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SUMMARY

Soil science has sought to develop better techniques for the classification of
soils, one of which is the use of remote sensing applications. The use of ground
sensors to obtain soil spectral data has enabled the characterization of these data
and the advancement of techniques for the quantification of soil attributes. In
order to do this, the creation of a soil spectral library is necessary. A spectral
library should be representative of the variability of the soils in a region. The
objective of this study was to create a spectral library of distinct soils from several
agricultural regions of Brazil. Spectral data were collected (using a Fieldspec
sensor, 350–2,500 nm) for the horizons of 223 soil profiles from the regions of Matão,
Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos,
Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três
Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal
Component Analysis (PCA) of the data was then performed and a graphic
representation of the spectral curve was created for each profile. The reflectance
intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic
matter and the presence of opaque minerals. There was no change in the spectral
curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos.
Argissolos had superficial horizon curves with the greatest intensity of reflection
above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater
reflectance intensity in poorly developed horizons. Gleisols showed a convex curve
in the region of 350–400 nm. The PCA was able to separate different data collection
areas according to the region of source material. Principal component one (PC1)
was correlated with the intensity of reflectance samples and PC2 with the slope
between the visible and infrared samples. The use of the Spectral Library as an
indicator of possible soil classes proved to be an important tool in profile
classification.
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RESUMO:  BIBLIOTECA ESPECTRAL E SUA APLICAÇÃO EM
CLASSIFICAÇÃO DE SOLOS

A ciência do solo tem buscado desenvolver técnicas que contribuam para a melhor utilização
e caracterização do solo; entre elas encontra-se a aplicação de técnicas de sensoriamento remoto.
O uso de sensores terrestres na obtenção de dados espectrais de solos tem possibilitado a
caracterização desses e o avanço de técnicas de quantificação de seus atributos. Para isso, a
montagem de uma biblioteca espectral de solos se faz necessária. Uma biblioteca espectral
deve ser representativa da variabilidade de solos de uma região. O presente trabalho teve por
objetivo criar uma biblioteca espectral de distintos solos de algumas regiões agrícolas do
Brasil. Para isso, foram coletados dados espectrais (sensor Fieldspec, 350–2.500 nm) dos
horizontes de 233 perfis de solos das regiões de Matão, Paraguaçu Paulista, Andradina, Ipaussu,
Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí,
Maracaju, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); e Uberaba e Lagoa da Prata
(MG). Posteriormente, foi realizada a análise de componentes principais (PCA) dos dados e a
representação gráfica das curvas espectrais de cada perfil. A intensidade das curvas foi
influenciada principalmente pelos teores de Fe2O3, argila, matéria orgânica e presença de
minerais opacos. Latossolos, Nitossolos e Neossolos Quartzarênicos não apresentaram mudança
no comportamento espectral das curvas de seus horizontes. Argissolos mostraram as curvas
dos horizontes superficiais com maior intensidade de reflectância após os 2.200 nm.
Cambissolos e Neossolos Litólicos apresentaram curvas de maior intensidade de reflectância
nos horizontes pouco desenvolvidos. Gleissolos mostraram forma convexa de curva na região
dos 350–400 nm. A PCA foi capaz de separar diferentes regiões de coleta de dados em função
do material de origem. A componente principal (PC) 1 correlacionou-se com a intensidade de
reflectância das amostras, e a PC2, com a inclinação entre a região do visível e a do infravermelho
das amostras. O uso da biblioteca espectral como indicativo de possíveis classes de um solo
mostrou ser ferramenta importante para a classificação de perfis.

Termos de indexação: sensoriamento remoto, análise de componentes principais, classificação
de solos.

INTRODUCTION

The appropriate use of soil in agriculture requires
a good understanding of the soil chemical, physical,
mineralogical and biological characteristics. Soil
science has sought to develop techniques that help to
better characterize soil types. In many recent studies,
the application of remote sensing techniques has gained
much attention, mainly because these techniques
have been shown to generate faster and cheaper
characterizations, earning them credibility in the
scientific community. The application of remote
sensing techniques in soil studies began in the 1960s
(Bowers & Hanks, 1965) and expanded to various
applications, including quick and nondestructive
quantification of soil attributes (Janik et al., 1998;
Shepherd & Walsh, 2002, Dunn et al., 2002; Viscarra-
Rossel, et al., 2006a; Demattê & Nanni, 2006; Brown,
et al,. 2006), soil survey and classification (Demattê
et al., 2004, Ben-Dor et al., 2008), mineralogical
measurements (Madeira-Netto, 1996; Viscarra-Rossel
et al., 2006b; Sellito et al., 2009), digital soil mapping
(Viscarra-Rossel & McBractney, 2008), precision
agriculture (Thomasson et al., 2001, Maleki et al.,
2007; Mouazen et al., 2007) and quantification of heavy

metals (Wu Zhao et al., 2005). Thus, a basic requirement
for their successful application is the creation of a
spectral database, or Spectral Library (SL) (Viscarra-
Rossel et al., 2008).

Brown et al. (2006) noted that the soil reflectance
in the visible and near infrared region is a function of
the soil composition, including organic material,
primary minerals, clay minerals, salts and partially
crystallized materials. These components are the basic
elements of the classes in the North American
classification system and the base for soil management
interpretations.

Dunn et al. (2002) pointed out that, in order for
spectroscopy techniques to be commercially applicable,
there must be a wide range of data from different soil
types with variations in their organic and inorganic
components. Shepherd & Walsh (2002) reported that
although existing spectral libraries include geological
spectral curves of soils (Clark, 1999), there are not
many examples of spectral libraries that contain a
high diversity of soils and their physical-chemical
information.

Viscarra-Rossel et al. (2008) stated that there are
several studies about spectral libraries covering
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various soils of different geographical areas, such as
those of Dunn et al. (2002), Shepherd & Walsh (2002)
and Brown et al. (2006). According to these authors,
there are three basic requirements for developing a
spectral library of soil: (a) an SL must contain a
sufficient number of samples, representing the
variability of soils found in the region to which the
SL refers; (b) samples must be carefully sub-sampled,
handled, prepared, stored and scanned (anything that
happens to the sample will affect its spectral curve);
(c) the analytical reference data from the samples to
be used in calibrations must be acquired through
recognized and trusted analytical procedures.

In this context, this study aimed to create an SL
of soils from agricultural areas in Brazil. The objective
was to help make quantification models of soil
properties and to construct a modal pattern that will
aid in the classification and characterization of soils.
It is expected that from the data contained in the BE,
a user will be able to determine the class, or possible
classes, of an unknown soil based on spectral
information.

MATERIALS AND METHODS

Soil samples from different soil horizons were
collected from the counties of Matão, Paraguaçu
Paulista, Andradina, Ipaussu, Mirandópolis,
Piracicaba, São Carlos, Araraquara, Guararapes,
Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante,
Três Lagoas (MS); Goianésia (GO), Uberaba and
Lagoa da Prata (MG) (Figure 1). Soil samples from
233 soil profiles were collected. All profiles were
described morphologically (Lemos & Santos, 1996) and
classified up to the 4th categorical level (Embrapa,
2006).

The samples were analyzed for particle size
according to the methods of Camargo et al. (1986) and
for fertility using the methods of Raij et al. (2001).
The analysis provided the necessary data for the
calculation of the sum of bases (SB), cation exchange
capacity (CEC), base saturation (V %) and Al
saturation (m %). The total Fe (Fe2O3), silica (SiO2),
Ti (TiO2) and Mn (MnO) were determined by sulfuric
acid digestion (Camargo et al., 1986).

The spectral data were obtained in the laboratory
with the FieldSpec Pro: Analytical Spectral Devices,
Boulder, Colorado spectroradiometer using 350–
2,500 nm wavelengths (Hatchell, 1999). For the
reflectance data collection, the samples were dried in
an oven at 45 °C for 24 h (Henderson et al., 1992),
ground, processed through a sieve (2 mm mesh) and
placed in Petri dishes. The reflectance of each sample
was calculated by taking the average of 100 scans
performed by the sensor. The light capture device in
the equipment (fiber optic cable input) was placed in
a vertical position 8 cm from the sample. The light
source used was a 50 W halogen lamp with no
collimated beam to the target plane, positioned 35 cm
from the sample with a zenith angle of 30 degrees. A
white plate of barium sulfate was used as the reference
standard, with a standard of 100 % reflectance.
Graphs for each profile were generated from the
spectral data (Figures 2-4), where each graph contains
the spectral curves of the horizons of the respective
profile.

In order to reduce the dimensionality of
information and the variability of the spectral data, a
principal components analysis (PCA) was performed
using the program The Unscrambler 9.7. In order to
do this, spectral data were preprocessed, then
converted into absorbance and centered on the mean.
Principal component analysis (PCA) is one of the most
common methods employed in the analysis of
information (Brown, 1995) and is mainly used for its
ability to compress data based on the existence of
correlation between different measured variables.

Graphs of the spectral curves of 13 soil profiles
(class unknown) were descriptively compared
according to the contents of the SL. For each profile,
the number of possible orders of soil was established
based on the similarity between the spectral profile
and the SL profiles. The number of possible orders
(only until the 1st categorical level) for each soil was
indicated. Each profile shows the number of possible
orders (until the 1st categorical level) from soils. This
methodology proposes a comparison between the
information from the spectral curves of the profile
(intensity, shape, slope, presence of features and
behavioral variation among curves from the same
profile) and the information contained in the SL.
The methodology was named “Soil classification by
the method of Simplified Descriptive Comparison”
(SDC).

Figure 1. Regions where soil profile samples were
collected.
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RESULTS AND DISCUSSION

Characteristic features such as 2:1 clay minerals
(1400, 1,900 and 2,200 nm) (Grove et al., 1992;
Demattê & Garcia, 1999a; Clark, 1999, Goetz et al.,
2009), kaolinite (2,200 nm), Fe oxides, hematite and
goethite (concavity in the 850–900 nm range)
(Epiphanio et al., 1992; Demattê & Garcia, 1999a,
Stoner et al., 1980), specific goethite (450–480 nm)
(Dalmolin, 2002) and gibbsite (2,265 nm) (Madeira-
Netto, 1996) were observed in the spectral curves of
the various profiles.

In general, Latossolos had spectral behavior
similar to the curves of their horizons (Figure 2).
Higher levels of clay and Fe2O3 were found in the
curves of the profiles with a lower intensity of
reflectance and the presence of organic matter (OM)
in surface horizons led to a reduction in the intensity
of the curve, mainly in the 350–1,350 nm range, which
agrees with Mathews et al. (1973). Nitossolos showed
spectral behavior similar to Latossolos. In the majority
of the profiles, Latossolos indicated the presence of
gibbsite (2,265 nm) but Nitossolos did not. The clearest
presence of gibbsite in Latossolos was due to the fact
that these soils are more weathered than Nitossolos
and therefore contain a larger amount of Fe and Al
oxides and a higher loss of SiO2 (Boul et al., 1997).

The Argissolos exhibited a characteristic pattern,
the reflectance intensity of the surface spectral curves,
in the spectral range of 2,250 to 2,500 nm (Horizons
A and E), which is higher than that of the sub-surface
curves (Bt horizon) (Figure 2). Cambissolos and
Neossolos Litólicos showed a behavioral pattern that
has already been reported in other studies (Demattê
et al., 2003, Clemente et al., 2000). The sub-surface
horizons of low pedogenic development (Horizons B
incipiente and C) show a greater intensity of
reflectance than the surface horizons. This is explained

by the greater amount of silt (Table 1) in these
horizons, as was also shown by Demattê et al. (2000).
Furthermore, Grove et al. (1992) reported that the
presence of feldspars and 2:1 clay minerals contribute
to the greater intensity of reflectance (Figure 4).

Gleissolos showed the typical features of
hydromorphic horizons (Figure 3), such as convexity
in the 350–450 nm range, the absence of the concavity
of iron oxides in the 850–900 nm range, and change
in the slope of the curve in the 800 nm absorbance, in
agreement with Epiphanio et al. (1992).

Neossolos Quartizarênicos showed high values of
reflectance intensity and an upward slope in the curves
due to high sand content and the presence of quartz
in this fraction (White et al., 1997) (Figure 4).
Neossolos Quartzarênicos and sandy loam Latossolos
(with clay content less than 250 g kg-1) had a similar
spectral behavior. This is because differentiation of
the classes in this case is a function of a clay content,
which is less than (Neossolos Quartzarênicos) or higher
than (Latossolos) 150 g kg-1 (Embrapa, 2006).

The Piracicaba region (SP) has a high variability
of soils (Figure 5) originating from different parent
materials. This variability was reflected in the high
variation of the reflectance intensities of the spectral
curves, with soils having an average reflectance
intensity of 0.2 and others having an intensity of 0.5.
The variation in intensity is due to a high variation
in clay and different Fe2O3 profiles. Horizons with
higher sand content had higher intensities due to the
high reflectance of quartz (White et al., 1997). In
general, soils derived from volcanic rocks show lower
reflectance intensity, while soils derived from
sedimentary rocks with some amount of iron have
intermediate reflectance intensities. Soils derived from
sedimentary rocks with low amounts of Fe have high
values of reflectance intensity.

Figure 2. Spectral Curves from Soil Profiles: Argissolos and Latossolos, representing the Soil Spectral Library.
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The regions of Araraquara, São Carlos and Matão
(SP) showed lower soil variability, with curves
ranging from medium to low intensity. The variation
of intensity was due to the greater or lesser presence
of Fe2O3. Soils with greater amounts of Fe2O3
presented lower reflectance intensity. Another
identifying characteristic of the spectral curves was
the presence of gibbsite (2,265 nm) (Madeira-Netto,
1996) in the majority of the soils, with this feature
being sharper in Latossolos than in Nitossolos.
Kaolinite (2,200 nm), Fe oxides, goethite and hematite
(concavity in the region of 850–900 nm) and
specifically goethite (450–480 nm) were also observed.

The Andradina, Mirandópolis, Valparaiso and
Guararapes (SP) regions, which also had lower soil
variability, had curves varying from medium to high

reflectance intensity. The regions are located in the
western plateau of São Paulo and the main parent
soil material is sandstone. This leads to the
predominance of soils with low clay and higher sand
content, which explains the higher values of
reflectance intensity.

The Ipaussu region (SP) was characterized by soils
varying from medium to high Fe2O3 content, resulting
in curves from medium to low intensities. In general,
soils with higher contents of Fe2O3 had lower
reflectance intensity.

The regions of Maracajú and Rio Brilhante (MS)
had soils with low reflectance intensity spectral
behavior. This occurs because of high clay content,
originating from low levels of sand, and high
concentrations of Fe2O3.

Table 1. Chemical and granulometrical analysis from soil profile samples ARAP09, ARAP11, GOP05, IPAP10,
IPAP31,LPP34, MARP18 and MARP24, representing the Soil Spectral Library
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The Três Lagoas region (MS) had soil spectral
behavior similar to soils from Andradina, Mirandópolis,
Valparaiso and Guararapes (SP). This region is
geographically close to the other locations, which are
separated by the Rio Paraná. Similar to the other
regions cited, the parent soil material is sandstone.

The region of Goianésia (GO) had soils with
intermediate reflectance intensity. Although the
content of Fe2O3 in these soils is between medium
and high, the soils showed no spectral curves with
low intensity (less than 0.25). One possible explanation
is that even though these soils contain high levels of
Fe2O3, they have low amounts of opaque minerals,
such as magnetite and ilmenite. Most soils showed
features of gibbsite (2,265 nm), Fe oxides, hematite
and goethite (concavity in the 850–900 nm range), and
kaolinite (2,200 nm). The presence of specific features
of goethite (450–480 nm) and 2:1 clay minerals (1,400,
1,900 and 2,200 nm) was not verified because these
are highly weathered soils.

The Naviraí region (MS) had soils with high spectral
reflectance and an ascendant slope aspect, similar to
the spectral behavior of soils found in the region of

Figure 5. Principal component analysis from soil
spectral data in the different regions evaluated,
data graph and region by region separation

Figure 3. Spectral curves from soil profiles: Latossolos, Nitossolos and Gleissolos, representing the Soil
Spectral Library.

Figure 4. Spectral curves from soil profiles: Cambissolos, Neossolos Litólicos and Neossolos .Quartzarênicos,
representing the Soil Spectral Library
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Três Lagoas (MS). The high sand content explains
the high intensity of reflectance and upward slope of
the curves. In the region of Três Lagoas (MS), the
sandy loam Latossolos also showed similar spectral
behavior to the Neossolos quartzarênicos.

The soils of the Uberaba (MG) region had the lowest
intensity spectral curves, most of them with very low
reflectance intensity due to high levels of Fe2O3 and
clay. These high levels of Fe2O3 caused smoothing of
most features. Unlike what was observed in most soils
from other regions with similar characteristics, surface
soil horizons showed higher intensity curves than
those from the sub-surface. This occurs because the
organic matter has a greater value of reflectance
intensity than opaque minerals such as magnetite
(Madeira Netto & Baptista, 2000). Thus, the soils of
the region have such a high amount of opaque minerals
and the addition of organic matter causes an increase
in reflectance intensity. This information confirms
results found by Fontes and Carvalho Junior (2005).

The Lagoa da Prata (MG) region had the greatest
intensity of soil reflectance. However, it was also the

region that had soils with higher clay and lower Fe2O3
concentrations, due to the predominant source
materials being claystone and siltstone. The absence
of opaque minerals enables the high intensity of
reflectance, although the intensity of reflectance is
medium-high in all profiles, indicating that higher
levels of clay have a lower intensity of reflectance and
those with higher levels of the silt have a higher
intensity of reflectance, as shown by Demattê et al.
(2000) and Mathews et al. (1973). The region has soil
surface horizons with high organic matter content,
resulting in a lower intensity of spectral reflectance
and smoothing the concave feature of iron oxides (850–
900 nm). In general, the Latossolos had features of
gibbsite (2,265 nm) while Nitossolos, Cambissolos and
Neossolos Litólicos did not. This same observation was
noted by Sans (1973), in studying the mineralogy of
soils in the region. All soils showed clear features of
goethite (450–480 nm).

It was evident that in the Lagoa da Prata (MG)
region, where soils are more pedogenically developed
(weathered), the spectral curves had a lower intensity

Table 2. Chemical and Granulometrical Analysis from soil profile samples MIRP05, PIRP21, PIRP29,
PIRP31,PIRP40,SCP27,TLP22 and UBRP14, representing the Soil Spectral Library
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of reflectance. In other words, Cambissolos have a
higher reflectance intensity than Nitossolos, which
have a higher reflectance intensity than Latossolos,
which can be explained by the decrease in the amounts
of silt and increased presence of 2:1 clay minerals
(Mathews et al., 1973; Grove et al., 1992).

The first and the second principal components (PC1
and PC2) were able to explain over 95 % of the spectral
variability of soils. The PC1 (Figure 5) showed a
correlation with the intensity of reflectance of the
samples, which agrees with that shown by Galvão et
al. (2001). Due to the processing of spectral data for
the PCA (change in absorbance), higher values of PC1
indicate a lower intensity reflectance of the sample.
The data from the Uberaba (MG) region had the lowest
reflectance intensities and the highest values of the
PC1 score, while the data from the Lagoa da Prata
(MG) region had the highest reflectance intensity and
lowest values of PC1.

As reported in the characterization of the spectral
curves of the profiles of the Andradina, Valparaíso,
Guararapes, Mirandópolis (SP) and Três Lagoas (MS)
regions, there were similarities between the soil
classes and their spectral behaviors. These same
regions were superimposed on the graph between PC1
and PC2 (Figure 5).

The regions with soils of higher levels of Fe2O3
also overlapped on the charts, because these soils
generally appeared to have volcanic rock source
material. This was verified everywhere except for
Goianésia (GO), which, as reported in its spectral
characterization, had soils with high contents of
Fe2O3, but a distinct position on the PC1 x PC2 chart.
The Goianésia region (GO) is at a different altitude
than the other regions with soil containing a high
amount of Fe2O3.

The Lagoa da Prata (MG) region showed a different
spectral characterization than the other regions and was
also grouped in a different position from other regions.

The Piracicaba region (SP) showed a high
variability of soils of different spectral behaviors,
related to the location of this transitional region
between the São Paulo depression and western
plateau, generating a great variety of materials from
sources such as soil basalts, diabase, shale, siltstones,
mudstones (argillite) and sandstones. This great
variability is reproduced in the soil and can be viewed
from the principal component analysis (Figure 5).
Henderson et al. (1992) and Demattê & Garcia (1999b)
already indicated that spectral data should be
evaluated by region, which is consistent with this
study.

It was evident that regionalization through
principal component analysis showed grouping by
similarity of soils derived from similar parent
materials. For example, the Três Lagoas (MS),
Mirandópolis and Guararapes (SP) regions primarily
contained sandstone source material and occupied a
similar position in the charts, while the Uberaba
(MG), Maracajú and Rio Brilhante (MS) regions had
soils formed from volcanic rocks and also occupied
similar positions in the graphs (Figure 5). This further
demonstrated the differentiation of regions with
similar geology but different altitudes.

A simple descriptive comparison of the spectral
curves of a soil profile with the graphics of the Spectral
Library demonstrated that the Spectral Library serves
as an important auxiliary tool in classification. Table 3
demonstrates that in comparing the curves of an
unclassified profile with those of the Spectral Library,
the Spectral Library did not provide more than three
possible orders. For one of the profiles, the Library
showed only one order, whereas for profiles 4 and 8,
the Spectral Library gave two and three possible
orders, respectively. Clearly, the descriptive
comparison is not able to pinpoint a precise rating,
but is a tool with the ability to reduce possible choices,
reducing the time needed for soil surveys. Since this
technique is fast, inexpensive and non-destructive, it

Table 3. Contents of Fe2O3, SiO2, Al2O3, TiO2, MnO and Ki and Kr indices for soil profile samples representing
the Soil Spectral Library
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can increase the number of samples collected in an
area, improving the quality of soil maps through more
precise delimitation of mapping units. If increased
numbers of samples are not used, this technique can
provide a cost reduction by ensuring that not all
samples need to be sent for laboratory testing.

CONCLUSIONS

The Spectral Library was able to support the
classification of possible soil orders.

1. The soil reflectance intensity was influenced by
the content of Fe2O3, sand, clay, silt, organic matter
and the presence of opaque minerals.

2. Organic matter promoted the reduction of
reflectance intensity and softening of the features.

3. The increase in the levels of Fe2O3 in soils
promoted a decrease in the reflectance.

4. Horizons with lesser degrees of pedogenic
development (incipient B and C) have spectral curves
with higher reflectance intensity.

5. The surface layers of Argissolos presented higher
levels of reflectance intensity than the others, with
wavelengths greater than 2,200 nm.

6. The internal comparison of the spectral curves
of the horizons of Latossolos, Nitossolos and Neossolos
Quatzarênicos display similar behavior.

7. The principal component analysis grouped soils
originating from similar parent materials, with some
differentiation caused by the altitude.
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