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ABSTRACT: Maghemite (γ-Fe2O3) and hematite (α-Fe2O3) are important iron oxides in 
Brazilian soils derived from basalt. Maghemite can transform into hematite when exposed 
to high temperatures. However, isomorphic substitution (e.g., Al3+) may largely influence 
this process. We analyzed the kinetics of thermal transformation of Al-maghemites into 
Al-hematites and some of its mineralogical aspects. Synthetic substituted maghemites 
with different degrees of Al-substitution (0.0, 1.0, 2.0, 2.9, 3.8, 5.6, 6.7, 10.0, 12.0, and 
17.1 mol% Al) were subjected to a temperature of 500±10 °C for 0, 5, 10, 16, 64, 128, 
192, 360, 720, 2160, 3600, 5040, and 6480 min. After thermal treatment, samples were 
characterized by X ray diffraction (XRD), differential thermal analysis (DTA), specific 
surface area (SSA) measurement, and total chemical analysis. XRD patterns were 
analyzed by Rietveld refinement, and maghemite and hematite contents were calculated 
using Rietveld refinement and the method proposed by Sidhu. Isomorphic substitution 
of Fe by Al increased the critical temperature of transformation and the time necessary 
for maghemite to hematite transformation. Rietveld refinement data showed a better 
fit than the data adjusted by the Sidhu method. Increasing isomorphic substitution also 
decreased lattice parameters and mean crystallite dimension (MCD) values in maghemite; 
but only c-dimension and MCD decreased with increasing Al-substitution in hematite. 
For maghemite, the SSA increased with isomorphic substitution, rising up to 5.9 mol% 
Al; for hematite, SSA increased linearly. SSA decreased with heating time, regardless of 
isomorphic substitution.
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INTRODUCTION
In tropical regions, the weathering of basic rocks, such as basalt, andesite, and gabbro, 
leads to the formation of soils with high iron oxide contents (inclusive term for oxides, 
hydroxides, and oxyhydroxides) in the clay fraction (Tremocoldi, 2003). The most common 
iron oxides in highly weathered soils are goethite and hematite (Alleoni and Camargo, 
1995), but in southern Brazil, in soils derived from basalt, maghemite represents almost 
50 % of all iron oxides in the clay fraction (Costa et al., 1999). In a general way, it is difficult 
to study attributes of metallic oxides in soils because of their low concentration. They can 
be better evaluated when they are synthesized in the laboratory (Batista et al., 2010).

Maghemite is a reddish brown ferromagnetic iron oxide isostructural with magnetite. 
This oxide occurs in soils as the product of magnetite oxidation or as the product of 
heating other iron oxides in the presence of organic matter (Cornell and Schwertmann, 
1996). Hematite is very stable and often the final member of the thermal transformation 
of other Fe-oxides (e.g., maghemite). Although frequently associated with red color in 
soils, Bigham et al. (1993) and Silva et al. (2010) affirmed that its color may vary from 
red to purple to gray according to particle size and oxidation state. Hematite is typical 
in soils of warm and drier climates, such as those from tropical and subtropical regions, 
where the presence of maghemite is also common (Cornell and Schwertmann, 1996).

There are different paths to hematite formation. Hematite can be a product of direct 
or indirect magnetite oxidation (Goulart, 1994); in the latter case, maghemite is the 
intermediate member. Maghemite is derived from magnetite since its cubic unit cell is 
easily inherited from the cubic inverse spinel structure of magnetite (Fasiska, 1967). 
Pure magnetite (Fe3O4) and maghemite (γ-Fe2O3) are rarely, if ever, found in nature. 
Isomorphic substitution (IS) of Fe for different elements is common, if not a rule, among 
these minerals. In soils, Fe is mostly substituted by Al in maghemite, while Ti4+, Mg2+, 
Zn2+, and Mn2+ are common Fe-substituent elements in primary magnetite (Sidhu et al., 
1980; Schwertmann and Fechter, 1984).

Solid phase transformation is a very common process among iron oxides and it is influenced 
by environmental conditions such as temperature, pH, and the existence of other solid 
phases, such as clay minerals and Fe3+ content (Glasauer et al., 1999; Schwertmann et 
al., 1999; Pullin and Cabaniss, 2003). Isomorphic substitution and thermal transformation 
may change some mineralogical properties in iron oxides: unit cell dimensions, specific 
surface area, solubility in different environments (Ruan and Gilkes, 1995; Gasser et al., 
1996; Batista et al., 2008; Batista et al., 2011), and temperature of transformation 
(Sahoo et al., 2010). Some soil minerals are affected by heating in natural and managed 
fires (Yusiharni and Gilkes, 2012). The effects of burning on soil vary according to the 
duration and intensity of fire and soil type. Many studies show the change in agricultural 
soil mineralogy after burning (Ketterings et al., 2000; Wang et al., 2006; Terefe et al., 
2008; Yusiharni and Gilkes, 2012).

Our hypothesis is that isomorphic substitution and thermal reaction can cause changes 
in mineralogical properties of maghemite and in the transformation temperature into 
hematite. In this study, we analyzed the kinetics of the solid phase thermal transformation 
of synthetic Al-maghemites into Al-hematites and some mineralogical and crystal chemical 
properties of the initial and final products.

MATERIALS AND METHODS

Maghemite synthesis 

Maghemites were synthesized previously by Batista et al. (2010) through the oxidation 
of magnetites synthesized by co-precipitation in aqueous KNO3 alkaline solution from 
FeSO4.7H2O with increasing amounts of AlSO4.7H2O (Schwertmann and Cornell, 1991). 
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Magnetite synthesis was performed in an N2 atmosphere. After co-precipitation, a hand 
magnet easily and completely attracted the dark black material formed. This material 
was washed several times with distilled water to remove excess salt, then frozen and 
freeze-dried. After that, this black material was heated in a furnace in a free atmosphere 
to 250 °C for 4 h to produce maghemite. 

Total chemical analysis

Powdered materials (~100 mg) were weighed into 2.5 mL Eppendorf tubes; 1.5 mL of 
concentrated HCl was then added and samples were kept for 7 days until complete 
dissolution was achieved. The samples were then diluted in a 250 mL volumetric flask, 
and total Al and Fe contents were determined by Atomic Absorption Spectroscopy (AAS). 
Isomorphic substitution values were calculated by using the percentage of elements in 
each sample:

IS (mol%) = {(Al3+/26.98) / [(Al3+/26.98) + (Fe3+/55.85)]} × 100

Differential thermal analysis

A Netzch STA 409 PC/PG device was used to determine differential thermal analysis 
(DTA). The temperature range was from 30 °C to 1000 °C and the heating rate 10 °C 
per minute under free atmosphere conditions.

Maghemite-to-hematite transformation

Synthetic maghemites with different degrees of IS were placed on rectangular mullite 
crucibles and heated in a muffle furnace at 500±10 °C. This temperature was chosen 
based on DTA analysis and on the literature (Sidhu, 1988). Each sample remained in the 
furnace for different times: 5, 10, 16, 64, 128, 192, 360, 720, 2160, 3600, 5040, and 
6480 min. Immediately after heating, the samples were cooled in ice to interrupt the 
reaction (Sidhu, 1988) and then kept in plastic containers.

X ray diffraction (XRD)

The synthetic powdered materials were XRD analyzed in a Shimadzu XRD-6000 diffractometer 
by using CuKα radiation in a step-scanning mode (0.02 °2θ/1s). The resulting XRD patterns 
were used to estimate the proportion of each phase (maghemite and hematite) and the 
corresponding mean crystallite dimension (MCD) and lattice parameters by Rietveld 
refinement with DBWSTools 2.3 software (Bleicher et al., 2000). Rietveld refinement was 
carried out with samples containing 0.0, 5.6, and 12.0 mol% Al. This technique proposes 
fitting experimental and theoretical diffractograms through the Least Square Method 
(Young et al., 1995). According to Zielasko (2007), there are some statistical indicators 
that may be used during or after refinement to verify if the procedures were satisfactory. 
In this study, the weighted profile (Rwp) was used because it is considered one of the 
best indices to indicate refinement progress (Zielasko, 2007).

The method proposed by Sidhu (1988) to phase quantification considers the areas of 
XRD reflections of d220 and d113 for maghemite and hematite, respectively. Two curves 
were obtained with thirteen standards that contained pre-weighed quantities of the two 
minerals (0 to 100 %), one for area values and another for height values. These values were 
obtained by using Grams® 8.0 software. Equations from the linear fit would allow mineral 
quantification. In this study, height values for d220 (ŷ = -8.78 + 4.992** x, R2 = 0.97) and 
d113 (ŷ = 285.19 - 2.84** x, R2 = 0.97) reflections were used. Standards were obtained by 
heating magnetite at 250 °C for 4 h, and by heating maghemite at 700 °C for 3 h. 

For refinement, the following cards with their respective ICSD code were used: # 87119 
for maghemite and # 15840 for hematite. These cards were obtained from the following 
site: https://www.portaldapesquisa.com.br/databases/sites. In the computer program, 
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pseudo-Voigt profile, Cu wavelength, and five cycles were used. For MCD studies, it was 
necessary to run an XRD pattern (lanthanum hexaboride) to refine its data for obtaining 
U, V, and W values on the same equipment used to analyze mineral samples.

Specific surface area (SSA)

The BET (Brunauer et al., 1938) specific surface area was measured by the N2 adsorption 
technique using a Quantachrome instrument (Monosorb, USA).

RESULTS AND DISCUSSION

Total chemical analysis

Degrees of isomorphic substitution in maghemite samples calculated by AAS results 
were 0.0, 1.0, 2.0, 2.9, 3.8, 5.6, 6.7, 10.0, 12.0, and 17.1 mol % Al.

Differential thermal analysis (DTA)

Maghemite DTA curves (Figure 1) were characterized by the presence of one intense 
exothermic peak between 570 and 690 °C. This peak indicated the temperature of 
thermal transformation from maghemite to hematite (Zhao et al., 2007) considering 
that the hexagonal phase is more stable than the cubic one (Mazo-Zuluaga et al., 2003).

A similar range of solid phase transformation temperatures (540 to 650 °C) was found by Sidhu 
(1988). The difference in temperature values was related to IS degrees. The temperature of 
maghemite-hematite transformation increased with increasing Cr content in the magnetite 
structure (Magalhães, 2008) and with Cu content (Nasrazadani and Raman, 1993; Costa 
et al., 1995; Mazo-Zuluaga et al., 2003). The higher the content of chemical elements, 

Figure 1. Differential thermal analysis (DTA) to some Al-maghemites. 
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the higher the energy necessary to eject or redistribute them. Thus, this additional energy 
would reduce the solid phase thermal transformation rate (Sidhu et al., 1980).

Differential thermal analysis results showed only endothermic peaks around 100 °C. 
David and Welch (1956) affirmed that synthetic maghemites have low water content 
because there are protons substituting Fe ions in the mineral structure and leading to 
the formation of OH-. Therefore, the endothermic peaks would represent the point at 
which this water content is lost.

Increasing Al to Fe IS in the maghemite structure, the temperature of solid state 
transformation also increases (Figure 2). According to the equation in figure 2, the 
maximum temperature of transformation from maghemite to hematite reached 693 °C 
for maghemites containing 14.5 mol% Al.

X ray diffraction (XRD)

There was a reduction in maghemite and an increase in hematite intensity reflections 
with increased heating time (Figures 3a and 3b). Samples composed of both minerals, 
maghemite and hematite, represented most of studied samples. After adequate heating 
time, maghemites were transformed into hematites (Figure 3c). Rwp values ranged from 8 
to 13 %, and they were similar to Rwp values found by Sileo et al. (2007), 8.4 to 12.9 %, 
for synthetic Cr-substituted hematites.

Kinetics of solid phase thermal transformation of Al-maghemites into Al-hematites at 
500 °C can be observed in figure 4. Regardless of the model (Rietveld or Sidhu), the 
thermal transformation rate of maghemite into hematite decreased over time, and this 
rate was faster in the initial periods. Exponential models were statistically significant 
(p<0.01). Modeling by the Rietveld method had a better fit considering the coefficient 
of determination (R2). According to the Sidhu method (Figures 4d, 4e, and 4f), mineral 
contents were sometimes higher than 100 % or lower than 0 %.

For both methods of quantification (Rietveld or Sidhu), the higher the IS, the slower the 
reaction. Thus, 7.7, 332.8, and 916.4 min for the Rietveld method, and around 8.5, 156.5, 
and 1109.1 min for the Sidhu method were necessary to provide for 90 % reaction in 
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Figure 2. Critical temperatures of maghemite to hematite solid phase thermal transformation 
with different isomorphic substitution (IS) degrees. **: significant at 1 % by the t test. 
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Figure 3. XRD reflections for maghemites containing 5.6 mol% Al heated to 500 °C for 0 (a), 192 
(b) and 2160 min (c). 
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maghemites containing 0.0, 5.6, and 12.0 mol% Al, respectively. Complete alteration 
from pure maghemite (0.0 mol% Al) occurred in 11.6 min and about 49 min for Rietveld 
and Sidhu quantification, respectively, but for the other substituted maghemites, greater 
heating time was necessary. 

The MCD values for d220 reflection decreased linearly with heating time, whereas MCD values for 
d113 increased in an exponential manner (Figure 5). Sidhu (1988) used widths at half-maximum 
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Figure 4. Kinetics of transformation for 0.0, 5.6 and 12.0 mol% Al by Rietveld (a, b and c) and Sidhu methods (d, e and f). **: 
significant at 1 % by the t test. 
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intensity of maghemite (d220) and hematite (d113) XRD reflections to determine crystal size. 
He observed that hematite crystals grew at the beginning of the transformation whereas the 
size of maghemite crystals was not much affected, which was also observed in this study.

The MCD values and unit cell parameters when varying degrees of IS of Fe to Al are 
presented in table 1. It can be verified that for d220 and d113 reflections, MCD values 
decreased with increasing IS. Silva et al. (2013) observed that the average size of 
synthetized maghemite particles decreased with Fe to PVA [poly (vinyl alcohol)] substitution.

Variations in the crystal size of synthetic Al-maghemites, from 18 to 55 nm, and for 
Al-hematites, from 21 to 45 nm, were found by Sidhu (1988). Variations from 16.8 to 51.6 nm 
(0.0 mol% Al), from 20.3 to 38.9 nm (5.6 mol% Al), and from 15.6 to 32.2 nm (12.0 mol% Al) 
were found in this study. In hematites, the range was from 56.2 to 62.8 nm (0.0 mol% Al), 
from 48.2 to 54.2 nm (5.6 mol% Al), and from 11.0 to 55.8 nm (12.0 mol% Al). Pereira 
(2009) found MCD values of 34 and 64 nm for two natural rhombohedral hematites with 
the probable presence of Al (samples also contained kaolinite and gibbsite with residual Al 
content). Batista et al. (2008) studied Zn-substituted maghemites and observed a linear 
relationship between MCD and IS. In their study, MCD values decreased with increasing 
substitution. In a similar study, Batista et al. (2010) observed the same behavior for 
Al-substituted maghemites. Schwertmann and Fechter (1984) observed that maghemites 
from highly weathered soils with a high degree of Fe substitution for Al had significantly lower 
unit cell dimensions than pure maghemites because Al3+ has smaller ionic radii than Fe3+. 

Unit cell parameters in both minerals decreased with increasing IS (Table 1). Considering 
that Al3+ has smaller ionic radii than Fe3+, IS decreases unit cell parameters. Pereira (2009) 
found 0.504 nm (a=b) and 1.375 nm (c), 0.504 nm (a=b) and 1.377 nm (c), for unit cell 
parameters for natural Al-hematites from itabirite (Quadrilátero Ferrífero – Minas Gerais), 
which was similar to the values found in this study (Table 1). In Al-substituted goethite, 
for example, the strongest linear relationship between individual unit cell dimensions and 

Figure 5. Mean crystallite dimention (MCD) values of the d220 (a) (maghemite) and d113 (b) (hematite) reflexes for Al-maghemites 
submitted to different heating times. ** and *: significant at 1 and 5 % by the t test, respectively. 
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IS appeared in the c-dimension, and for hematite/corundum and boehmite/lepidocrocite 
systems, the same was true for the a-dimension (Kirwan et al., 2009). However, in the present 
study, variations in the hematite c-dimension were more pronounced than variations in the 
a- and b-dimensions. Sileo et al. (2007) observed some results for synthetic Cr-hematites: 
the a-parameter changed in a non-ordinate way and c-values increased throughout the 
series. The authors expected both parameters to decrease because of the smaller size of 
Cr³+ ions. However, thermal analyses showed an increase in OH- content, and the increase 
in the c-dimension was attributed to the presence of increasing stacking faults. The a- and 
c-parameters decreased with increasing Fe-to-Cr substitution.

Specific surface area (SSA)

Specific surface area (SSA) values of the synthetic maghemite increased up to 5.9 mol% 
Al, reaching 20.0 m2 g-1 (Figure 6). For synthetic hematite, SSA results increased linearly, 
reaching 14.8 m2 g-1 at 12.0 mol% IS (Figure 6). Increasing SSA values are consistent with 
decreasing MCD values (Table 1). Substitution of Fe for Al atoms within the crystal structure 
of synthetic maghemites hampers crystal growth on all faces of the cubic structure. 
For most Fe oxides, the presence of metals with smaller ionic radii reduces crystal size, 
enhances specific surface area, and decreases MCD (Cornell and Schwertmann, 1996). 
Sidhu (1988) found a mean SSA value of 17.3 m2 g-1 in Al-maghemites and 6.7 m2 g-1 in 
Al-hematites. In this study, mean values for Al-maghemites and Al-hematites were 18.6 
and 12.5 m² g-¹, respectively. So, transformation of maghemite to hematite reduced 
surface area as the result of increasing particle size. 

Table 1. Mean crystallite dimension (MCD) and unit cell parameter values for Al-maghemites and 
Al-hematites

IS
Maghemite Hematite

a=b=c MCD-d220 a c MCD-d113

mol% Al  nm 
0.0 0.83527 51.64 0.50341 1.37467 62.83
5.6 0.83231 38.94 0.50262 1.37210 54.23
12.0 0.83134 30.25 0.50264 1.37196 55.81
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Figure 6. Specific surface area (SSA) behavior due to Fe to Al substitution in maghemite and 
hematite structures. ** and *: significant at 1 and 5 % by the t test, respectively. 
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The SSA values decreased exponentially with increased heating time (Figure 7). On average, 
the SSA of maghemite tended to be higher than the SSA of the thermal hematite produced 

Figure 7. Specific surface area (SSA) values to maghemites-hematite with 0.0 Al (a), 5.6 Al (b) 
and 12.0 mol% Al (c) when submitted to different heating times. **: significant at 1 % by the t test. 
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(Cornel and Schwertamn, 1996). Values ranged from 8 to 130 m2 g-1 in maghemite and 
from 2 to 90 m2 g-1 in hematite.

CONCLUSIONS
Increasing isomorphic substitution requires more time, and the temperature necessary 
for solid state thermal transformation of maghemite into hematite was up to 693 °C.

The transformation kinetics data fit to the Rietveld model were better than those fitted 
to the Sidhu model.

Maghemite unit cell parameters and MCD values decrease with increased IS. However, 
for hematite, only the c- dimension and MCD decrease with increased IS.

Upon increasing heating time from 0 to 6480 min, maghemite MCD values decrease, regardless 
of the degree of IS; however, the effect is less pronounced for the highest degree of IS.

For hematite, MCD values increase over time until stabilizing at about 128 min (0.0 mol% Al), 
360 min (5.6 mol% Al), and 2160 min (12.0 mol% Al); the lower the IS, the shorter the 
time required.

Specific surface area values decrease with heating time; thus, the SSA of maghemite 
decreased when transformed into hematite.
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