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Abstract · Resumo

Crop revenue insurance has been widely discussed recently. It has
become an important mechanism for risk management of crop yield
and prices. However, a more comprehensive study is needed to
investigate the dependence structure between the variables analyzed
to calculate the premium rate actuarially fair for revenue insurance.
This study proposes alternatives to calculate premium rates for
revenue insurance using parametric copula functions. The results
suggests that the average commercial rates calculated by the insurer
are underestimated when compared to the copula model. The
underestimation of rates can lead to seriou losses to insurers, since
they consider a lower risk than should be taken into account.

Abstract · Resumo

Nos últimos anos, o seguro de faturamento agrícola tem sido
amplamente discutido. Este tipo de seguro tornou-se ummecanismo
importante para o gerenciamento dos riscos climáticos (afetam a
produtividade) e de mercado (preços das culturas). No entanto,
um estudo mais abrangente é necessário para investigar a estrutura
de dependência entre as variáveis analisadas e para calcular a taxa
do prêmio atuarialmente justa para o seguro de faturamento. Este
estudo propõe formas alternativas para calcular as taxas do prêmio do
seguro de faturamento utilizando as funções cópulas paramétricas. Os
resultados sugerem que as taxas comerciais médias calculadas pela
seguradora estão subestimadas quando comparadas com omodelo
de cópulas. A subestimação das taxas podem levar a graves perdas às
seguradoras, uma vez que considera um risco menor do que deveria
ser levado em consideração.

1. Introduction

Agriculture is extremely important for Brazil, both economically and socially; nevertheless,
many risks threaten all agribusiness chains to a greater or lesser degree. Among which,
climate risks affect crop yield and market risks can lead to significant changes in commodity
prices.

The development of risk management strategies requires the understanding of the
nature of the risk, its origin, its likelihood distribution, its correlation with other risks and
the capability of instruments to reduce it. Several strategies could be used by the agricultural
sector to manage risks, namely crop diversification, new production techniques, agricultural
derivatives and crop insurance.

Crop insurance is efficient to protect the producer’s income in adverse conditions and
is an important instrument to transfer the risk from producers to other economic agents.
Insurance guarantee the income when some event occurs that causes economic damage
by comparing their income with the scenario without such an event, upon payment of a
premium and an indemnity, in case of damages.
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In Brazil, the first revenue insurance was offered in 2010. In 2011, a second company
also began to offer this type of insurance. This insurance product is relatively recent in the
Brazilian agricultural market; however,the demand to this new insurance policy has grown
each year (Carvalho et al., 2013).

Because it is a recent product in the Brazilianmarket, no studies have evaluated actuarial
procedures to value this insurance type; thus, requiring further research on the theoretical
aspects of pricing that take into account specific features of yield and price series of Brazilian
soybean, justifying the purpose of this work.

According to Goodwin and Mahul (2004), the main issue of revenue insurance is
risk modeling, which consists of calculating joint distribution, marginal distributions and
correlation between random variables of yield and price.

In multivariate problems, the multivariate normal distribution is usually used. This
choice is mostly based on its mathematical simplicity. However, this normality assumption
restricts the type of association between the margins and becomes a linear relationship. In
addition, it assumes a symmetric association, which may not capture data idiosyncrasies in
practice.

In the actuarial field, data tend to introduce heavier tails and dependency structures that
may be linear, non-linear, and dependency only on distribution tails. Therefore, improper use
of the normality hypothesismay result in large financial losses and lead to an underestimation
of probability and severity of events related to this loss.

This study presents alternative methods to calculate and estimate the premium rate of
the revenue insurance through parametric copulas in joint distribution between price and
yield. The next subsection presents a literature review.

1.1 Literature review

A precise modeling of random variables of the agricultural yield and the price are necessary
to calculate the fair actuarial premium rate. Three approaches are used to model these
variables. The first involves estimating parametric distribution parameters. The second
requires a wide variety of nonparametric methods commonly used to model approximate
distributions. Thirdly, semi-parametric are alternative methods that combine elements of
both the parametric and nonparametric methods.

Nonparametric methods are advantageous, as they do not require prior specification
of the distribution design, meaning that the ”data speak for themselves”. In this case, some
distribution features can be shown, such as positive-negative asymmetry and bimodality.
However, these methods require a large sample, despite greater flexibility to describe various
density shapes (Goodwin & Mahul, 2004).

For parametric distribution, normal distribution to model yield is suggested (Just &
Weninger, 1999). However, Ramirez, Misra, and Field (2003) have found evidence against
normality in their research and the Beta distribution is themost used parametric distribution
(Babcock & Hennessy, 1996; Hennessy, Babcock, & Hayes, 1997).

This work (Duarte, Braga, Miquelluti, & Ozaki, 2017) compared Normal, Beta, skew-
normal, skew-t distributions and the Odd Log-Logistics Normal (OLLN) distribution to
model soybean yield in four municipalities in Parana State. In these municipalities, the
OLLN distribution was the best fit to the data for capturing bimodality. In addition, it
compare the insurance premium rates of crop yield calculated by OLLN distribution with
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commercial rates applied by insurance companies in the country, indicating that the rates
calculated by the OLLN distribution were lower than those applied by insurance companies.

When modeling prices, the lognormal distribution has been widely used in studies on
crop insurance (Goodwin, Roberts, & Coble, 2000). Alternatives to lognormal distribution
have been studied and semi-parametric and nonparametric approaches are commonly used.

According to Goodwin and Ker (2002), the main difficulty in modeling crop revenue
lies in the need to determine the correlation degree between price and yield, since they are
rarely independent.

This dependency between variables can be studied via dependency structures for
copulas. The theory of copulas has often been used to analyze financial series and risk factors.
In the case of crop insurance, a small number os studies have been elaborated such as Ahmed
and Serra (2015), and Miqueleto (2011).

This study discusses the different parametric copulas for modeling joint distribution,
taking into account the margins approximated by the nonparametric empirical method and
the parametricmethodwith theOdd-Log Logistics Normal (OLLN) distribution for the yield
and the Skew-T-Student distribution for the price series. In addition, the calculated rates
were compared by the copula methodology with bivariate Normal distribution, generally
used in the insurance market, and with commercial rate applied by the insurance market.

The next subsection shows ways of calculating agricultural insurance premium.

1.2 Revenue Insurance Premium Rate

The insurance model used as a reference in this work was revenue assurance (RA), adopted
in the market in the United States. The theoretical concepts to calculate revenue insurance
premium rates were described in Miqueleto (2011).

This work considered revenue (𝐹) as a function of two variables, yield (𝑋) and price
(𝑌), whose expression is 𝐹 = 𝑋𝑌. Guaranteed yield is defined by 𝑋𝑔 = 𝜆𝑋𝑒 , in which
0 < 𝜆 < 1 is the coverage level (CL) chosen by the producer and 𝑋𝑒 is the expected yield,
typically calculated by the average of the last five seasons. Guaranteed price is defined
by 𝑌𝑔 = 𝜆𝑌𝑒 , where 0 < 𝜆 < 1 is the coverage level and 𝑌𝑒 is the expected price. In
this work the expected price used was the average of the last 15 prices of the simulated
distribution. In this type of insurance, the compensation to the producer per unit area is
given by 𝐼 = max [(𝑥𝑔𝑦𝑔 − 𝑋𝑌; 0)].

The optimal premium rate is given by

𝜋 =
Prob (𝑋 < 𝑥; 𝑌 < 𝑦 || 𝑋𝑌 < 𝑥𝑔𝑦𝑔)[𝑥𝑔𝑦𝑔 − 𝔼 (𝑋𝑌 || 𝑋𝑌 < 𝑥𝑔𝑦𝑔)]

𝑥𝑔𝑦𝑔
. (1)

The next section presents data description used in the research. Section 3 presents the
models used in modeling the margins and shows copula methodology to calculate bivariate
distribution. Section 4 shows the results. Section 5 presents the premium rates. Finally,
section 6 presents the conclusions.

2. Data description

For modeling crop yield, the series of soybean crop annual yield (Kg/ha) were analyzed in
the municipalities of Toledo, Cascavel, Guarapuava and Castro, in the state of Parana (Brazil)
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and provided by the Institute of Social and Economic Development of Parana (IPARDES,
2015), available from 1980 to 2015.

The price series used is the nominal monthly price received by producers in Parana
State in (R$), whose unit is the 60 kg bag and provided by the Secretariat of Agriculture
and Supply of Parana State (SEAB, 2015). In order to equalize the periodicity of the two
series, it was used the average nominal prices in the crop sales period, corresponding to
the months of soybean harvest March,April and May of each year. In addition, the price
series was deflated by general price index-international availability (IGP-DI), available at
IPEADATA (2015).

The commercial rates of the insurance company A were used in this study and was
provided by the Ministry of Agriculture, Livestock and Food Supply (MAPA, 2017).

3. Methodology

This section presents the methodology used to model price and yield series, as well as
parametric copulas to model the dependency structure between the variables.

In order to fix the yield and prices series in terms of bias, the procedure approached in
Gallagher (1987) was used. This procedure was describe in Appendix A. Yield modeling
used the Normal and Skew-Normal (SN) distributions proposed by Azzalini (1985), as well
as the OLLN and Skew-𝑡 (ST) distributions (Braga, Cordeiro, Ortega, & Cruz, 2016,Azzalini
& Capitanio, 2003). Price modeling used the Log-Normal and Skew-𝑡 distributions.

To select the model that best fits the data, some criteria or statistical tests were used.
The most used criteria for model selection in practice are the corrected Akaike Information
Criterion (AICc), proposed by Akaike (1998) and the Bayes Information Criterion (BIC)
(Schwarz et al., 1978). A different approach to choose the best model is through the study of
modified statistics, from Anderson–Darling (𝑊 ∗) and Cramer–von Mises (𝐴∗), proposed
by Lin, Huang, and Balakrishnan (2008) and Pakyari and Balakrishnan (2012), respectively.

3.1 Copulas

The copulas theory is a multivariate modeling tool widely used in different branches of
science in which the interest is on multivariate dependency and the use of multivariate
normality in question. In finance and actuarial science, copulas are used in modeling of
correlated events and competitive risks Miqueleto (2011). This theory becomes attractive,
as copulas cover a wide range of dependency structures and are able to model completely
the dependency data structure.

Furthermore, copulas allow to relate a joint distribution 𝐻(𝑥, 𝑦) to their marginal
distributions 𝐹(𝑥) and 𝐺(𝑦). The Sklar theorem, proposed by Sklar (1959), guarantees the
conditions of representation uniqueness of the distribution function 𝐻(𝑥, 𝑦) by means of
copulas, which is described below.

Theorem 1. Let 𝐻 is a function of bivariate distribution with 𝐹 and 𝐺 margins. Thus, there
is a bivariate copula 𝐶 such that ∀(𝑥, 𝑦) ∈ ℝ2 :

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)). (2)

On the other hand, if 𝐶 is a copula bivariate and 𝐹, 𝐺 are univariate distribution functions,
the function 𝐻 defined in equation (2) is a bivariate distribution function with margins 𝐹
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and 𝐺. In addition, if the margin distributions are all continuous, 𝐶 is unique. Otherwise, 𝐶
is given exclusively in Dom𝐹 × Dom𝐺.

Appendix B presents the parametric and semi-parametric estimators for copulas.
Besides that, the Goodness-of-fit procedures propose by Genest, Rémillard, and Beaudoin
(2009) was used to identify the best existing parametric copula to fit the data. In addition,
in order to compare the best copula parametric model adjusted to the data, the Vuong’s
procedure proposed by Vuong (1989) is used.

4. Results

Themodels for the yield and price series were used to remove bias over time. Table 1 presents
the estimates of the linear model and the significance of parameters for all series. At level of
1% of significance, it is observed the presence of linear trend of order 1 for all yield series
and order 2 for the price series. Figure 1 shows the original and corrected series of crop
yield of four municipalities and the price series.

Table 1. Results of the adjustment of the linear model to trend.

Series Coefficientes Estimates p-value 𝑅2

Toledo Yield
𝛼 −76,362.08 5.83E−9 0.6629

𝛽 39.53 2.86E−9

Guarapuava Yield
𝛼 −100,300 2.68E−15 0.8549

𝛽 51.48 1.33E−15

Cascavel Yield
𝛼 −79,534.999 4.79E−8 0.6033

𝛽 41.112 2.51E−8

Castro Yield
𝛼 −81,924.200 4.41E−14 0.8306

𝛽 42.429 1.74E−14

Deflated Price
𝛼 −81,763.886 3.53E−13

𝛽 42.348 1.46E−13 0.8172

𝛾 42.348 1.46E−13

Table 2 presents the p-values of the Ljung Box test for the corrected series and these
squared to check for temporal dependency and heterogeneity of variances. At 1% level of
significance, the series do not have conditional dependency and heterogeneity of variances
over time. The estimates of the copula parametric models were calculated using the R
software, version 3.0.3, together with the copula package (Yan, 2007).

4.1 Semi-Parametric Inference

To estimate copulas under the semi-parametric approach, empirical distributions for margin
distributions of yield and prices were used and then the parametric copulas were estimated.
Table 3 lists estimates for dependency parameter of copulas and the standard error of the
estimates in parentheses. For all copulas, the dependency parameter 𝛿 is negative, showing
a negative dependency between the price and yield variables. In practice, this relationship
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Figure 1. Original and corrected yield and price series.

Table 2. Results of the Ljung-Box test for the yield and price series, and these are squared to verify the
independence between the observations over time and the homogeneity of variances.

Series p-value for Series p-value for Series2

Price 0.0763 0.0842
Toledo Yield 0.2619 0.1273
Guarapuava Yield 0.0509 0.0437
Cascavel Yield 0.3746 0.2975
Castro Yield 0.0936 0.0866
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of negative dependency is expected, according to supply and demand, because when yield
increases and supply of soybean moves up, in general prices of the product reduces, and
vice versa.

Table 3. Estimates for copulas parameters (standard error in parentheses).

Copulas
Toledo× Price

𝛿 (standard error)
Guarapuava× Price
𝛿 (standard error)

Cascavel× Price
𝛿 (standard error)

Castro× Price
𝛿 (standard error)

Clayton −0.0889 (0.2006) −0.0243 (0.2254) −0.0585 (0.1718)
Frank −1.0141 (1.0215) −1.7589 (1.0390) −0.6834 (1.0198) −0.4189 (0.9830)
AMH −0.7185 (0.5505) −0.4077 (0.5709) −0.2753 (0.5408)
Gaussian −0.1569 (0.1685) −0.3218 (0.1685) −0.0768 (0.1863) −0.0808 (0.1755)
𝑡𝜈 −0.3087 (0.1662)

𝜈 = 10.8119 (29.6171)

Table 4 presents the Akaike Information Criteria (AIC), Bayesian Criterion (BIC),
log-likelihood value (LLV) as well as Cramer–von Mises statistics (Sn) and p-value of the
model fit test described in Appendix B. For all municipalities and in all fitted copulas, the
tests did not reject any copula at 0.01 level of significance. Thus, in the choice for the copula
that best represents dependency between the variables, the one with the lowest AIC and BIC
values was chosen.

Table 4. AIC and BIC Selection Criteria for parametric copulas with empirical margins(EM).

Criteria Clayton Frank AMH Gaussiana t

Toledo× Price

AIC 1.7429 0.9995 0.6766 1.1871
BIC 3.2983 2.5549 2.232 2.7425
LLV 0.1285 0.5002 0.6616 0.4064
Sn 0.0164 0.03224 0.03338

p-value 0.7188 0.5609 0.6978

Cascavel× Price

AIC 1.9797 1.5366 1.4797 1.8071
BIC 3.535 3.0919 3.035 3.3625
LLV 0.1016 0.2317 0.2601 0.0964
Sn 0.0244 0.0246 0.0262 0.02238

p-value 0.6188 0.8936 0.2672 0.9446

Castro× Price

AIC 1.9017 1.8356 1.7945 -1.7865
BIC 3.4571 3.3909 3.3498 3.3418
LLV 0.0491 0.0822 0.1027 0.1067
Sn 0.0490 0.0566 0.05981 0.0588

p-value 0.2592 0.02048 0.0449 0.05145

Guarapuava× Price

AIC -0.8457 -1.5938 0.267
BIC 0.7097 -0.0384 3.377
LLV 1.4228 1.7968 1.8665
Sn 0.02713 0.0324 0.0414

p-value 0.8323 0.7904 0.6618
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Considering Toledo × price and Cascavel × price, the AMH copula was chosen us-
ing the criteria aforementioned. On the other hand, yield for Castro × price and Guara-
puava × price is best adjusted by the Gaussian copula.

The next sub-section presents the copula estimation under the parametric approach, in
this case, specifying a parametric distribution for price and yield separately and then fitting
the copula to the simulated variables of these distributions.

4.2 Parametric Inference

Figure 2 shows the graphics of the fitted price and yield densities in Toledo. Normal, Skew-
Normal (SN) and OLLN distributions were used for yield. The price series used the Log-
Normal and Skew-t distributions. Table 5 presents the fitting procedures for the choice of
models for yield and price in Toledo. For yield, the model chosen was OLLN distribution,
for presenting the lowest value for statistics 𝐴∗ and 𝑊 ∗ . In addition, under the same
criteria, the model chosen for the price series was the Skew-t distribution. The same analysis
was performed for the municipalities of Guarapuava, Cascavel and Castro in which the
parametric model that best fits to yield is the OLLN model for all municipalities (Duarte et
al., 2017).

The next step is to select the copula that best represents the dependency between the
data structure. For that, the criteria of AIC and BIC information were used.

Table 6 presents the Akaike’s Information Criterion (AIC), the Bayesian criterion (BIC),
the Cramer–vonMises statistics (Sn) and the p-value of the fitting test of themodel described
in Appendix B. Similarly to the case of semi-parametric inference for all municipalities and
in all fitted copulas, the test adjusted did not reject any copula at 0.01 level of significance.
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Figure 2. Adjusted distribution for the corrected yield Toledo and price SEAB series.



Duarte and Ozaki: Pricing crop revenue insurance using parametric copulas 333

Table 5. Statistics and information criteria AICc, BIC, 𝐴∗ and 𝑊∗ for the univariate series.

Variable Model AICc BIC 𝐴∗ 𝑊∗

Yield Toledo
Normal 554.4212 557.1569 0.7902 0.1208

SN 556.8204 560.7120 0.7902 0.1208

OLLN 555.9902 559.8864 0.6605 0.1063

Price
Log Normal 281.5256 284.2630 0.8458 0.1518

ST2 280.2308 286.4522 0.8215 0.0987

Therefore, for the choice of the copula that best represents the dependency between
the variables, the one with the lowest AIC and BIC values were chosen. The copula that best
characterizes the dependency structure between the variables of yield in Toledo, Cascavel
and Castro with price is AMH copula. Copula AMH presents greater accuracy in calculating
revenue premium rates for these municipalities. For yield in Guarapuava and price, the
Gaussian copula best represents the dependency structure.

Table 6. Selection Criteria AIC, BIC, Sn statistic for parametric copulas with parametric margins (PM).

Criteria Clayton Frank AMH Gaussiana t

Toledo× Price

AIC 1.4722 0.1345 -0.2317 0.6865

BIC 3.0276 1.6898 1.3236 2.2419

Sn 0.0164 0.03224 0.03338

p-valor 0.7228 0.5929 0.7058

Cascavel× Price

AIC 1.8011 0.8069 0.7161 1.3959

BIC 3.3564 2.3623 2.2715 2.9513

Sn 0.0244 0.0246 0.0262 0.02238

p-valor 0.6386 0.8886 0.2393 0.9466

Castro× Price

AIC 1.9338 1.8133 1.78 1.7859

BIC 3.4892 3.3686 3.3353 3.3412

Sn 0.0490 0.0566 0.05981 0.0588

p-valor 0.2552 0.0244 0.0148 0.0624

Guarapuava× Price

AIC -1.1173 -1.5327 0.3152

BIC 0.4338 -0.0227 3.4259

Sn 0.02713 0.0324 0.0414

p-valor 0.8323 0.7887 0.6317

4.3 Comparison betweenmodels

Table 7 presents the models chosen for both inference procedures. For the municipalities of
Toledo, Cascavel and Guarapuava, in both types of inferences, the models chosen were the
same, the AMH copula, the AMH copula and the Gaussian copula, respectively.
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Table 7. Models selected by semi-parametric (SPI) and parametric (PI) inference, with dependency
parameter (𝛿).

Copula 𝛿

Toledo× Price
AMH (SPI) -1
AMH (PI) -0.92021

Cascavel× Price
AMH (SPI) -0.4811
AMH (PI) -0.6452

Castro× Price
Gaussian (SPI) -0.0695
AMH (PI) -0.4260

Guarapuava× Price
Gaussian (SPI) -0.3218
Gaussian (PI) -0.3058

In these cases, because it is not possible to apply the procedure proposed by Vuong
(1989), the models with the lowest AIC and BIC values were chosen, according to Tables
4 and 6. Therefore, for the municipalities of Cascavel and Toledo, the AMH copula was
chosen by the parametric inference thus with parametric margins. For the municipality of
Guarapuava, the Gaussian copula model was selected with semi-parametric and inference
thus with empirical margins.

In addition, Table 7 shows that for municipality of Castro, there are different models in
both inference procedures (SPI and PI). In this case, the Vuong’s procedure was used. The
confidence interval of 95% for 𝐷̂12 , according to equation (B-5) is (−0.5352385; 0.8787669)
with 𝐷̂12 = 0.1717642 . As the interval contains zero, the models cannot be considered
significantly different.

On the other hand, applying the goodness-of-fit test to the data, described in Ap-
pendix B, section B.3, it is observed in Table 8 that the lowest value of Cramer Von Mises
statistic (Sn) is for the model adjusted by the semi-parametric inference (SPI). Furthermore,
at 0.05 of significance level, one can consider the non-rejection of the null hypothesis in the
case of semi-parametric inference. Therefore, the Gaussian copula model fits the data better.

Table 9 summarizes the selected models for the different municipalities.
The next step is to calculate the revenue insurance premium rates using the selected

models and compare the results with the bivariate normal distribution, which is widely used
by the insurance market.

Table 8. Results of the fit test to the model for the municipality of Castro × Price by SPI and PI.

Inference Sn 𝛿 p-value

Semi-parametric (EM) 0.058886 -0.0767 0.05445
Parametric (PM) 0.059819 -0.24817 0.03247

Table 9. Summary of the models selected for the different municipalities by SPI and PI.

Municipalities× Price Castro Guarapuava Toledo Cascavel
Model of Copula Gaussian (SPI) Gaussian (SPI) AMH (PI) AMH (PI)
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5. Revenue Insurance Premium Rate

At the beginning of the insurance contract, the producer chooses the coverage level (CL).
Assuming that the producer can choose between 60 to 80% coverage of guaranteed revenues
𝐹𝑔 = 𝑋𝑔𝑌𝑔 , if, at the harvest the yield 𝑋 obtained is less than the insured yield 𝑋𝑔 or the
price obtained 𝑌 is lower than the insured price 𝑌𝑔 in the contract, the insured receives a
compensation.

Table 10 presents pure rates (PR) calculated according to equation (1), using the chosen
copulas and bivariate normal distribution for all municipalities. For the municipalities of
Castro and Cascavel, the revenue insurance rate calculated by Bivariate Normal distribution
underestimates the rates when compared with the copulas, for all coverage levels. In
addition, for Guarapuava, the Bivariate Normal distribution rate is also underestimated
when compared with copula for coverage levels of up to 75%. This underestimation of the
premium rate may lead to serious losses for insurers, since it considers a lower risk than
should be taken into account.

For the municipality of Toledo, the revenue premium rate calculated by Normal distri-
bution underestimates up to 65% of CL and overestimates 70% from CL, when compared
with the AMH copula. For the municipalities of Guarapuava and Toledo with 80% coverage
level, the Bivariate Normal distribution overestimates the premium rate compared to copula.
Overestimation of the rate may hinder the widespread use of crop insurance in the Brazilian
territory, in addition attract producers with higher risk profile, increasing adverse selection
problem.

According to Brisolara (2013), the pure premium rate represents the intrinsic business
risk, without including any load (additional costs). To compare it with the rates offered by
the Brazilian insurance companies, it is necessary to load it with average market parame-
ters concerning the technical margin (20 %), administrative expenses (20%), commercial
expenses (10%) and profit margin of the insurer (10%). Thus, the commercial rate (CR) is

Table 10. Pure Rates for Revenue Insurance Premium using Selected Copula and Normal Distribution
for all municipalities.

Toledo× price Cascavel× price

CL AMH Copula (PM) Normal Bivariate AMH Copula (PM) Normal Bivariate

60% 3.43 2.03 6.10 0.48
65% 4.36 4.03 7.73 1.52
70% 5.41 7.16 9.54 3.26
75% 6.56 11.21 11.54 5.89
80% 7.83 15.71 13.75 10.11

Guarapuava× price Castro× price

CL Gaussian Copula(EM) Normal Bivariate Gaussian Copula(EM) Normal Bivariate

60% 2.52 0.020 4.06 6.3 × 10−6

65% 3.32 0.135 5.10 1.2 × 10−4

70% 4.23 0.710 6.22 0.0048
75% 5.25 2.713 7.45 0.1070
80% 6.40 8.589 8.78 1.0915
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calculated as follows:
CR = PR × 1.2

1 − (0.1 + 0.2 + 0.1)
.

The average commercial rates of revenue insurance premium using Bivariate Normal
distribution copula, and the rates of the insurance company for coverage levels of 60–69%
and 70–79% are presented in Table 11.

The rates calculated in this study are higher than those applied in the insurance market.
For example, considering the municipality of Toledo with LC 60–69% and 70–79%, the rate
of insurance company A is equivalent to 50.64% and 29.84% of the rate calculated by the
AMH copula, respectively.

In the case of the municipality of Castro, the difference is even greater. The average
commercial rates of the company A are equivalent, respectively, to 56.73% and 38.29% of
the rate calculated by the Gaussian copula.

Therefore, there is an underestimation of the premium rate for part of the insurance
company, which may result in large losses, because it considers a lower risk than should be
taken into account.

On the other hand, according to MAPA (2017), 93.30% of revenue insurance policies
for the soybean crop in Brazil are sold by the insurance company A, which offers almost
exclusively this type of insurance and coverage in all regions of Brazil (spreading risks). This
allows the company to decrease the insurance rate in regions with higher risk, as is the case
of the southern region in Brazil.

This gap between the rates applied on the market and those calculated in this study
could be explained by the fact that this insurance type is relatively recent in the Brazilian
market. This means that there is a lack of studies on which actuarial procedures should be
used to price this type of risk may have led the insurer to adopt a subjective procedure in
pricing rates.

Table 11. Average Commercial Rates (%) of Revenue Insurance Premium using the selected copula,
Normal Distribution and insurance company A.

Level Coverage

Municipalities Model 60–69% 70–79%

Toledo× price
AMH Copula (PM) 12.351 19.032
Normal Bivariate 6.164 19.747

Insurer A 6.26 5.68

Cascavel× price
AMH Copula (MP) 13.838 21.088
Normal Bivariate 2.004 9.157

Insurer A 5.52

Guarapuava× price
AMH Copula (EM) 5.772 9.491
Normal Bivariate 0.039 1.621

Insurer A 4.85

Castro× price
Gaussian Copula(EM) 9.166 13.684
Normal Bivariate 1.268 × 10−4 0.1117

Insurer A 5.20 5.24
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6. Conclusions

In this work, alternative approaches were proposed to calculate revenue insurance premium
rates using parametric copulas with parametric marginal and empirical marginal distribu-
tions. These methods were applied to soybean yield data from the municipalities of Toledo,
Cascavel, Guarapuava and Castro of Parana State and nominal monthly prices received by
producers in Parana State. It is concluded that the parametric models that best fit the yield
and price series of all municipalities were the OLLN and Skew-t models, respectively.

In addition, the copula that best represents the dependency structure between the vari-
ables for the municipalities of Cascavel and Toledo is the AMH copula. For the municipality
of Guarapuava and Castro, the Gaussian was the copula selected with empirical margins.

For the municipalities of Castro and Cascavel, considering all coverage levels, the
revenue insurance rate calculated by Bivariate Normal distribution underestimates the
rates when compared with copulas. For the municipality of Guarapuava, the Bivariate
Normal distribution rate is also underestimated when compared to the copulas for coverage
levels up to 75%. For the municipality of Toledo, the revenue insurance rate calculated by
Normal distribution underestimates up to 65% of NC and overestimates 70% from CL when
compared with the AMH copula.

The underestimation of the premium rate could lead to serious losses to insurers,
once it considers a lower risk than should be taken into account. The overestimation of
the rate, in turn, may hinder the widespread use of this insurance type in the Brazilian
territory, attracting producers with higher risk profile, which increases the problem of
adverse selection.

In addition, the average commercial rates calculated in this study were much higher
than those applied by the insurance company A. This gap may be explained because of the
overestimation of the additional costs, which is a confidential information and varies by
insurance companies. One might suggests there is a commercial practice such as tie-in sales
by the insurer, but is not a common practice. Another possible justification relies on the
fact that the insurance companies diversify their portfolio in different regions and products
resulting in lower rates than those found in this study. In others words, when considering
the technical margin, commercial and administrative expenses, and profit margin of the
insurance company used in this work, we might have overrated the additional costs, leading
to a higher premium rate. Furthermore, this insurance type is relatively recent in Brazil and
thus there are very few actuarial studies and procedures defined for its pricing, leading the
insurance company to adopt a subjective and simpler procedures for pricing its rates.

Further studies should be considered to better reflect the risk and the insurance
premium rate and investigate the structure of three dimensional dependency of yield, prices
of futures contracts traded at the Chicago Mercantile Exchange (CME) and the exchange
rates, since most Brazilian soybean harvest is exported and traded at the CME.
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Appendix A. Trend in Yield and Prices Series
Between 1980 and 2015, a decreasing trend in prices and an increasing yield data are
observed. The latter is due to great advances in technologies used in crops. In addition, it
is also expected temporal dependency and non-constant variance over time. Thus, before
adjusting any probabilistic model for the series, it is necessary to use statistical techniques to
make the data bias-free, independent and homoscedastic. To fix the series in terms of bias,
the procedure approached in Gallagher (1987) was used. This procedure estimates initially a
linear model between yield and time, given by 𝑦𝑡 = 𝛼 + 𝛽𝑇 + 𝛾𝑇2 + 𝑒𝑡 , where 𝑒𝑡 ∼ 𝒩(𝜇, 𝜎),
𝑦𝑡 is the yield or price vector, 𝑇 is the time vector, 𝛼, 𝛽 and 𝛾 are the regression parameters.
It is used the residual regression ̂𝑒𝑡 , estimation of the last observation of the adjusted model
̂𝑦2015 and the bias is removed, according to this equation: ̃𝑦𝑡 = ̂𝑦2015(1 + ̂𝑒𝑡/ ̂𝑦𝑡). To check
temporal dependency, it was applied the test proposed by Ljung and Box (1978), where
the null hypothesis is that there is independency in the series. In addition, to check the
homoscedasticity of variances, the test of Ljung and Box (1978) was applied to the squared
series.

Appendix B. Copulas
This theory becomes attractive, as copulas cover a wide range of dependency structures and
are able to model completely the dependency data structure. The copula function is one of
the most useful tools to deal with multivariate distributions given or known the marginal
univariates. Given a joint distribution function 𝐻 with the continuous margins 𝐹 and 𝐺, as
in the Sklar theorem, and easy to build the corresponding copula:

𝐶(𝑢, 𝑣) = 𝐻(𝐹−1(𝑢), 𝐺−1(𝑣)), (B-1)

where 𝐹−1 and 𝐺−1 mean, respectively, the generalized inverse of 𝐹 and 𝐺, that is, 𝐹−1(𝑢) =
sup𝑧{𝐹(𝑧) ≤ 𝑢} and 𝐺−1(𝑣) = sup𝑧{𝐺(𝑧) ≤ 𝑣}.

If 𝑋 and 𝑌 are continuous random variables with distribution function defined above,
then 𝐶 is a function of joint distribution with random variables 𝑈 = 𝐹(𝑋) and 𝑉 =
𝐺(𝑌), which is obtained by “probability integral transform” of which 𝑈, 𝑉 feature uniform
distribution 𝑈(0, 1).

The density function of copula 𝑐 bivariate can be defined by

𝑐(𝐹(𝑥), 𝐺(𝑦)) = 𝜕
𝜕𝑥𝜕𝑦

𝐶(𝐹(𝑥), 𝐺(𝑦))

if the derivative exists. From the Sklar theorem, the joint density of 𝑋 and 𝑌 is given by
𝑓(𝑥, 𝑦) = 𝑐(𝐹(𝑥), 𝐺(𝑦))𝑓(𝑥)𝑔(𝑦), where 𝑓 and 𝑔 are the probability density functions of 𝐹
and 𝐺, respectively. Therefore, any joint distribution function that meets the requirements
of the theorem has a copula representation. There are several examples of copulas, such
as normal or Gaussian copula, copula 𝑡 and Archimedean copulas. Most depend on one
or more parameters, called 𝛿, which characterizes the dependence between the variables
(Cherubini, Luciano, & Vecchiato, 2004). For example:

Gaussian Copula: is the copula of a bivariate normal distribution with correlation parame-
ter 𝛿, given by

𝐶𝑁(𝑢, 𝑣; 𝛿) = Φ(Φ−1(𝑢),Φ−1(𝑣)) =∫
Φ−1(𝑢)

−∞
∫

Φ−1(𝑣)

−∞

1

2𝜋√1 − 𝛿2
𝑒
− 𝑥2−2𝑥𝑦𝛿+𝑦2

2(1−𝛿2) 𝑑𝑥𝑑𝑦
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where Φ is the joint bivariate normal distribution function with correlation coeffi-
cient 𝛿.

Copula t: 𝐶𝜈Σ(𝑢, 𝑣) = 𝑡𝜈,𝟎,Σ(𝑡−1𝜈 (𝑢), 𝑡−1𝜈 (𝑣)) where 𝑡𝜈,𝟎,Σ is the t distribution function of 𝟎
and average bivariate correlation matrix Σ, and 𝑡𝜈 is the univariate t-distribution
function, with 𝜈 degrees of freedom.

Archimedean Copulas: may be written as 𝐶(𝑢, 𝑣) = 𝜙−1(𝜙(𝑢) + 𝜙(𝑣)) for a function
𝜙∶ [0, 1] → ℝ+ , continuous, strictly descending, such that 𝜙(1) = 0. The function
𝜙(⋅) is called the copula generating function 𝐶(𝑢, 𝑣).

The Archimedean copulas are mostly used in financial studies, since they encompass
multiple dependency structures (symmetrical, asymmetrical with dependency on tails).
The most used are: Gumbel Copula, Clayton and Frank. According to Morettin (2008),
parametric, nonparametric and semi-parametric estimators can be used to estimate copula 𝐶.
In the first case, the maximum likelihood estimators are used. In the second case, empirical
copulas (based on ranks) and smoothed estimators (via kernel, wavelets) are used. In the
third case, the Pseudo maximum likelihood estimators are used.

B.1 Parametric Estimators of the Likelihood Function

Given a sample (𝑋𝑖, 𝑌𝑖), 𝑖 = 1, … , 𝑛 of 𝐻 bivariate with marginal distributions 𝐹 and 𝐺 of
equation (B-4), the joint density is given by

𝑓(𝑥𝑖, 𝑦𝑖, 𝜂) = 𝑐(𝐹(𝑥𝑖, 𝛼1), 𝐺(𝑦𝑖, 𝛼2))𝑓(𝑥𝑖, 𝛼1)𝑔(𝑦𝑖, 𝛼2), (B-2)

where 𝛼1 contains 𝐹 parameters, 𝛼2 contains 𝐺 parameters, and 𝜃 contains parameters for
𝑐. Given 𝜂 = (𝛼1, 𝛼2, 𝜃) the log-likelihood is given by

𝑙(𝑥, 𝑦, 𝜂) =
𝑛

∑
𝑖=1

ln 𝑐(𝐹(𝑥𝑖, 𝛼1), 𝐺(𝑦𝑖, 𝛼2); 𝜃) +
𝑛

∑
𝑖=1

ln 𝑓1(𝑥𝑖, 𝛼1) +
𝑛

∑
𝑖=1

ln 𝑓2(𝑦𝑖, 𝛼2). (B-3)

The maximum-likelihood estimators (MLE) are obtained by maximizing this function.
Generally, this can be a difficult task when there are many parameters, that is, in multivariate
cases 𝑛 > 5 and when the margins are more complex. Then, the literature recommends a
two-stage procedure, called “inference function for margins (IFM)” in which estimation is
divided into two parts:

• In step 1, estimators of the parameters of the margins are obtained,

𝛼̂𝑖 = arg max
𝑛

∑
𝑖=1

ln 𝑓𝑖(𝑥𝑖, 𝛼𝑖), 𝑖 = 1.2.

• In step 2, copula estimators are obtained,

̂𝜃 = arg max
𝑛

∑
𝑖=1

ln 𝑐(𝐹(𝑥𝑖, 𝛼̂1), 𝐺(𝑦𝑖, 𝛼̂2)).

According to Joe and Xu (1996), this procedure leads to consistent and asymptotically
normal estimators.
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B.2 PseudoMaximum Likelihood Estimators – Semi-Parametric Method

In this case, 𝐹 and 𝐺 are estimated using nonparametric models, empirical distribution
function (e.d.f.) or a combination of e.d.f. and distribution adjustment of extreme values
to the distribution tails. To find the pseudo maximum likelihood estimators, proposed by
Genest, Ghoudi, and Rivest (1995), the following steps are followed:

• Obtain pseudo samples for copula (𝑢̂𝑖, ̂𝑣𝑖) = ( ̂𝐹(𝑥𝑖), ̂𝐺(𝑦𝑖)), where

̂𝐹𝑗(𝑥𝑖) = 𝑛−1[
𝑛

∑
𝑖=1

𝐼(𝑥𝑖𝑗 ≤ 𝑦) − 0.5], for 𝑖 = 1, … , 𝑛.

• Find log-likelihood and maximize in relation to 𝜃 by numerical methods:

𝑙(𝜃, 𝑢̂, ̂𝑣) =
𝑛

∑
𝑖=1

ln 𝑐(𝑢̂𝑖, ̂𝑣𝑖; 𝜃). (B-4)

B.3 Goodness-of-fit Tests

The Goodness-of-fit procedures are used to identify the best existing parametric copula to
fit the data. The data adjustment procedure described in this subsection is based on the
work of Berg (2009); Genest et al. (2009); Kojadinovic, Yan, and Holmes (2011). Given a set
of random and independent variables 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛), it is assumed that the variables
were generated by a joint function, 𝐻(𝑥) = 𝐶[𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)], ∀𝑥 ∈ ℝ𝑛 , where
𝐶[⋅] describes an unknown parametric copula. For example, it is implied that a given set of
observations was generated by a Gaussian copula, described as follows:

𝐻0 ∶ 𝐶 ∈ 𝐶𝜃, 𝐻𝑎 ∶ 𝐶 ∉ 𝐶𝜃,

where 𝐶𝜃 represents a family of parametric copulas whose parameter is 𝜃, for example,
Gaussian copula.

According to Joe (2014), data adjustment procedures are based on Rosenblatt transform,
Cramer–vonMises statistics or Kolmogorov–Smirnov and other empirical density functions,
in order to involve a measure of overall distance between the supposed model and the
empirical density. These procedures may not be sensitive to the tail behavior.

Among the various methods of performing tests related to this type of hypothesis,
the Cramer–von Mises test stands out, because it was more robust with more evidence of
effectiveness, according to the works of Berg (2009); Genest et al. (2009); Kojadinovic et
al. (2011). Therefore, it is the empirical process ℂ𝑛(𝑢) = √𝑛{𝐶𝑛(𝑢) − 𝐶𝜃𝑛(𝑢)}, 𝑢 ∈ [0, 1]𝑑 ,
where 𝐶𝑛 is the empirical copula on the sample, and 𝐶𝜃𝑛 is copula estimated under 𝐻0 . Thus,
the Cramer–von Mises statistic is given by:

𝑆𝑛 =∫
[0,1]𝑑

ℂ𝑛(𝑢)2𝑑𝐶𝑛(𝑢) =
𝑛

∑
𝑖=1
[𝐶𝑛(𝑈𝑖) − 𝐶𝜃𝑛(𝑈𝑖)]

2.

An approach for the p-value for 𝑆𝑛 can be obtained by using parametric bootstrap
methods. However, this approach is extremely computationally expensive, because each
iteration requires the generation of random number from the copula and the estimation
of parameters of this copula. Therefore, as the sample size increases, the application of
parametric bootstrap-based test becomes prohibitive. An approach based on the Central
Limit Theorem is proposed to reduce the high computational cost.
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B.4 Vuong’s procedure for comparison of copula parametric models

In order to compare the best copula parametric model adjusted to the data, the Vuong’s
procedure proposed by Vuong (1989) is described. This procedure uses the Kullback–Leibler
Information Criterion to measure the model proximity to the truth and statistics based on
simple likelihood ratio are used to test the null hypothesis that the competing models are
also close to the real data generator process against the alternative hypothesis that a model
is closer.

Tests are directional and are successively derived for the cases in which the competing
models are not nested, overlapping or nested and if both, one or none of them is incorrectly
specified. As a prerequisite, the asymptotic distribution of likelihood ratio statistic is
completely characterized under conditions that are more general. It is a weighted sum of
Chi-square or a normal distribution, depending on whether the distributions in competitive
models closer to the truth are observed identical. This test is also proposed for this last
condition.

According to Joe (2014), the Vuong’s procedure can be described as the sample version
of Kullback–Leibler Divergence calculations and sample size to differentiate two models
that could be nested. Therefore, consider two copula densities 𝑓1 = 𝑐1(𝑢, 𝑣; 𝜃) and 𝑓2 =
𝑐2(𝑢, 𝑣; 𝜃) for two bivariate copulas 𝐶1(Θ1) and 𝐶2(Θ2), with respective parameters Θ1
and Θ2 .

The difference of the Kullback–Leibler Divergence of the two copulas from the true
density of copula can be measured for a sample of size 𝑛 and bivariate of sample (𝑢𝑖, 𝑣𝑖) by:

𝐷̂12 = 𝑛−1∑
𝑖
𝐷𝑖 = 𝑛−1(LLR),

where LLR is equal to the log-likelihood ratio is given by 𝐷𝑖 = log(𝑓2(𝑦𝑖; ̂𝜃2)/𝑓1(𝑦𝑖; ̂𝜃1)).
For non-nested or nested models, a large confidence interval o the sample of 95% for

parameter 𝐷̂12 is
𝐷̂12 ± 𝑛−1/2𝜎̂2

12, (B-5)

where the variance of 𝐷12 is given by 𝜎̂2
12 = (𝑛 − 1)−1∑𝑛

𝑖=1(𝐷𝑖 − 𝐷̂12)
2 .

There are also versions with LLR adjusted by the Akaike information criteria (AIC) or
based on Bayes information criterion (BIC), and are respectively Vuong (1989):

𝐷̂12 − 𝑛−1[dim(Θ2) − dim(Θ1)] ± 1.96𝑛−1/2𝜎̂2
12, (B-6a)

𝐷̂12 −
1
2
𝑛−1 log(𝑛)[dim(Θ2) − dim(Θ1)] ± 1.96𝑛−1/2𝜎̂2

12. (B-6b)

If the intervals described in equations (B-5), (B-6a) or (B-6b) contain 0, models 𝑀1 and 𝑀2
are not considered significantly different. If the interval does not contain 0, then, the model
𝑀1 or 𝑀2 is the best fit depending on whether the interval is completely below 0 or above 0,
respectively.
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