preference” and “very strong preference”), de-
noted by Ph

q : for each q ∈ C N and for every (x, y) ∈ A × A, Ti = {Ph
i , h ∈ Hi }, where Hi is a

particular subset of the relative integers and

• x Ph
i y, h > 0, means that object x is preferred to object y by degree h with respect to

criterion gi ,

• x Ph
i y, h < 0, means that object x is not preferred to object y by degree h with respect to

criterion gi ,

• x P0
i y means that object x is similar (asymmetrically indifferent) to object y with respect

to criterion gi .

Within the preference context, the similarity relation P0
i , even if not symmetric, resembles the in-

difference relation. Thus, in this case, we call this similarity relation “asymmetric indifference”.
Of course, for each gi ∈ C and for every (x, y) ∈ A × A,

[
x Ph

i y, h > 0
]

⇒
[
y Pk

i x, k ≤ 0
]
,
[
x Ph

i y, h < 0
]

⇒
[
y Pk

i x, k ≥ 0
]
.

Let P = P N and P O = ∅. Given P ⊆ C (P 6= ∅), (x, y), (w, z) ∈ A × A, the pair of objects
(x, y) is said to dominate (w, z) with respect to criteria from P (denoted by (x, y)DP (w, z)),
if x is preferred to y at least as strongly as w is preferred to z with respect to each gi ∈ P .
More precisely, “at least as strongly as” means “by at least the same degree”, i.e. h ≥ k, where
h, k ∈ Hi , x Ph

i y and wPk
i z, for each gi ∈ P .

Let D{i} be the dominance relation confined to the single criterion gi ∈ P . The binary relation
D{i} is reflexive ((x, y)D{i}(x, y), for every (x, y) ∈ A × A), transitive ((x, y)D{i}(w, z) and
(w, z)D{i}(u, v) imply (x, y)D{i}(u, v), for every (x, y), (w, z), (u, v) ∈ A × A), and complete
((x, y)D{i}(w, z) and/or (w, z)D{i}(x, y), for all (x, y), (w, z) ∈ A × A). Therefore, D{i} is a
complete preorder on A × A. Since the intersection of complete preorders is a partial preorder
and DP =

⋂
gi ∈P D{i}, P ⊆ C , then the dominance relation DP is a partial preorder on A × A.
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Let R ⊆ P ⊆ C and (x, y), (u, v) ∈ A × A; then the following implication holds:

(x, y)DP (u, v) ⇒ (x, y)DR(u, v).

Given P ⊆ C and (x, y) ∈ A × A, we define the following:

• A set of pairs of objects dominating (x, y), called the P-dominating set, denoted by
D+

P (x, y) and defined to be {(w, z) ∈ A × A : (w, z)DP (x, y)};

• A set of pairs of objects dominated by (x, y), called the P-dominated set, denoted by
D−

P (x, y) and defined as {(w, z) ∈ A × A : (x, y)DP (w, z)}.

The P-dominating sets and the P-dominated sets defined on B for all pairs of reference objects
from B are “granules of knowledge” that can be used to express P-lower and P-upper approxi-
mations of the comprehensive outranking relations S and Sc, respectively:

P(S) =
{
(x, y) ∈ B : D+

P (x, y) ⊆ S
}
,

P(S) =
⋃

(x,y)∈S

D+
P (x, y).

P(Sc) =
{
(x, y) ∈ B : D−

P (x, y) ⊆ Sc} ,

P(Sc) =
⋃

(x,y)∈Sc

D−
P (x, y).

It has been proved in (Greco, Matarazzo & Slowinski, 1999a) that

P(S) ⊆ S ⊆ P(S), P(Sc) ⊆ Sc ⊆ P(Sc).

Furthermore, the following complementarity properties hold:

P(S) = B − P(Sc), P(S) = B − P(Sc),

P(Sc) = B − P(S), P(Sc) = B − P(S).

The P-boundaries (P-doubtful regions) of S and Sc are defined as

Bn P (S) = P (S)− P (S) , Bn P (S
c) = P

(
Sc) − P

(
Sc) .

From the above it follows that Bn P (S) = Bn P (Sc).

The concepts of the quality of approximation, reducts and core can be extended also to the
approximation of the outranking relation by multigraded dominance relations.

In particular, the coefficient

γP =

∣
∣P (S) ∪ P (Sc)

∣
∣

|B|
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defines the quality of approximation of S and Sc by P ⊆ C . It expresses the ratio of all pairs of
reference objects (x, y) ∈ B correctly assigned to S and Sc by the set P of criteria to all the pairs
of objects contained in B. Each minimal subset P ⊆ C , such that γP = γC , is called a reduct of
C (denoted by RE DSPCT ). Note that SPCT can have more than one reduct. The intersection of
all B-reducts is called the core (denoted by C O RESPCT ).

It is also possible to use the Variable Consistency Model on SPCT (Slowinski, Greco & Mata-
razzo, 2002b), being aware that some of the pairs in the positive or negative dominance sets
belong to the opposite relation, while at least l ∗ 100% of pairs belong to the correct one. Then
the definition of the lower approximations of S and Sc boils down to:

P (S) =

{

(x, y) ∈ B :

∣
∣D+

P (x, y) ∩ S
∣
∣

∣
∣D+

P (x, y)
∣
∣ ≥ l

}

P
(
Sc) =

{

(x, y) ∈ B :

∣
∣D−

P (x, y) ∩ Sc
∣
∣

∣
∣D−

P (x, y)
∣
∣ ≥ l

}

5.2.2 Dominance without degrees of preference

The degree of graded preference considered above is defined on a cardinal scale of the strength
of preference. However, in many real world problems, the existence of such a quantitative scale
is rather questionable. This is the case with ordinal scales of criteria. In this case, the dominance
relation is defined directly on evaluations gi (x) for all objects x ∈ A. Let us explain this latter
case in more detail.

Let P = P O and P N = ∅, then, given (x, y), (w, z) ∈ A× A, the pair (x, y) is said to dominate
the pair (w, z) with respect to criteria from P (denoted by (x, y)DP (w, z)), if for each gi ∈ P ,
gi (x) ≥ gi (w) and gi (z) ≥ gi (y).

Let D{i} be the dominance relation confined to the single criterion gi ∈ P O . The binary relation
D{i} is reflexive, transitive, but non-complete (it is possible that not (x, y)D{i}(w, z) and not
(w, z)D{i}(x, y) for some (x, y), (w, z) ∈ A × A). Therefore, D{i} is a partial preorder. Since
the intersection of partial preorders is also a partial preorder and DP =

⋂
gi ∈P D{i}, P = P O ,

then the dominance relation DP is a partial preorder.

If some criteria from P ⊆ C express preferences on a quantitative or a numerical non-quantitative
scale and others on an ordinal scale, i.e. if P N 6= ∅ and P O 6= ∅, then, given (x, y), (w, z) ∈
A × A, the pair (x, y) is said to dominate the pair (w, z) with respect to criteria from P , if
(x, y) dominates (w, z) with respect to both P N and P O . Since the dominance relation with
respect to P N is a partial preorder on A × A (because it is a multigraded dominance) and the
dominance with respect to P O is also a partial preorder on A × A (as explained above), then
the dominance DP , being the intersection of these two dominance relations, is a partial preorder.
In consequence, all the concepts introduced in the previous section can be restored using this
specific definition of dominance.
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5.3 Induction of decision rules from rough approximations of preference relations

Using the rough approximations of preference relations S and Sc defined in 5.2.1 and 5.2.2,
it is possible to induce a generalized description of the preference information contained in a
given SPCT in terms of suitable decision rules. The syntax of these rules involves the concept of
upward cumulated preferences (denoted by P≥h

i ) and downward cumulated preferences (denoted
by P≤h

i ), having the following interpretation:

• x P≥h
i y means “x is preferred to y with respect to gi by at least degree h”;

• x P≤h
i y means “x is preferred to y with respect to gi by at most degree h”.

Exact definition of the cumulated preferences, for each (x, y) ∈ A × A, gi ∈ C N and h ∈ Hi ,
can be represented as follows:

• x P≥h
i y if x Pk

i y, where k ∈ Hi and k ≥ h;

• x P≤h
i y if x Pk

i y, where k ∈ Hi and k ≤ h.

Let also Gi = {gi (x), x ∈ A}, gi ∈ C O . The decision rules have then the following syntax:

1) D≥-decision rules:

If x P≥h(i1)
i1 y and... x P≥h(ie)

ie y and gie+1(x) ≥ rie+1 and gie+1(y) ≤ sie+1

and... gip(x) ≥ rip and gip(y) ≤ sip, then x Sy,

where P = {gi1, . . . , gip} ⊆ C , P N = {gi1, . . . , gie}, P O = {gie+1, . . . , gip}, (h(i1), . . . ,
h(ie)) ∈ Hi1 ×∙ ∙ ∙× Hie and (rie+1, . . . , rip), (sie+1, . . . , sip) ∈ Gie+1 ×∙ ∙ ∙×Gip. These
rules are supported by pairs of objects from the P-lower approximation of S only;

2) D≤-decision rules:

If x P≤h(i1)
i1 y and... x P≤h(ie)

ie y and gie+1(x) ≤ rie+1 and gie+1(y) ≥ sie+1

and... gip(x) ≤ rip and gip(y) ≥ sip, then x Sc y,

where P = {gi1, . . . , gip} ⊆ C , P N = {gi1, . . . , gie}, P O = {gie+1, . . . , gip}, (h(i1), . . . ,
h(ie)) ∈ Hi1 ×∙ ∙ ∙× Hie and (rie+1, . . . , rip), (sie+1, . . . , sip) ∈ Gie+1 ×∙ ∙ ∙×Gip. These
rules are supported by pairs of objects from the P-lower approximation of Sc only;

3) D≥≤-decision rules:

If x P≥h(i1)
i1 y and... x P≥h(ie)

ie y and x P≤h(ie+1)
ie+1 y . . . x P≤h(i f )

i f y and gi f +1(x) ≥
ri f +1 and gi f +1(y) ≤ si f +1 and... gig(x) ≥ rig and gig(y) ≤ sig and
gig+1(x) ≤ rig+1 and gig+1(y) ≥ sig+1 and... gip(x) ≤ rip and gip(y) ≥ sip,
then x Sy or x Sc y,

where O ′ = {gi1, . . . , gie} ⊆ C , O ′′ = {gie+1, . . . , gi f }} ⊆ C , P N = O ′∪O ′′, O ′ and O ′′

are not necessarily disjoint, P O = {gi f +1, . . . , gip}, (h(i1), . . . , h(i f )) ∈ Hi1×∙ ∙ ∙× Hi f ,
(ri f +1, . . . , rip), (si f +1, . . . , sip) ∈ Gi f +1 ×∙ ∙ ∙× Gip. These rules are supported by pairs
of objects from the P-boundary of S and Sc only.
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5.4 Use of decision rules for multicriteria choice and ranking

The decision rules induced from a given SPCT describe the comprehensive preference relations
S and Sc either exactly (D≥- and D≤-decision rules) or approximately (D≥≤-decision rules). A
set of these rules covering all pairs of SPCT represents a preference model of the decision maker
who gave the pairwise comparison of reference objects. The application of these decision rules
on a new subset M ⊆ A of objects induces a specific preference structure on M .

In fact, any pair of objects (u, v) ∈ M × M can match the decision rules in one of four ways:

• At least one D≥-decision rule and neither D≤- nor D≥≤-decision rules;

• At least one D≤-decision rule and neither D≥- nor D≥≤-decision rules;

• At least one D≥-decision rule and at least one D≤-decision rule, or at least one D≥≤-
decision rule, or at least one D≥≤-decision rule and at least one D≥- and/or at least one
D≤-decision rule;

• No decision rule.

These four ways correspond to the following four situations of outranking, respectively:

• uSv and not uScv, i.e. true outranking (denoted by uST v);

• uScv and not uSv, i.e. false outranking (denoted by uSFv);

• uSv and uScv, i.e. contradictory outranking (denoted by uSK v);

• not uSv and not uScv, i.e. unknown outranking (denoted by uSUv).

The four above situations, which together constitute the so-called four-valued outranking (Greco,
Matarazzo, Slowinski & Tsoukias, 1998), have been introduced to underline the presence and
absence of positive and negative reasons for the outranking. Moreover, they make it possible to
distinguish contradictory situations from unknown ones.

A final recommendation (choice or ranking) can be obtained upon a suitable exploitation of
this structure, i.e. of the presence and the absence of outranking S and Sc on M . A possible
exploitation procedure consists of calculating a specific score, called the Net Flow Score, for
each object x ∈ M :

Sn f (x) = S++(x)− S+−(x)+ S−+(x)− S−(x),

where

S++(x) = card
({

y ∈ M : there is at least one decision rule which affirms x Sy
})

;

S+−(x) = card
({

y ∈ M : there is at least one decision rule which affirms ySx
})

;

S−+(x) = card
({

y ∈ M : there is at least one decision rule which affirms yScx
})

;

S−(x) = card
({

y ∈ M : there is at least one decision rule which affirms x Sc y
})

.
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The recommendation in ranking problems consists of the total preorder determined by Sn f (x) on
M . In choice problems, it consists of the object(s) x∗ ∈ M such that Sn f (x∗) = max

x∈M
{Sn f (x)}.

The above procedure has been characterized with reference to a number of desirable properties
in (Greco, Matarazzo, Slowinski & Tsoukias, 1998; Szelag, Greco & Slowinski, 2012).

Recently, Fortemps, Greco & Slowinski (2008) extended the Dominance-based Rough Set Ap-
proach to multicriteria choice and ranking on multi-graded preference relations, instead of uni-
graded relations S and Sc.

It is also worth mentioning a machine learning approach to multicriteria choice and ranking using
ensembles of decision rules. The approach presented by Dembczynski, Kotlowski, Slowinski &
Szelag (2010) makes a bridge between stochastic methods of preference learning and DRSA for
choice and ranking.

5.5 An illustrative example

Let us suppose that a company managing a chain of warehouses wants to buy some new ware-
houses. To choose the best proposals or to rank them all, the managers of the company decide
to analyze first the characteristics of eight warehouses already owned by the company (reference
objects). This analysis should give some indications for the choice and ranking of the new pro-
posals. Eight warehouses belonging to the company have been evaluated by the following three
criteria: capacity of the sales staff (A1), perceived quality of goods (A2) and high traffic loca-
tion (A3). The domains (scales) of these attributes are presently composed of three preference-
ordered echelons: V1 = V2 = V3 = {sufficient, medium, good}. The decision attribute (d)
indicates the profitability of warehouses, expressed by the Return On Equity (ROE) ratio (in %).
Table 3 presents a decision table which represents this situation.

Table 3 – Decision table with reference objects.

Warehouse A1 A2 A3 d (RO E%)

1 good medium good 10.35

2 good sufficient good 4.58

3 medium medium good 5.15

4 sufficient medium medium –5

5 sufficient medium medium 2.42

6 sufficient sufficient good 2.98

7 good medium good 15

8 good sufficient good –1.55

With respect to the set of criteria C = C N = {A1, A2, A3}, the following multigraded preference
relations Ph

i , i = 1, 2, 3, are defined:

• x P0
i y (and y P0

i x), meaning that x is indifferent to y with respect to Ai , if f (x, Ai ) =
f (y, Ai );

Pesquisa Operacional, Vol. 32(2), 2012



“main” — 2012/8/21 — 12:23 — page 252 — #40

252 ROUGH SET AND RULE-BASED MULTICRITERIA DECISION AIDING

• x P1
i y (and y P−1

i x), meaning that x is preferred to y with respect to Ai , if f (x, Ai ) =
good and f (y, Ai ) = medium, or if f (x, Ai ) = medium and f (y, Ai ) = sufficient;

• x P2
i y (and y P−2

i x), meaning that x is strongly preferred to y with respect to Ai , if
f (x, Ai ) = good and f (y, Ai ) = sufficient.

Using the decision attribute, the comprehensive outranking relation was built as follows: ware-
house x is at least as good as warehouse y with respect to profitability (x Sy) if

ROE(x) ≥ ROE(y)− 2% .

Otherwise, i.e. if ROE(x) < ROE(y)− 2%, warehouse x is not at least as good as warehouse y
with respect to profitability (x Sc y).

The pairwise comparisons of the reference objects result in SPCT . The rough set analysis of
the SPCT leads to the conclusion that the set of decision examples on the reference objects is
inconsistent. The quality of approximation of S and Sc by all criteria from set C is equal to
0.44. Moreover, RE DSPCT = C O RESPCT = {A1, A2, A3}. This means that no criterion is
superfluous.

The C-lower approximations and the C-upper approximations of S and Sc, obtained by means
of multigraded dominance relations, are:

C(S) =
{

(1,2), (1,4), (1,5), (1,6), (1,8), (3,2), (3,4), (3,5), (3,6), (3,8), (7,2), (7,4), (7,5), (7,6), (7,8)
}

C(Sc) =
{

(2,1), (2,7), (4,1), (4,3), (4,7), (5,1), (5,3), (5,7), (6,1), (6,3), (6,7), (8,1), (8,7)
}

All the remaining 36 pairs of reference objects belong to the C-boundaries of S and Sc, i.e.
BnC (S) = BnC (Sc).

The following minimal D≥-decision rules and D≤-decision rules can be induced from lower
approximations of S and Sc, respectively (the figures within parentheses represent the pairs of
objects supporting the corresponding rules):

If x P≥1
1 y and x P≥1

2 y, then x Sy;
(
(1,6),(3,6),(7,6)

)

If x P≥1
2 y and x P≥0

3 y, then x Sy;
(
(1,2),(1,6),(1,8),(3,2),(3,6),(3,8),(7,2),(7,6),(7,8)

)

If If x P≥0
2 y and x P≥1

3 y, then x Sy;
(
(1,4),(1,5),(3,4),(3,5),(7,4),(7,5)

)

If x P≤−1
1 y and x P≤−1

2 y, then x Sc y;
(
(6,1),(6,3),(6,7)

)

If x P≤0
2 y and x P≤−1

3 y, then x Sc y;
(
(4,1),(4,3),(4,7),(5,1),(5,3),(5,7)

)

If x P≤0
1 y and x P≤−1

2 y and x P≤0
3 y, then x Sc y;

(
(2,1),(2,7),(6,1),(6,3),(6,7),(8,1),(8,7)

)

Moreover, it is possible to induce five minimal D≥≤-decision rules from the boundary of approx-
imation of S and Sc:
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If x P≤0
2 y and x P≥0

2 y and x P≤0
3 y and x P≥0

3 y, then x Sy or x Sc y;
(
(1,1),(1,3),(1,7),(2,2),(2,6),

(2,8),(3,1),(3,3),(3,7),(4,4),(4,5),(5,4),(5,5),(6,2),(6,6),(6,8),(7,1),(7,3),(7,7),(8,2),(8,6),(8,8)
)

If x P≤−1
2 y and x P≥1

3 y, then x Sy or x Sc y;
(
(2,4),(2,5),(6,4),(6,5),(8,4),(8,5)

)

If x P≥1
2 y and x P≤−1

3 y, then x Sy or x Sc y;
(
(4,2),(4,6),(4,8),(5,2),(5,6),(5,8)

)

If x P≥1
1 y and x P≤0

2 y and x P≤0
3 y, then x Sy or x Sc y;

(
(1,3),(2,3),(2,6),(7,3),(8,3),(8,6)

)

If x P≥1
1 y and x P≤−1

2 y, then x Sy or x Sc y; ((2,3),(2,4),(2,5),(8,3),(8,4),(8,5))

Using all the above decision rules and the Net Flow Score exploitation procedure on ten other
warehouses proposed for purchase, the managers can obtain the result presented in Table 4. The
dominance-based rough set approach gives a clear recommendation:

• For the choice problem it suggests the selection of warehouse 2′ and 6′, having maximum
score (11).

• For the ranking problem it suggests the ranking presented in the last column of Table 4,
as follows:

(2′, 6′) → (8′) → (9′) → (1′) → (4′) → (5′) → (3′) → (7′, 10′)

Table 4 – Ranking of warehouses for sale by decision rules and the Net Flow Score procedure.

Warehouse
A1 A2 A3

Net Flow
Ranking

for sale score

1′ good sufficient medium 1 5

2′ sufficient good good 11 1

3′ sufficient medium sufficient – 8 8

4′ sufficient good sufficient 0 6

5′ sufficient sufficient medium – 4 7

6′ sufficient good good 11 1

7′ medium sufficient sufficient – 11 9

8′ medium medium medium 7 3

9′ medium good sufficient 4 4

10′ medium sufficient sufficient – 11 9

5.6 Summary

We briefly presented the contribution of the Dominance-based Rough Set Approach to multi-
criteria choice and ranking problems. Let us point out the main features of the described
methodology:
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• The decision maker is asked for the preference information necessary to deal with a mul-
ticriteria decision problem in terms of exemplary decisions.

• The rough set analysis of preference information supplies some useful elements of knowl-
edge about the decision situation. These are: the relevance of particular attributes and/or
criteria, information about their interaction, minimal subsets of attributes or criteria (re-
ducts) conveying important knowledge contained in the exemplary decisions and the set of
the non-reducible attributes or criteria (core).

• The preference model induced from the preference information is expressed in a natural
and comprehensible language of “if..., then...” decision rules. The decision rules concern
pairs of objects and from them we can determine either the presence or the absence of a
comprehensive preference relation. The conditions for the presence are expressed in “at
least” terms, and for the absence in “at most” terms, on particular criteria.

• The decision rules do not convert ordinal information into numeric but keep the ordinal
character of input data due to the syntax proposed.

• Heterogeneous information (qualitative and quantitative, ordered and non-ordered) and
scales of preference (ordinal, cardinal) can be processed within the Dominance-based
Rough Set Approach, while classical methods consider only quantitative ordered evalu-
ations (with rare exceptions).

• No prior discretization of the quantitative domains of criteria is necessary.

6 RELEVANT EXTENSIONS OF DRSA

We introduced a knowledge discovery paradigm for multiattribute and multicriteria decision sup-
port, based on the concept of rough sets. Rough set theory provides mathematical tools for deal-
ing with granularity of information and possible inconsistencies in the description of objects.
Considering this description as an input data about a decision problem, the knowledge discovery
paradigm consists of searching for rules in the data that facilitate an understanding of the deci-
sion maker’s preferences and that enable us to recommend a decision which is in line with these
preferences. An original component of this paradigm is that it takes into account prior knowledge
about preference semantics in the rules to be discovered.

Knowledge discovery from preference ordered data differs from usual knowledge discovery since
the former involves preference orders in domains of attributes and in the set of decision classes.
This requires that a knowledge discovery method applied to preference ordered data respects
the dominance principle. As this is not the case for the well-known methods of data mining
and knowledge discovery, they are not able to discover all relevant knowledge contained in the
analyzed data sample and, even worse, they may yield unreasonable discoveries, because of
inconsistency with the dominance principle. These deficiencies are addressed in the Dominance-
based Rough Set Approach (DRSA). Moreover, this approach enables us to apply a rough set
approach to multicriteria decision making. We showed how the approach could be used for
multicriteria classification, choice and ranking. In more advanced papers, we have presented
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many extensions of the approach that make it a useful tool for other practical applications. These
extensions are:

• DRSA to decision under risk and uncertainty (Greco, Matarazzo & Slowinski, 2001e);

• DRSA to decision under uncertainty and time preference (Greco, Matarazzo & Slowinski,
2010c);

• DRSA handling missing data (Greco, Matarazzo & Slowinski, 1999c, 2000a);

• DRSA for imprecise object evaluations and assignments (Dembczynski, Greco & Slowin-
ski, 2009);

• Dominance-based approach to induction of association rules (Greco, Matarazzo, Slowinski
& Stefanowski, 2002);

• Fuzzy-rough hybridization of DRSA (Greco, Matarazzo & Slowinski, 1999b, 2000b,
2000c; Greco, Inuiguchi & Slowinski, 2002, 2003);

• DRSA as a way of operator-free fuzzy-rough hybridization (Greco, Inuiguchi & Slowinski,
2003, 2005, Greco, Matarazzo & Slowinski, 2007);

• DRSA to granular computing (Greco, Matarazzo & Slowinski, 2008a, 2009);

• DRSA to case-based reasoning (Greco, Matarazzo & Slowinski, 2008d);

• DRSA for hierarchical structure of evaluation criteria (Dembczynski, Greco, Slowinski,
2002);

• DRSA to decision involving multiple decision makers (Greco, Matarazzo & Slowinski,
2006, 2011);

• DRSA to interactive multiobjective optimization (Greco, Matarazzo & Slowinski, 2008c);

• DRSA to interactive evolutionary multiobjective optimization under risk and uncertainty
(Greco, Matarazzo & Slowinski, 2010d).

The Dominance-based Rough Set Approach leads to a preference model of a decision maker in
terms of decision rules. The decision rules have a special syntax which involves partial evalu-
ation profiles and dominance relations on these profiles. The clarity of the rule representation
of preferences enables us to see the limits of other traditional aggregation functions: the utility
function and the outranking relation. In several studies (Greco, Matarazzo & Slowinski, 2001b,
2002c, 2003; Slowinski, Greco & Matarazzo, 2002b), we proposed an axiomatic characterization
of these aggregation functions in terms of conjoint measurement theory and in terms of a set of
decision rules. In comparison to other studies on the characterization of aggregation functions,
our axioms do not require any preliminary assumptions about the scales of criteria. A side-result
of these investigations is that the decision rule aggregation (preference model) is the most general
among the known aggregation functions. The decision rule preference model fulfils, moreover,
the postulate of transparency and interpretability of preference models in decision support.
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Dealing with ordered data and monotonicity constraints makes also sense in general classifica-
tion problems, where the notion of preference has no meaning. Even when the ordering seems
irrelevant, the presence or the absence of a property have an ordinal interpretation. If two prop-
erties are related, one of the two: the presence or the absence of one property should make
more (or less) probable the presence of the other property. A formal proof showing that the
Indiscernibility-based Rough Set Approach is a particular case of the Dominance-based Rough
Set Appraoch has been given in (Greco, Matarazzo & Slowinski, 2007). Having this in mind,
DRSA can be seen as a general framework for analysis of classification data. Although it has
been designed for ordinal classification problems with monotonicity constraints, DRSA can be
used to solve a general classification problem where no additional information about ordering is
taken into account.

The idea which stands behind this claim is the following (Blaszczynski, Greco & Slowinski,
2012). We assume, without loss of generality, that the value sets of all regular attributes are
number-coded. While this is natural for numerical attributes, categorical attributes must get nu-
merical codes for categories. In this way, the value sets of all regular attributes get ordered (as all
sets of numbers are ordered). Now, to analyze a non-ordinal classification problem using DRSA,
we transform decision table such that each regular attribute is cloned (doubled). It is assumed
that the value set of each original attribute is ordered with respect to increasing preference (gain
type), and the value set of its clone is ordered with respect to decreasing preference (cost type).
Using DRSA, for each t ∈ {1, . . . , n}, we approximate two sets of objects from the decision
table: class Clt and its complement ¬Clt . Obviously, we can calculate dominance-based rough
approximations of the two sets. Moreover, they can serve to induce “if..., then...” decision rules
recommending assignment to class Clt or to its complement ¬Clt . In this way, we reformulated
the original non-ordinal classification problem to an ordinal classification problem with mono-
tonicity constraints. Due to cloning of attributes with opposite preference orders, we can have
rules that cover a subspace in the condition space, which is bounded from the top and from the
bottom – this leads (without discretization) to more synthetic rules than those resulting from the
Indiscernibility-based Rough Set Approach.

7 DRSA AND OPERATIONS RESEARCH PROBLEMS

DRSA is also a useful instrument in the toolbox of Operations Research (OR). DRSA has been
applied to the following OR problems:

1) interactive multiobjective optimization (IMO-DRSA) (Greco, Matarazzo & Slowinski,
2008c);

2) interactive evolutionary multiobjective optimization under risk and uncertainty (Greco,
Matarazzo & Slowinski, 2010d);

3) decision under uncertainty and time preference (Greco, Matarazzo & Slowinski, 2010c).
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7.1 DRSA to interactive multiobjective optimization (IMO-DRSA)

DRSA to interactive multiobjective optimization (IMO-DRSA) (Greco, Matarazzo & Slowinski,
2008c) permits to deal with many optimization problems considered within OR (ranging from
inventory management to scheduling, passing through portfolio management) in a way which
is very much oriented towards interaction with the users. In fact, in IMO-DRSA a sample of
representative solutions to a multiobjective optimization problem is presented to the DM who
is asked to indicate a subset of relatively “good” solutions in the sample. Applying DRSA to
the sample of representative solutions classified into “good” and “others” by the DM, a set of
decision rules is induced in the form: “if objective fi1(x) ≥ αi1 and... fip(x) ≥ αi p, then x is
a good solution”. The DM selects the rule that in his opinion is the most representative of his
preference and the constraints coming from that rule are adjoined to the set of constraints imposed
on the Pareto optimal set, in order to focus on a part interesting from the point of view of DM’s
preferences in the next iteration. For example, if the DM selects the rule “if fi1(x) ≥ αi1 and...
fip(x) ≥ αi p, then x is a good solution”, then the constraints fi1(x) ≥ αi1 and... fip(x) ≥ αi p

are adjoined to the set of constraints of the multiobjective optimization problem, such that the
new set of constraints implies a Pareto optimal set being the subset of the original Pareto optimal
set. This subset satisfies the requirements of the selected rule, so that it is composed of solutions
that are considered relatively good by the DM. The procedure continues iteratively until the DM
is satisfied with one solution from the current sample – this is the most preferred solution.

The IMO-DRSA procedure can be analyzed from the point of view of input and output infor-
mation. As to the input, the DM gives preference information by answering easy questions
related to ordinal classification of some representative solutions into two classes (“good” and
“others”). Very often, in multiple criteria decision analysis in general, and in interactive mul-
tiobjective optimization in particular, the preference information has to be given in terms of
preference model parameters, such as importance weights, substitution rates and various thresh-
olds. This information is specified in (Fishburn, 1967) with respect to Multiple Attribute Utility
Theory, and in (Roy & Bouyssou, 1993; Figueira, Mousseau & Roy, 2005; Brans & Mareschal,
2005; Martel & Matarazzo, 2005) with respect to outranking methods. In case of multiobjec-
tive optimization, the preference information depends on the method; e.g., the Geoffrion-Dyer-
Feinberg method (Geoffrion-Dyer-Feinberg, 1972), the method of Zionts & Wallenius (Zionts
& Wallenius, 1976, 1983) and the Interactive Surrogate Worth Tradeoff method (Chankong &
Haimes, 1978, 1983) require information in terms of marginal rates of substitution; the refer-
ence point method (Wierzbicki, 1980) requiries a reference point and weights to formulate an
achievement scalarizing function; the Light Beam Search method (Jaszkiewicz & Slowinski,
1999) requires information in terms of weights and indifference, preference and veto thresholds,
being typical parameters of ELECTRE methods. Eliciting such information requires a signif-
icant cognitive effort on the part of the DM. It is generally acknowledged that people rather
prefer to make exemplary decisions than to explain them in terms of specific parameters. For
this reason, the idea of inferring preference models from exemplary decisions provided by the
DM is very attractive.
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The output result of the analysis is the model of preferences in terms of “if..., then...” decision
rules which is used to reduce the Pareto optimal set iteratively, until the DM selects a satisfactory
solution. The decision rule preference model is very convenient for decision support, because
it gives argumentation for preferences in a logical form, which is intelligible for the DM, and
identifies the Pareto optimal solutions supporting each particular decision rule. This is very
useful for a critical revision of the original ordinal classification of representative solutions into
the two classes of “good” and “others”. Indeed, decision rule preference model speaks the same
language of the DM without any recourse to technical terms, like utility, tradeoffs, scalarizing
functions and so on.

All this implies that IMO-DRSA has a transparent feedback organized in a learning oriented
perspective, which permits to consider this procedure as a “glass box”, contrary to the “black
box” characteristic of many procedures giving final result without any clear explanation. The
information given by the decision rules is particularly intelligible for the DM, since they speak the
language of the DM and permit him/her to identify the Pareto optimal solutions supporting each
decision rule. Thus, decision rules give an explanation and a justification of the final decision,
that does not result from a mechanical application of a certain technical method, but rather from
a mature conclusion of a decision process based on active intervention of the DM.

Observe, finally, that the decision rules representing preferences are based on ordinal properties
of objective functions only. Differently from methods involving some scalarization (almost all
existing interactive methods), in any step the proposed procedure does not aggregate the objec-
tives into a single value, avoiding operations (such as averaging, weighted sum, different types of
distance, achievement scalarization) which are always arbitrary to some extent. Observe that one
could use a method based on scalarization to generate the representative set of Pareto optimal
solutions, nevertheless, the decision rule approach would continue to be based on ordinal prop-
erties of objective functions only, because the dialogue stage of the method operates on ordinal
comparisons only. In the proposed method, the DM gets clear arguments for his/her decision in
terms of “if..., then...” decision rules and the verification if a proposed solution satisfies these
decision rules is particularly easy. This is not the case of interactive multiobjective optimization
methods based on scalarization. For example, in the methods using an achievement scalariz-
ing function, it is not evident what does it mean for a solution to be “close” to the reference
point. How to justify the choice of the weights used in the achievement function? What is their
interpretation? Observe, instead, that IMO-DRSA operates on data using ordinal comparisons
which would not be affected by any increasing monotonic transformation of scales, and this
ensures the meaningfulness of results from the point of view of measurement theory (see, e.g.,
Roberts, 1979).

With respect to computational aspects of the method, notice that the decision rules can be cal-
culated efficiently in few seconds only using the algorithms presented in (Greco, Matarazzo,
Slowinski & Stefanowski, 2001, 2002; Blaszczynski, Slowinski & Szelag, 2011). When the
number of objective functions is not too large to be effectively controlled by the DM (say, seven
plus or minus two, as suggested by Miller (1956)), then the decision rules can be calculated in
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a fraction of one second. In any case, the computational effort grows exponentially with the
number of objective functions, but not with respect to the number of considered Pareto optimal
solutions, which can increase with no particularly negative consequence on calculation time.

7.2 DRSA to interactive evolutionary multiobjective optimization

Very often real life optimization problems are so complex that exact methods fail to find an
optimal solution. In these cases some heuristics are to be applied. Within multiobjective opti-
mization, Evolutionary Multiobjective Optimization (EMO) appeared to be particularly efficient;
see, e.g., (Coello Coello, Van Veldhuizen & Lamont, 2002; Deb, 2001).

The underlying reasoning behind the EMO search of an approximation of the Pareto-optimal
frontier is that, in the absence of any preference information, all Pareto-optimal solutions have
to be considered equivalent. On the other hand, if the DM (alternatively called user) is involved
in the multiobjective optimization process, then the preference information provided by the DM
can be used to focus the search on the most preferred part of the Pareto-optimal frontier. This
idea stands behind Interactive Multiobjective Optimization (IMO) methods proposed long time
before EMO has emerged.

Recently, it became clear that merging the IMO and EMO methodologies should be beneficial
for the multiobjective optimization process (Branke, Deb, Miettinen & Slowinski, 2008). Sev-
eral approaches have been presented in this context; see, e.g., (Fonseca & Fleming, 1993; Deb,
Sundar, Rao & Chaudhuri, 2006; Deb & Chaudhuri, 2010; Coello, Van Veldhuizen & Lamont,
2002; Branke, Kaußler & Schmeck, 2001; Greenwood, Hu & D’Ambrosio, 1997; Jaszkiewicz,
2007; Phelps & Koksalan, 2003; Branke, Greco, Slowinski & Zielniewicz, 2009).

The methodology of interactive EMO based on DRSA (Greco, Matarazzo & Slowinski, 2010d,
2010e) involves application of decision rules in EMO, which are induced from easily elicited
preference information by DRSA, proposing two general schemes, called DRSA-EMO and
DRSA-EMO-PCT. This results in focusing the search of the Pareto-optimal frontier on the most
preferred region. More specifically, DRSA is used for structuring preference information ob-
tained through interaction with the user, and then a set of decision rules representing user’s pref-
erences is induced from this information. These rules are used to rank solutions in the current
population of EMO, which has an impact on the selection and crossover.

Within interactive EMO, one can also apply DRSA for decision under uncertainty. This per-
mits to take into account robustness concerns in the multiobjective optimization. In fact, two
methods of robust optimization methods combining DRSA and interactive EMO have been pro-
posed: DARWIN (Dominance-based rough set Approach to handling Robust Winning solutions
in IN teractive multiobjective optimization) and DARWIN-PCT (DARWIN using Pairwise Com-
parison Tables). DARWIN and DARWIN-PCT can be considered as two specific instances of
DRSA-EMO and DRSA-EMO-PCT, respectively.

The integration of DRSA and EMO is particularly promising for two reasons:
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1. The preference information required by DRSA is very basic and easy to be elicited by the
DM. All that the DM is asked for is to assign solutions to preference ordered classes, such
as “good”, “medium” and “bad”, or compare pairs of non-dominated solutions from a cur-
rent population in order to reveal whether one is preferred over the other. The preference
information is provided every k iterations (k depends on the problem and the willingness
of the user to interact with the system. In our studies, k ranges from 10 to 30).

2. The decision rules are transparent and easy to interpret for the DM. As explained in the
previous subsection, the preference model supplied by decision rules is a “glass box”,
while many other competitive multiple criteria decision methodologies involve preference
models that are “black boxes” for the user. The “glass box” model improves the quality of
the interaction and makes that the DM accepts well the resulting recommendation.

The integration of DRSA and EMO provides very general interactive EMO schemes which can
be customized to a large variety of OR problems, from location and routing to scheduling and
supply chain management.

7.3 DRSA to decision under uncertainty and time preference

DRSA can also be applied to preference modeling for decision under uncertainty with conse-
quences distributed over time, using the idea of time-stochastic dominance, i.e. putting to-
gether the concept of time dominance and stochastic dominance (Greco, Matarazzo & Slowinski,
2010c). Preference information provided by the DM is a set of decision examples specifying the
quality of some chosen acts, i.e. assigning these acts to preference-ordered classes. The resulting
preference model expressed in terms of “if..., then...” decision rules is much more intelligible
than any utility function. Moreover, it permits to handle inconsistent preference information. Let
us observe that the approach handles an additive probability distribution as well as a non-additive
probability, and even a qualitative ordinal probability. Furthermore, in case the elements of sets
of possible probability values and of time epochs were very numerous (like in real life applica-
tions in which very often they are infinite), it would be enough to consider a subset of the most
significant probability values (e.g., 0, 0.1, 0.2, . . . , 0.9, 1) and a subset of the most significant
epochs (e.g., each month).

Applying DRSA to decision under uncertainty and time preference we get decision rules of the
type:

“if the cumulated outcome at t1 is at least −50, and the cumulated outcome at t2 is
at least 300, then act ai is (at least) good”

or

“if the cumulated outcome at t1 is at most −100 and the cumulated outcome at t2 is
at most 150, then act ai is (at least) good”.

This method can be extended on the case of pairwise comparisons (Greco, Matarazzo & Slowin-
ski, 2010e) obtaining rules whose syntax is:
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“if the difference between the cumulated outcome of act a and act b is not smaller
than 50 at t1, and not smaller than 300 at t2, then act a is at least weakly preferred
to act b”.

The above methodology can be very useful for dealing with many OR problems where uncer-
tainty of outcomes and their distribution over the time play a fundamental role, such as portfolio
selection, scheduling with time-resource interactions and inventory management. Indeed, putting
together the decision rules produced by this methodology with IMO-DRSA and DRSA applied
to EMO, provides an important tool for dealing with even more OR problems. An example of a
recent application of this methodology to a typical OR problem, which is inventory control, can
be found in (Greco, Matarazzo, Slowinski & Vaccarella, 2012).

8 SOURCES OF ADDITIONAL INFORMATION ABOUT ROUGH SET THEORY
AND APPLICATIONS

The community of researchers and practitioners interested in rough set theory and applica-
tions is organized in the International Rough Set Society (http://roughsets.home.pl/www/). The
society’s web page includes information about rough set conferences, about Transactions on
Rough Sets published in a journal series of LNCS by Springer, and about International Journal
of Granular Computing, Rough Sets and Intelligent Systems. This page also includes slides
of tutorial presentations on rough sets. A database of rough set references can be found at
http://rsds.univ.rzeszow.pl.

The following software is available free in the Internet:

RSES – Rough Set Exploration System http://logic.mimuw.edu.pl/∼rses,

ROSE – ROugh Set data Explorer http://idss.cs.put.poznan.pl/site/rose.html,

jMAF – java Multi-criteria and Multi-attribute Analysis Framework
http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html, and

jRank – ranking generator using Dominance-based Rough Set Approach
http://www.cs.put.poznan.pl/mszelag/Software/jRank/jRank.html.
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