ESQUEMA FLUX-SPLINE APLICADO A PROBLEMAS DIFUSIVOS TRIDIMENSIONAIS EM REGIME PERMANENTE

Paulo César Oliveira¹

RESUMO

Este trabalho teve por finalidade apresentar um esquema de discretização mais eficiente que o tradicional esquema de diferenças centrais, denominado Flux-Spline, a fim de simular, numericamente, problemas tridimensionais governados por difusão. A eficiência do esquema proposto foi avaliada por meio da resolução de problemas-teste com solução analítica conhecida. Verificou-se que tal esquema possui características adequadas de precisão e, portanto, uma opção recomendável para a solução de problemas difusivos tridimensionais.

Palavras-chave: difusão, volumes finitos, transferência de calor, métodos numéricos

FLUX-SPLINE SCHEME APPLIED TO STEADY STATE TRIDIMENSIONAL DIFFUSIVE PROBLEMS

ABSTRACT

This objective of this research was to present a discretization scheme more efficient than the traditional central difference scheme, called Flux-Spline, in order to simulate tridimensional problems governed by diffusion. The efficiency of the proposed scheme was evaluated by means of the resolution of two test problems with a known analytical solution. The results showed a discretization scheme with adequate characteristics of accuracy that is, therefore, a recommendable option for the solution of tridimensional diffusive problems.

Key words: diffusion, finite volumes, heat transfer, numerical methods

INTRODUÇÃO

Processos físicos governados por difusão pura aparecem em fenômenos de interesse prático, como escoamento em meios porosos, tais como solos agrícolas e materiais biológicos, no processamento de alimentos, na condução de calor em sólidos, em processos metalúrgicos contendo mudanças de fase, nos escoamentos potenciais ou completamente desenvolvidos em dutos, na difusão e transferência de massa.

Embora em alguns casos particulares se conheça uma solução analítica para as equações diferenciais parciais que

governam tais fenômenos, a presença de geometrias não regulares e a ausência de linearidade devido à variação das propriedades do meio ou a existência de condições de contorno particulares, impossibilitam a solução desses problemas com os métodos analíticos atualmente conhecidos, tornando obrigatória a utilização de métodos numéricos.

Exemplos de aplicação do método de volumes finitos, usando-se o tradicional esquema de discretização em problemas bidimensionais de secagem, são encontrados no trabalho de França & Fortes (1991) que trata da simulação bidimensional de secagem de milho em leito fixo, e em Oliveira et al. (1991) que

Professor, Doutor, Departamento de Engenharia Rural, Centro Agropecuário, UFES, CP 16, CEP 29500 - 000, Alegre, ES, Fone: (027) 552 1400 - Ramal: 233, Fax: (027) 552 2622, E-mail:caufes@npd.ufes.br

328 P.C. OLIVEIRA

abordaram a secagem de milho acoplada à convecção natural em uma das faces do silo.

Com o objetivo de se reduzir o esforço computacional, pode ser empregado, nesses casos, um esquema de discretização denominado Flux-Spline que, como mostram os trabalhos de Varejão (1979), Nieckele (1985), Varejão et al. (1991a), Varejão et al. (1991b), e Oliveira (1997) tem desempenho superior aos esquemas tradicionais utilizados por Patankar (1980) para problemas difusivos e convectivos bidimensionais em regime permanente. Este trabalho pretende mostrar que tal superioridade se mantém para casos difusivos tridimensionais, podendo-se obter resultados adequados em termos de erro, com malhas relativamente grosseiras.

MATERIAL E MÉTODOS

Desenvolvimento do Esquema Flux-Spline

Nesta seção, o esquema será detalhado para o caso unidimensional em regime permanente, a partir do qual será gerada a formulação multidimensional. A discretização é baseada sobre uma formulação de volumes de controle.

Difusão Unidimensional em Regime Permanente

A equação de governo para problemas difusivos tridimensionais em regime permanente é:

$$\frac{\partial Jx}{\partial x} + \frac{\partial Jy}{\partial y} + \frac{\partial Jz}{\partial z} = S^{\phi} \tag{1}$$

em que J é o fluxo difusivo nas direções x, y e z e Sf o termo fonte.

Para um caso unidimensional:

$$\frac{\partial J}{\partial r} = S^{\phi} \tag{2}$$

O termo fonte S^{f} é linearizado ao longo do domínio da variável dependente f, na forma $S^{f} = S_{c} + S_{p}$. f (Patankar, 1980) sendo S_{c} a parte constante do termo fonte e S_{p} função da variável dependente f. O fluxo difusivo J, na direção x, é dado por:

$$J = -\mathbf{K} \cdot \frac{\partial \phi}{\partial x} \tag{3}$$

em que K representa o coeficiente de difusão, podendo ser ou não função da variável dependente *f*.

Integrando a equação de governo (2) sob as hipóteses de que o termo fonte é distribuído uniformemente em cada volume de controle de comprimento Dx_ie que os fluxos são distribuídos uniformemente nas interfaces dos volumes de controle, como mostrado na Figura 1 obtém-se, pelo método dos volumes finitos, a expressão (4):

$$J_{i+1} - J_i = (Sc_i + Sp_i \cdot \phi_i) \cdot \Delta x_i \tag{4}$$

A variável dependente f_i a ser calculada quando da simulação, é posicionada no centro do volume de controle correspondente, em $x_i = Dx_i/2$. O esquema Flux-Spline assume que o fluxo em cada volume de controle varia linearmente, enquanto no esquema tradicional o fluxo é assumido, ou seja, $J_i = A_i \cdot x_i + B_i$ sendo $A_i = (J_{i+1} - J_i)/Dx_i$ e $B_i = J_i$. Substituindose esses valores na Eq. (3) e, após integração, impondo-se a

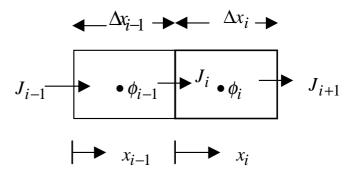


Figura 1. Discretização para volumes finitos

condição $f(x_i = Dx_i/2) = f_i$ no volume de controle i, obtém-se:

$$\phi = \phi_i - \frac{(J_{i+1} - J_i)}{2} \cdot \frac{\Delta x_i}{K_i} \left(\frac{x_i^2}{\Delta x_i^2} - \frac{1}{4} \right) - J_i \cdot \frac{\Delta x_i}{K_i} \cdot \left(\frac{x_i}{\Delta x_i} - \frac{1}{2} \right)$$
 (5)

Note-se que $(J_{i+1} - J_i)$ aparece no termo quadrático da Eq. (5) num caso unidimensional, de acordo com a Eq. (4) representando a influência do termo fonte em cada volume de controle. Para um caso multidimensional se incluiria, também, a influência das outras direções pois, usando-se Eq. (1) mostra-se que:

$$\frac{\partial Jx}{\partial x} = S^{\phi} - \left(\frac{\partial Jy}{\partial y} + \frac{\partial Jz}{\partial z}\right) \tag{6}$$

Assim, embora o perfil interpolante tenha sido derivado a partir da hipótese de unidimensionalidade, casos multidimensionais podem ser tratados de forma adequada e eficiente, devido a esta característica particular do esquema Flux-Spline.

Dois volumes de controle adjacentes, como mostrado na Figura 1 possuem o mesmo valor de f na interface comum. Assim, com $f(x_i = 0) = f(x_{i-1} = Dx_{i-1})$ por meio da Eq. (5) obtém-se a equação para os fluxos na direção coordenada:

$$J_i = Jhat_i + DJ_i \cdot (\phi_{i-1} - \phi_i) \tag{7}$$

em que:

$$DJ_{i} = \frac{2.0}{(\frac{\Delta x_{i-1}}{K_{i-1}} + \frac{\Delta x_{i}}{K_{i}})}$$
(8)

$$Jhat_i = BJ_i \cdot (J_i - J_{i+1}) + CJ_i \cdot (J_i - J_{i-1})$$
 (9)

$$BJ_i = DJ_i \cdot \frac{\Delta x_i}{K_i} \cdot \frac{1}{8}$$
 e $CJ_i = DJ_i \cdot \frac{\Delta x_{i-1}}{K_{i-1}} \cdot \frac{1}{8}$ (10)

Note-se que, como os fluxos são armazenados nas interfaces e assumidos com variação linear dentro dos volumes de controle, é assegurada a continuidade da derivada ##/#w ao longo de todo o domínio. A Eq. (7) quando substituída na equação de governo integrada (4) fornece a equação de discretização da variável dependente, representada por:

$$AP_i \cdot \phi_i = AIM_i \cdot \phi_{i-1} + AIP_{i+1} \cdot \phi_{i+1} + Sc_i \cdot \Delta x_i + Ssp_i \tag{11}$$

em que,

$$AIM_i = DJ_{i+1}$$
 e $AIP_i = DJ_i$ (12)

$$AP_i = AIM_i + AIP_i - Sp_i \cdot \Delta x_i \tag{13}$$

$$Ssp_i = (Jhat_i - Jhat_{i+1}) \tag{14}$$

O método de solução empregado consiste em arbitrar, inicialmente, uma distribuição para a variável dependente e calcular os fluxos que são então usados para obter-se o termo fonte adicional Ssp, característico do esquema Flux-Spline. O sistema de equações algébricas para a variável dependente forma uma matriz tridiagonal, que é então resolvida usando-se o algoritmo TDMA (Tridiagonal-Matrix Algorithm) como mostrado em Patankar (1980). Com esses valores retorna-se ao cálculo dos fluxos até a obtenção da convergência da variável dependente e um resíduo aceitável para a equação de governo. O erro percentual cometido na simulação é definido para cada ponto do domínio, na forma:

$$Erro = 100 \cdot abs \left(1 - \frac{\phi_{num}}{\phi_{exato}} \right)$$
 (15)

em que f_{num} é o valor da variável dependente obtida pelo procedimento numérico e f_{exato} o valor obtido pelo procedimento analítico. Será usado, para a construção do gráfico de erro, o valor do máximo erro cometido no domínio de cálculo como, função de uma malha regular com n volumes de controle em cada direção coordenada, de forma a comparar a ordem de precisão dos esquemas de discretização.

Difusão Multidimensional

Integrando-se, de acordo com o método de volumes finitos, a Eq. (1) e aplicando, então, a expressão desenvolvida para o fluxo na direção x, às outras direções coordenadas, obtém-se as equações de discretização para os fluxos em x, y e z e para a variável dependente. As equações são:

$$AP_{i,j,k} \cdot \phi_{i,j,k} = \sum Anb_{i,j,k} \cdot \phi nb_{i,j,k} + Sc_{i,j,k} \cdot \Delta x_i \cdot \Delta y_j \cdot \Delta z_k + Ssp_{i,j,k}$$
 (16)

em que,

$$AP_{i,j,k} = AIM_{i,j,k} + AIP_{i,j,k} + AJM_{i,j,k} + AJP_{i,j,k} + AkM_{i,j,k} + AkP_{i,j,k} - SP_{i,j,k} \cdot \Delta x_i \cdot \Delta y_j \cdot \Delta z_k$$
(17)

$$\sum Anb_{i,j,k} \cdot \phi nb_{i,j,k} = AIM_{i,j,k} \cdot \phi_{i-1,j,k} + AIP_{i,j,k} \cdot \phi_{i+1,j,k} + AJM_{i,j,k} \cdot \phi_{i,j-1,k} + AJP_{i,j,k} \cdot \phi_{i,j+1,k} + AKM_{i,j,k} \cdot \phi_{i,j,k-1} + AKP_{i,j,k} \cdot \phi_{i,j,k+1}$$
(18)

$$Ssp_{i,j,k} = \left(JhatX_{i,j,k} - JhatX_{i+1,j,k}\right) \cdot \Delta y_j \cdot \Delta z_k + \left(JhatY_{i,j,k} - JhatY_{i,j+1,k}\right) \cdot \Delta x_i \cdot \Delta z_k + \left(JhatZ_{i,j,k} - JhatZ_{i,j,k+1}\right) \cdot \Delta x_i \cdot \Delta y_j$$
(19)

$$AIM_{i,j,k} = DJX_{i,j,k} \cdot \Delta y_j \cdot \Delta z_k \tag{20}$$

$$AIP_{i,j,k} = DJX_{i+1,j,k} \cdot \Delta y_j \cdot \Delta z_k$$
 (21)

$$AJM_{i,j,k} = DJY_{i,j,k} \cdot \Delta x_i \cdot \Delta z_k \tag{22}$$

$$AJP_{i,j,k} = DJY_{i,j+1,k} \cdot \Delta x_i \cdot \Delta z_k \tag{23}$$

$$AKM_{i,j,k} = DJZ_{i,j,k} \cdot \Delta x_i \cdot \Delta y_j \tag{24}$$

$$AKP_{i,j,k} = DJZ_{i,j,k+1} \cdot \Delta x_i \cdot \Delta y_j \tag{25}$$

As expressões para os fluxos *JX*, *JY*, *JZ*, os pseudo-fluxos *JhatX*, *JhatY* e *JhatZ* e os demais coeficientes, *DJX*, *BJX*, *CJX*, *DJY*, *BJY*, *CJY*, *DJZ*, *BJZ* e *CJZ*, são análogas àquelas deduzidas para o caso unidimensional. O método de solução para casos tridimensionais é similar ao utilizado no caso unidimensional, sendo que na resolução do sistema de equações algébricas é usado o método Line-by-Line, descrito por Patankar (1980) em cada plano coordenado nas direções x, y e z.

RESULTADOS E DISCUSSÃO

Aplicação do esquema a problemas-teste

A distribuição da variável dependente *f*, num domínio adimensional entre zero e um para todos os eixos coordenados, com o coeficiente de difusão K assumido como constante, obedece às seguintes distribuições adimensionais:

Caso 1:

$$F1(X,Y,Z) = \exp(X) \cdot \exp(Y) \cdot \exp(Z) \tag{26}$$

Substituindo-se essa distribuição na equação de governo (1) obtém-se a distribuição dos termos-fonte que, para este caso, é fornecida pela expressão:

$$S^{F1} = -3 \cdot F1 \tag{27}$$

Caso 2:

$$F2(X,Y,Z) = sin\left(\frac{\pi \cdot X}{2}\right) \cdot \cos\left(\frac{\pi \cdot Y}{2}\right) \cdot \exp\left(Z\right)$$
 (28)

Da mesma forma, obtém-se a distribuição dos termos-fonte que, neste caso, é:

$$S^{F2} = \left(\frac{\pi^2}{2} - 1\right) \cdot F2 \tag{29}$$

A curva representando o erro percentual máximo, função de uma malha com N volumes de controle, em cada direção, para os dois casos, está plotada na Figura 2.

Como mostrado graficamente para os casos tratados, o esquema Flux-Spline necessita para determinado nível de erro, de malhas menos refinadas que o tradicional esquema de diferenças centrais. A razão disto, é o perfil interpolante característico do esquema descrito pela Eq. (5) cujo termo quadrático, que contém a variação do fluxo ao longo do volume de controle promove, ao mesmo tempo, o tratamento do termo fonte e da influência das outras dimensões. Esta característica fornece ao esquema maior precisão, possibilitando menor esforço computacional ao se simular problemas onde seja necessário abordar o comportamento transiente dos fenômenos. Para problemas envolvendo escoamentos como os que ocorrem no transporte de calor e massa durante a secagem e/ou armazenamento de grãos, as equações de governo possuem, além do termo difusivo, termos de transporte convectivo, devido ao campo de velocidades. Assim, o perfil interpolante a ser gerado pelo esquema é mais complexo que o parabólico aqui derivado para difusão pura, sendo composto por uma reta mais um termo exponencial.

330 P.C. OLIVEIRA

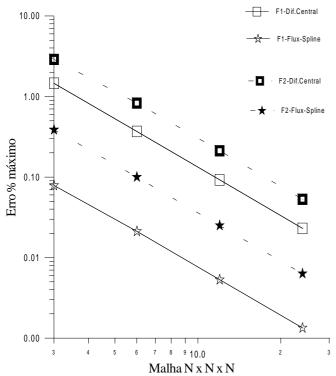


Figura 2. Erro como função da malha

CONCLUSÕES

Com base nas discussões referentes aos resultados obtidos neste trabalho, pode-se concluir que:

- 1. O esquema Flux-Spline mostrou-se, em termos de erro, mais preciso que o tradicional esquema de diferença central, para problemas difusivos tridimensionais em regime permanente.
- 2. Ao se fixar certo nível de erro, a malha empregada para alcançá-lo utilizando-se o esquema proposto, envolve um número significativamente menor de volumes de controle que o empregado pelo esquema de diferença central.

3. A utilização do esquema Flux-Spline em problemas difusivos tridimensionais transientes, pode ser recomendada com a finalidade de se diminuir o esforço computacional.

REFERÊNCIAS BIBLIOGRÁFICAS

- FRANÇA, A.S.; FORTES, M. Simulação bidimensional de secadores de grãos. In: SIMPÓSIO MINEIRO DE MECÂNICA COMPUTACIONAL, 1991, Belo Horizonte. **Anais...** Belo Horizonte: UFMG, 1991. p.518-527.
- NIECKELE, A.O. **Development and evaluation of numerical** schemes for the solution of convection-diffusion equations. Minnesota, USA: University of Minnesota, 1985, 296p. Ph.D. Thesis.
- OLIVEIRA, L.S.; FORTES, M.; FERREIRA, W.R. Natural drying of a vertical slab of a biological material. In: SIMPÓSIO MINEIRO DE MECÂNICA COMPUTACIONAL, 1991, Belo Horizonte. **Anais...** Belo Horizonte: UFMG, 1991, p.286-294.
- OLIVEIRA, P.C. Esquema FLUX-SPLINE aplicado em cavidades abertas com convecção natural. Campinas: UNICAMP, 1997. 196p. Tese Doutorado
- PATANKAR, S.V. **Numerical heat transfer and fluid flow**. New York: Hemisphere Publishing Corporation, 1980. 197 p.
- VAREJÃO, L.M.C. Flux-Spline method for heat, mass and momentum transfer Minnesota, USA: University of Minnesota, 1979. 235p. Ph. D. Thesis.
- VAREJÃO, L.M.C.; PATANKAR, S.V.; KARKI, K.C. Flux-Spline method for convection-diffusion problems. In: SIMPÓSIO MINEIRO DE MECÂNICA COMPUTACIONAL, 1991, Belo Horizonte. Anais... Belo Horizonte: UFMG, 1991a. p.161-174.
- VAREJÃO, L.M.C.; PATANKAR, S.V.; KARKI, K.C. Flux-Spline method for conduction-type problems. In: SIMPÓSIO MINEIRO DE MECÂNICA COMPUTACIONAL, 1991, Belo Horizonte. **Anais...** Belo Horizonte: UFMG, 1991b. p. 175-184.