Acessibilidade / Reportar erro

Mechanized harvesting of conilon coffee plants using a self-propelled machine1 1 Research developed at São Mateus, Espírito Santo, Brazil

Colheita mecanizada de plantas de café conilon utilizando uma máquina automotriz

HIGHLIGHTS:

The increase in speed from 800 to 1600 m h-1 reduced harvesting efficiency from 79.3 to 55.0% and defoliation by 52.0%.

Conilon with two orthotropic branches and the removal of part of plagiotropic branches increased harvesting efficiency.

Mechanized harvesting of Coffea canephora reduced harvesting costs by over 79% compared to manual harvesting.

ABSTRACT

Coffee is one of the main commodities of global agribusiness and of outstanding economic and social relevance for Brazil. The lack of labor and its high cost are factors that worry coffee producers, mainly during the conilon coffee harvesting, which is performed manually. This study aimed to evaluate the efficiency of a self-propelled harvester under different conditions of machine adjustment and conduction of the Coffea canephora crop and measure its influence on the cost of harvesting compared to manual harvesting. Harvesting speed (800 to 1600 m h-1), rotation of the vibrating rod cylinder (1.0 and 1.5 RPM), number of orthotropic branches (one, two, and three), and plants with and without plagiotropic branches in the lower third were assessed. The increase in harvesting speed reduced the efficiencies of stripping and harvesting and defoliation. Increasing from one to three orthotropic branches per plant increased harvesting and stripping efficiencies, fruit loss on the ground, defoliation, and reduced pending load. The management without plagiotropic branches showed higher harvesting efficiency, lower loss on the ground, and lower defoliation. Harvesting speeds from 800 to 1600 m h-1 reduced the total and unit costs up to 62% compared to manual harvesting. Increasing harvesting efficiency above 70% has reduced harvesting costs by up to 79% compared to manual harvesting.

Key words:
Coffea canephora; agricultural mechanization; coffee stripping; fruit loss on the ground; harvesting costs

Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com