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In contrast to the nondegeneracy theorem, we present various scenarios in one-dimensional quantum mechanics
that demonstrate how the Wronskian of two bound-state eigenfunctions with the same energy eigenvalue can be
zero without implying that the eigenfunctions are linearly dependent. It is shown that the nondegeneracy theorem
fails only when the potential makes different bound-state solutions corresponding to the same energy vanish at
the singular point or region of singularity.
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The one-dimensional time-independent Schrödinger
equation [

− ℏ2

2m
d 2

dx2 + V (x)
]
ψ(x) = Eψ(x) (1)

requires continuous eigenfunctions. As a second-order
differential equation, it has two linearly independent
solutions that correspond to the same energy eigenvalue.
However, the occurrence of the two-fold degeneracy is
rare in describing one-dimensional bound states. Indeed,
the absence of degenerate one-dimensional bound states
is ensured by the nondegeneracy theorem (see, e.g. §21
in [1], Theorem 15 in [2], and also Problem 2.42 in [3]
with the proviso that “the potential does not consist of
isolated pieces separated by regions where V = ∞”).
Motivated primarily by justifying the presence of degen-
erate bound states for the one-dimensional hydrogen
atom V (x) = −e2/|x| [4], Loudon revisited the nonde-
generacy theorem and properly concluded that it is not
necessarily valid for a potential with singular points [5].
Since then a lot of controversy surrounds that problem
[6–20]. Recently, the possibility of double degeneracy for
a particle in a box has also been explored [21].

The usual proof of the nondegeneracy theorem con-
siders the Wronskian of two eigenfunctions ψ1 and ψ2
corresponding to the same energy eigenvalue:

W (ψ1(x), ψ2(x)) = ψ1(x)ψ′
2(x) − ψ′

1(x)ψ2(x)
= constant, for all x. (2)

For bound states, because ψ1 and ψ2 vanish for large |x|,
W (ψ1, ψ2) = 0 so

ψ1(x)ψ′
2(x) − ψ′

1(x)ψ2(x) = 0. (3)
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Some authors simply divide (3) by ψ1ψ2, disregarding
the zeros of ψ1 and ψ2, to obtain

ψ′
2(x)

ψ2(x) = ψ′
1(x)

ψ1(x) . (4)

Therefore,∫ x

dζ
ψ′

2(ζ)
ψ2(ζ) =

∫ x

dζ
ψ′

1 (ζ)
ψ1(ζ) + constant. (5)

It follows that

ψ2(x) = Cψ1(x), ∀x, (6)

where C is an arbitrary constant.
Loudon has cast doubt on the validity of (4) by

drawing attention to possible troubles in the regions or
at the points where the eigenfunctions have zeros [5].
To further elaborate on this problem we examine the
behaviour of the eigenfunctions in the vicinity of a
possible singular point x0, where we assume linear
dependence on each side of the point:

ψ2(x) = C>ψ1(x), for x ⩾ x0,

ψ2(x) = C<ψ1(x), for x ⩽ x0.
(7)

We segregate the problem into two classes of eigenfunc-
tions based on the behaviour of ψ1(x0).

• Class I: ψ1(x0) ̸= 0.
For this class, ψ2(x0) is also not equal to zero. As
a result, we have

C> = C< = ψ2(x0)
ψ1 (x0) ̸= 0, (8)

which implies that ψ1 and ψ2 are linearly
dependent functions. To better understand what
happens with the logarithmic derivatives, we
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substitute (7) into (3) and find that ψ′
1 (x0+) −

ψ′
1 (x0−) is indeterminate. Here, ψ1 (x0±)

indicates the limit of ψ1(x) as x approaches x0
from x ≷ x0. By setting ψ′

1 (x0+) = ψ′
1 (x0−) into

(7), we obtain

ψ′
2 (x0+)
ψ2(x0) = ψ′

2 (x0−)
ψ2 (x0) = ψ′

1(x0)
ψ1(x0) , (9)

which states that the logarithmic derivatives are
continuous functions at x0. This always occurs
when the potential is regular at x0. However, if
ψ′

1 (x0+) ̸= ψ′
1 (x0−) then

ψ′
2 (x0+)
ψ2(x0) = ψ′

1 (x0+)
ψ1 (x0)

ψ′
2 (x0−)
ψ2(x0) = ψ′

1 (x0−)
ψ1 (x0) .

(10)

Note that the logarithmic derivative in this last
case can be integrated across x0 as in (5), despite
its jump discontinuity. This scenario typically
occurs when the potential gives a dominant con-
tribution proportional to δ (x− x0) at x0 (see, e.g.
[3, 16, 22]).

• Class II: ψ1(x0) = 0.
In this class, ψ2(x0) = 0 and there is no logical
connection between C> and C< as in Class I.
Furthermore, Eq. (3) does not establish a connec-
tion between the first derivatives of ψ1 and ψ2 at
the right and at the left of x0. The logarithmic
derivative is also meaningless for this class. This
situation, with ψ2 for x > x0 independent of ψ2
for x < x0, arises from an infinite potential at the
right or at the left of x0. Examples of this include
the problem of an infinite double well and also in
the problem of a finite double well as the barrier
width tends to infinity (see, e.g. Problem 2.44 in [3],
Complement GIV in [22], Sec. 6.6 in [23], and also
Sec. 8.3.9 in [24]). Two-fold degenerate spectra also
appear for the potentials proportional to x2 +αx−2

(see, e.g. [25]) and |x|−1+ αx−2 (see, e.g. [26]). For
example, if we have

ψ1(x) ≃ C(x−x0)s (s > 0), for x ≃ x0, (11)

then the two-fold degeneracy can appear if the
potential α|x− x0|−2 dominates at x0 (with s > 1
for α > 0, and 1/2 < s < 1 for α < 0) [26],
a conclusion that differs from that one found in
Ref. [5]. A two-fold degenerate spectrum is also
seen for a Dirac delta potential embedded in a box
in the strong coupling limit [16].

A necessary condition for linear independence of
two functions ψ1 and ψ2 is that the Wronskian
does not vanish. With ψ2 (x) = Cψ1(x) one obtains
W (ψ1, ψ2) = 0 but the converse is not necessarily true.
If W (ψ1, ψ2) = 0 and ψ1 is infinitely differentiable at

x0 with ψ1(x)|x0
̸= 0, it is easy to conclude that ψ2 is

proportional to ψ1. Differentiating (3) repeatedly yields

dnψ2(x)
dxn

∣∣∣∣
x0

= C
dnψ1(x)
dxn

∣∣∣∣
x0

, C = constant, n ∈ N.

(12)
Thus,

ψ2(x) =
∞∑

n=0

1
n!

dnψ2(x)
dxn

∣∣∣∣
x0

(x− x0)n

= C

∞∑
n=0

1
n!

dnψ1(x)
dxn

∣∣∣∣
x0

(x− x0)n = Cψ1(x).

(13)

Even if ψ1(x)|x0
̸= 0 and ψ′

1 (x0+) ̸= ψ′
1 (x0−), we find

ψ2 = Cψ1, according to the theory of distributions.
However, if ψ1(x)|x0

= 0, then the process of repeated
differentiation can not establish a connection between
the nth order derivatives of ψ1 and ψ2. This implies that
we can not connect ψ2 for x > x0 and ψ2 for x < x0.
In other words, we can not establish whether ψ1 and ψ2
are linearly dependent. Therefore, we can not ruled out
any possibility of a two-fold degeneracy.

In conclusion, we presented in a straightforward way
that the vanishing of the Wronskian of two bound-
state eigenfunctions does not guarantee their linear
dependence and that the zeros of the eigenfunctions may
cause the nondegeneracy theorem to fail, as noted by
Loudon [5]. Additionally, we presented fair scenarios that
illustrate two-fold degeneracies for bound states in one-
dimensional quantum mechanics. The nondegeneracy
theorem fails only when the potential has the patholog-
ical feature that makes different bound-state solutions
corresponding to the same energy vanish at the singular
point or region. In this case, the lack of connection
between the derivatives of those eigenfunctions on each
side of the singular point leads us to agree with Andrews
[8, 10, 14]: the singular point or region acts as an
impenetrable barrier.
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