Acessibilidade / Reportar erro

Trapped Ions as an Architecture for Quantum Computing

In this paper we describe one of the most promising platforms for the construction of a universal quantum computer, which consists of a chain of N ions trapped in a harmonic potential, whose internal states work out as qubits, and are coupled to collective vibrational modes of the chain. From such coupling, it is possible to build interactions between different ions of the chain, that is, qubit-qubit interactions that, together with individual operations on the ions, allow building a quantum computer as first proposed by Cirac and Zoller in the 1990s [Phys. Rev. Lett. 74, 4091 (1995)]. Here we discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates, fundamental for the execution of more complex quantum algorithms. Finally, we present the current state of the art of quantum computing in trapped ion systems, highlighting recent advances made by companies and government projects that use such architecture, such as IonQ and AQTION.

Keywords:
Quantum computation; Trapped ions; Quantum algorithms


Sociedade Brasileira de Física Caixa Postal 66328, 05389-970 São Paulo SP - Brazil - São Paulo - SP - Brazil
E-mail: marcio@sbfisica.org.br