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Keller’s article entitled “Good-bye teacher. . . ” [J. Appl. Behav. Anal. 1, 79–89 (1968)] was fundamental for
the development and dissemination of Keller’s Personalized System of Instruction (PSI), which was one of the
central issues in the discussions on psychology and education in the 1970s and 1980s, and nowadays has attracted
attention in the context of the increasing use of online education. Belonging to a class of approaches usually
named as mastery learning, PSI and modified PSI courses (Keller-type courses) present several interesting results,
such as final grade distributions where the majority of students achieve the highest grades. Here, we present
a simple mathematical model underlying Keller-type individualized teaching methods, describing, in terms of
average characteristic parameters, the time evolution of the distribution of students per unit of content, and
that most students achieve the highest grades at the end of the course. By applying this model to a real case
of an introductory electromagnetism Keller-type course, we obtained its characteristic parameters with which we
showed good agreement between the predictions and observations. The model presented here results in a simple
formula, which is very accessible for use by a wide audience interested in planning or investigating Keller-type or
other mastering learning methods.
Keywords: Keller method, personalized system of instruction, mastery learning, mathematical model.

1. Introduction

In his paper of 1968 [1], Keller describes his instructional
plan (also named Personalized System of Instruction –
PSI) as one through which the student can move at
his own pace, showing mastery, not being forced to
go ahead until he is ready. Like Bloom’s learning for
mastery [2–4], the PSI belongs to a class of approaches
usually named as mastery learning. In Keller’s scheme
“. . . the student go ahead to new material only after
demonstrating mastery of that which preceded, before
to go to the next one” [1]. The mastery learning
emerged as an alternative to traditional courses – those
where students spend most of their time in classroom
attending lectures, and assessments are only meant to
score the success obtained at the course – and it has
shown “positive effects on the examination performance
of students in colleges, high schools, and the upper
grades in elementary schools” [5]. In a Keller course,
assessments are not only a measure of success, but
are also formative. An assessment is considered to be
formative if it “provides students opportunities to revise
and hence improve the quality of their thinking and

* Correspondence email address: danilo@ufpa.br

learning” [6]. The formative aspect of the assessments
in PSI is enhanced by the systematic feedback received
by the students right after these assessments [1, 7].
Both formative assessments and systematic feedback are
presently considered fundamental to learning [6].
The PSI originally started as a result of the applica-

tion of the reinforcement theory, according to which the
instruction process must be based on presentation, per-
formance and consequences, maximizing the frequency
of reinforcement and reducing the aversive consequences
of errors [8, 9]. This led to the main PSI features, among
them: mastery, self-pacing, linear small-step sequenced
materials (each one related to a unit of content),
repeated testing and immediate feedback [7]. In a Keller
course, students spend most of their time in classroom
doing assessments, receiving feedback or studying the
instructional material: “instead of responding passively
to a lecture, students must actively read, study, and
respond in writing to questions over textual materi-
als” [10]. In PSI, lectures are “. . . vehicles of motivation,
rather than sources of critical information” [1] and are
typically short [10]. An interesting result of the Keller
method is the “production of a grade distribution that
is upside down” [1], which means that, instead of a
typical bell-shaped curve for the final grades found in
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traditional courses [4], in PSI courses a higher percentage
of students reaches the highest final grade.

Keller’s method has been applied and discussed in the
context of several disciplines [11], including Physics [12–
16], and recent advances in the technology of information
are being considered for implementing and improving the
Keller course [17, 18, p. 201–221]. Although evidences
derived from observations indicate success of the Keller
scheme in many aspects, it began to decline in popularity
during the 1980’s. Among the causes,are criticisms on
the behaviorist approach of the method, as well as the
high workload associated with the implementation of a
Keller course [17, 19].

In the present paper, we present a simple mathe-
matical model to describe a PSI [1] or a modified PSI
course (Keller-type course) [16]. With this model, we can
estimate the evolution of the distribution of students per
unit of content, the presence of the upside down effect in
the grades and under which situations this effect occurs.
We compare our theoretical predictions with results from
a real application of a Keller-type method found in the
literature [16].

The paper is organized as follows. In Sec. 2, we discuss
a mathematical model to describe a very general Keller-
type course. In Sec. 3, we propose approximations,
obtaining a simple formula, which allows the visualiza-
tion of several interesting aspects of Keller-type courses.
In Sec. 4, we apply this model to a real case of an
introductory level electromagnetism Keller-type course,
described in Ref. [16]. In Sec. 5, we exemplify how our
model can be used by a teacher interested in planning
and improving a Keller-type course. In Sec. 6, we make
our final considerations.

2. A General Model

In traditional courses, concepts and materials are
divided into Nu units of content, which “. . . correspond,
in many cases, to chapters in the textbook used in
teaching” [4]. Usually, Na (being Na ≥ Nu) tests are
administered to the students. Usually each test covers
the content of a given unit, so we can say that in tradi-
tional courses Na ≈ Nu. To the teacher, a test is “. . . an
evaluation device that determines who learned those
concepts well and who did not” [4]. To the students,
each test means “. . . the end of instruction on the unit
and the end of the time they need to spend working on
those concepts” and most of the time “. . . the only chance
to demonstrate what they learned” [4]. “After the test is
administered and scored, marks are recorded in a grade
book, and instruction begins on the next unit, where
the process is repeated” [4]. The structure of a course
according to the Keller plan [1] is very different and can
be modeled as follows.
The course content is divided into Nu units, organized

in a definite numerical order (1, . . ., Nu), and the stu-
dents have to show mastery in each unit by passing

assessments (tests, works, etc.). Let us consider that
there are Na total opportunities of such assessments
related to these Nu units, so that, if the student fails to
pass an assessment on the first opportunity, there can be
other opportunities to be used. It can be noticed that in
typical Keller courses Na � Nu, whereas in traditional
courses Na ≈ Nu. In addition, in a Keller course it
can be applied Ne final examinations (but commonly
Ne = 1), each one of them applied at the same time
for all students. Usually, a certain percentage λu of the
course grade is based on the number of units successfully
completed during the term, a percentage λf is based
on the final examinations, whereas the percentage 1 −
(λu +λf ) is associated with exercises (laboratory works,
etc.). This means that there can have a minimal number
Nc of units of content to be successfully completed
by the students to get approval. Here, we call Keller-
type to any course whose content is divided into Nu

units, organized in a definite numerical order (1, . . ., Nu),
with the students having to show mastery in each unit
before going to the next one, having a total of Na

opportunities of assessments, from which a number Nc

of units of content must be successfully completed to
get approval. The mathematical model presented here
underlies Keller-type courses, which include the original
Keller plan [1].
Let us consider a Keller-type course, withNs students.

In Fig. 1 we represent in a Cartesian plane the scheme of

Figure 1: The scheme of assessments of a Keller course with
Nu = 9, Nc = 5 and Na = 14. In the horizontal axis we set a
number for each opportunity of assessment [indicated by the first
index, i, in N(i,j) along the text], whereas in the vertical axis we
set a number for each unit of content [indicated by the second
index, j, in N(i,j)]. The points indicated by dark circles mean
possible real situations of assessment. The points indicated by
squares, diamonds and circles mean virtual situations.
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assessments of a Keller course, with Nu = 9, Nc = 5 and
Na = 14. In the horizontal axis we set a number for each
opportunity of assessment, whereas in the vertical axis
we set a number for each unit of content. In this manner,
the point (1, 1) means that in the first opportunity
of assessment the students can be trying to pass the
assessment related to the first unit of content. The
point (2, 1) means that in the second opportunity of
assessment, students are trying to pass the assessment
related to the first unit of content, whereas the point
(2, 2) shows that in the same opportunity of assessment
there are students trying to pass the assessment related
to the second unit of content. The other points have
analogous meaning. Considering N(i,j) as the number of
students in the ith opportunity of assessment, trying to
pass the assessment related to the jth unit of content,
one can directly establish relations to describe the
propagation of the number of students from a point to
another, so that N(i,j) can be written as

N(i,j) =



Ns (i = j = 1),

α(i−1,1)N(i−1,1) (i ≥ 2; j = 1),

β(i−1,i−1)N(i−1,i−1) (i = j > 1),

α(i−1,j)N(i−1,j) + β(i−1,j−1)N(i−1,j−1)

(i ≥ j + 1 > 2),
(1)

where i and j = 1, 2. . ., the α coefficients are related
to the failure in passing an assessment, whereas the β
coefficients are related to the success (mastery in a given
unit of content). In Fig. 1, the horizontal (red) arrows
represent the propagation – mediated by the α coeffi-
cients – of the number of students that failed a given
assessment, whereas the diagonal (blue) arrows represent
the propagation – mediated by the β coefficients – of
the number of students that obtain success. The points
indicated by dark circles mean possible real situations
of assessments, whereas the points indicated by squares,
diamonds and circles are virtual points, which means
that there are no real assessment related to these points.
These virtual points are inserted because they will be
useful (see Sec. 3) in the analysis of the time evolution
of the number of students in each unit: those who have
already concluded all real Nu units will “occupy” virtual
units (squares); those students that have not concluded
the minimal numberNc of units will occupy the diamond
points; and those who concluded between Nc and Nu

units occupy the circle points. This can be illustrated
through the following examples: (i) students at the point
(14, 9) who pass this assessment complete all units,
having no more assessments to pass, reach the “virtual”
point (15, 10); (ii) those at the point (14, 9) and that
do not pass this assessment go to the “virtual” point
(15, 9); (iii) and those at the point (14, 5) and that pass
this assessment reach the “virtual” point (15, 6).

3. An Approximate Model

Equation (1) is very general, and a direct description
underlying any Keller-type course. If all coefficients α(i,j)
and β(i,j) are known, equation (1) predicts the number
of students N(i,j) in the ith opportunity of assessment,
trying to pass the assessment related to the jth unit
of content, in each moment of the course. The various
elements that can affect such a course, for example, the
number and quality of proctors and assistants, number of
sessions, the quality of textbooks and other study mate-
rials, among others, can influence on a best (decreasing
α and increasing β parameters) or worse (increasing α
and decreasing β) student performance. Specifically, if
students make more use of assessment opportunities, α
decreases and β increases; on the contrary, taking less
advantage of assessment opportunities, α increases and
β decreases. In other words, all these characteristics can
be encapsulated into the parameters α(i,j) and β(i,j).
We point out that, in real situations, the use of

equation (1) may involve a large number of parameters
α(i,j) and β(i,j), requiring some computational effort.
Therefore, certain approximations with the intention of
generating a more simplified model need to be con-
sidered. For example, a simplification is obtained by
assuming that, for a given jth unit, the probability of
success in passing does not depend on which is the ith
opportunity of assessment used by the student [14]. In
other words, β(i,j) = bj , where bj is a value that only
depends on j.

In order to obtain a simpler formula than those
found in Ref. [14], but which already captures the
essential features underlying Keller-type individualized
teaching methods, and also can be used by a wide audi-
ence interested in planning or investigating Keller-type
courses, here we introduce additional approximations.
From now on we focus on describing our proposal for an
approximate average behavior of N(i,j) given in equation
(1). We consider that: (i) there is no dropping out of the
course, so that the number Ns of students at any time
will be always the same; (ii) in each opportunity, a given
student try to pass in just one of the Nu units of content.
Considering these approximations, we can write

α(i,j) + β(i,j) = 1. (2)

Hereafter, we will consider the approximate model
where, for all i and j,

α(i,j) = α, β(i,j) = β, (3)

with α and β constants. This can be interpreted in
two ways: the probability (or difficulty) of passing an
assessment is exactly the same for all assessments (which
can be considered unrealistic); α and β are average
(taken over all units) characteristic parameters of a
Keller-type course, and this is the interpretation we will
adopt throughout the text.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0344 Revista Brasileira de Ensino de Física, vol. 44, e20210344, 2022



e20210344-4 A simple mathematical model underlying Keller’s individualized teaching method

Using equation (3) in equation (1), after some manip-
ulations (see Appendix 6), we have

N(i,j) = (i− 1)!αi−jβj−1

(j − 1)! (i− j)! Ns, (4)

where the factor multiplying Ns is the Bernoulli proba-
bility function, and, as already mentioned, N(i,j) is the
number of students at the position (i, j) of the diagram
in Fig. 1.
To illustrate an use of equation 4, let us consider, for

instance, the case (α, β) = (1/2, 1/2). For this situation,
we get the time (given in terms of the number of assess-
ments already done) evolution of the class as shown in
Fig. 2, which exhibits the situations of the class after
the 4th, 9th, 14th and 19th assessments. For instance,
after 4 assessments (blue line with points indicated by
diamonds), the situation is described by N(5,j)/Ns, and
the figure shows that N(5,1)/Ns ≈ 6% of the students
need to redo the assessment of the 1st unit, whereas
N(5,2)/Ns ≈ 25% are able to do the assessment of the
2nd unit, N(5,3)/Ns ≈ 38% are able to do the assessment
of the 3rd unit, N(5,4)/Ns ≈ 25% of the 4th unit, and
N(5,5)/Ns ≈ 6% are able to do the assessment of the 5th
unit. The red line (with points indicated by squares)
shows that after the 9th assessment and for Nu = 9,
among other results, N(10,9)/Ns ≈ 1.8% of the students
are able to do the assessment of the last 9th unit and
N(10,10)/Ns ≈ 0.2% are at the “virtual” unit 10, which
means that these students have already shown mastery
in all 9 units. The purple line (with points indicated by
crosses) shows, after the 19th assessment and forNu = 9,
among other results, that the sum over the virtual
units

∑20
j=10 N(20,j)/Ns ≈ 67.6% gives the part of the

students that have already shown mastery in all the

Figure 2: For the case (α, β) = (1/2, 1/2), the horizontal
axis gives the number of each unit of content, whereas the
vertical axis exhibits the percentage of students (N(i,j)/Ns)
who are able to do the assessment correspondent to each unit.
After 4 assessments, the situation is described by the blue line
(diamonds), which shows N(5,j)/Ns for j = 1..5; after the
9th assessment, the red line (squares) shows N(10,j)/Ns for
j = 1..10; after the 14th assessment, N(15,j)/Ns for j = 1..15
is described by the green line (triangles); and after the 19th
assessment, the situation is described by N(20,j)/Ns for j =
1..20, which is indicated by the purple line (crosses).

Nu = 9 units of content. The lines blue (diamonds), red
(squares), green (triangles) and purple (crosses) exhibit
the behavior of a “wave packet” propagating from the
left to right in Fig. 2. For other values of α and β, we
get the same behavior, but as β increases (it becomes
easier to pass assessments) the peak of the wave packet
propagates faster, showing that students obtain a faster
progress (mastery) in the units of content.

To investigate the production in Keller courses of
grade distributions that is upside down [1], let us
consider the hypothesis that as the number of units
of content in which a student shows mastery increases,
the probability of achieving the best final grades also
increases. Then, we assume that the behavior of final
grades is intrinsically related to the mastery level
reached by the students. Let us consider, for example,
the model described by equation (4) with (α, β) =
(1/2, 1/2), and also Nu = 9 for the following situations:
whenNa = 9,Na = 14 andNa = 19. In Fig. 3 we observe
the distribution of students versus the maximum number
of the units of content for which they obtained mastery
at the end of the course. For instance, the squares on
the red line show that for Na = 9 we have a distribution
of mastery which resembles a bell-shaped curve, which
is typical of traditional courses [4]. We interpret this
proximity between the results for mastery in a Keller-
type course and traditional courses as a consequence of
our choice of a theoretical model of a Keller scheme
with Na = Nu, being the relation Na ≈ Nu typical
in traditional courses [4]. However, in real Keller-type
courses Na > Nu and one can observe in Fig. 3 that
the distribution of mastery suffers an inversion as Na

becomes greater than Nu. For Na = 14 (triangles on
the green line), we already observe a deformation of the
“bell-shaped” curve. For Na = 19 (crosses on the purple
line), we finally observe an inversion: a transition from a
bell-shaped to an “exponential-shaped” curve, indicating

Figure 3: The horizontal axis shows the number of units com-
pleted with mastery. The vertical axis exhibits the percentage
of students. The cases considered are defined by (α, β) =
(1/2, 1/2), Nu = 9 and for the following values of Na: for
Na = 9 (squares on the red line); for Na = 14 (triangles on the
green line); for Na = 19 (crosses on the purple line).
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that the majority of students obtained mastery in all
Nu = 9 units. Then, assuming that the behavior of
final grades is related to the mastery level reached by
the students, an inversion of the mastery curve can be
directly mapped into an inversion of final grades, which
corresponds to the upside down effect mentioned by
Keller [1]. But, we remark that the present model reveals
that this inversion does not occur for an arbitrary value
of Na, but, as the number Na increases in comparison
to Nu, the possibility of appearance of the mentioned
inversion effect enhances.

4. Application to a Real Keller-type
Course

Now, we apply equation 4 to a real case of an intro-
ductory electromagnetism Keller-type course, described
in Ref. [16]. In Fig. 4, we exhibit the wave packet
behavior (diamonds on the blue line) found in the real
situation (discarding waivers) described in Ref. [16]. We
also exhibit the prediction from our model (triangles on
the green line), considering the average characteristic
parameters (α, β) = (2/5, 3/5). One can see that the real
behavior is in good agreement with the model, for these
characteristic parameters. This indicates that (α, β) =
(2/5, 3/5) are the average characteristic parameters for
the Keller-type course described in Ref. [16].
Let us use the average characteristic parameters

(α, β) = (2/5, 3/5) to investigate the mastery. In
Fig. 5, we exhibit the final mastery situation, consid-
ering (α, β) = (2/5, 3/5), and compare the theoretical
prediction using these parameters (triangles on the green
line) with the real situation (diamonds on the blue
line) described in Ref. [16], where it was considered,
effectively, Nu = 11 and Na = 16. We highlight
that the inversion of grades is in good agreement
with the theoretical prediction. This reinforces that

Figure 4: The horizontal axis shows the number of each unit
of content, whereas the vertical axis exhibits the percentage
of students (N(i,j)/Ns) who are able to do the assessment
correspondent to each unit, after the 14th assessment, for the
case (α, β) = (2/5, 3/5) (triangles on the green line), and a real
case described in Ref. [16] (diamonds on the blue line).

Figure 5: The horizontal axis shows the number of units com-
pleted with mastery. The vertical axis exhibits the percentage
of students. The cases considered are (α, β) = (2/5, 3/5)
(triangles on the green line), and a real case described in
Ref. [16] (diamonds on the blue line). We considered Nu = 11
and Na = 16.

(α, β) = (2/5, 3/5) are the average characteristic param-
eters of the Keller-type course considered in Ref. [16].

5. Use in Planning and Improving a
Keller-type Course

Let us exemplify how equation (4) can be used, for exam-
ple, by a teacher interested in planning and improving
a Keller-type course. Among several characteristics that
may differ from one Keller-type course to another, in
common is the need to divide the content into Nu units,
and define the number Na of total assessment opportuni-
ties. If, for example, the teacher divides the content into
Nu = 9 units, and, from previous experience, estimates
that an average (over the units) of 50% of students will
have success in passing each assessment, the parameters
characterizing such a course are (α, β) = (1/2, 1/2).
A question for the teacher is: how many assessment
opportunities are needed for most students to reach
mastery at the end of the course?

Using equation (4) (as explained in Section 3), for
Na = Nu = 9, the mastery curve will be a bell-shaped
curve found in traditional courses (see the squares on the
red line in Fig. 3) [4]. On the other hand, if the choice
is Na = Nu = 19, the teacher can expect a transition
from a bell-shaped to an “exponential-shaped” curve,
indicating that the majority of students obtain mastery
in all Nu = 9 units (see the crosses on the purple line
in Fig. 3), which is a typical result of a Keller-type
course [1, 16].

Let us now consider that, after the application of a
Keller-type course, the data collected by the teacher
show that the class did not exhibit the evolution pre-
dicted in Fig. 2, or the mastery curve predicted in Fig. 3,
both considering (α, β) = (1/2, 1/2). Then, from this,
the teacher could find the parameters (α, β) that are
in agreement with the results obtained in the applied
Keller-type course, which allows an improvement in the
choice of the number Na of total assessment opportuni-
ties, which would be useful in other applications. Thus,
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equation (4) can be used for planning and improving a
Keller-type course

6. Final Remarks

Our main result is the simple formula in equation (4),
which predicts the average behavior of the number of
students N(i,j) in the ith opportunity of assessment,
trying to pass the assessment related to the jth unit
of content, in each moment of a Keller-type course.
N(i,j) is described in terms of only two parameters, the
coefficient α, which is the average probability of failing
in passing an assessment, and β, which is the average
probability of success (or to get mastery in a given unit
of content). The various characteristics of a Keller-type
course, for example, the number and quality of assis-
tants, number of sessions, the quality of textbooks and
other study materials, among others, can influence on a
best (decreasing α and increasing β parameters) or worse
(increasing α and decreasing β) student performance,
with all these characteristics encapsulated in the α and
β parameters. As discussed throughout the text, this
makes equation (4) very accessible for use by a wide
audience interested in planning or investigating Keller-
type courses or other mastering learning courses.
An interesting result coming from our analysis based

on equation (4) is that when the number Na of assess-
ment opportunities is approximately the same as the
number Nu of units of content, the mastery curve will
be a bell-shaped curve found in traditional courses (red
line in Fig. 3), whereas as Na becomes greater than Nu,
there is a change from a bell-shaped to an exponential-
shaped curve (purple line in Fig. 3), indicating that the
majority of students obtain mastery, which is a typical
result of a Keller-type course.
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Appendix A – Obtaining equation (4)

This section builds on using equation 1 in equation 2.
For i = 2 and j = 1, 2, we get

N(2,1) = αNs (5)
N(2,2) = βNs. (6)

In parallel, note that we can write

(α+ β)Ns = αNs + βNs, (7)

which, for convenience, can be written as

(α+ β)2−1Ns = α2−1β1−1Ns︸ ︷︷ ︸
N(2,1)

+α2−2β2−1Ns︸ ︷︷ ︸
N(2,2)

. (8)

From equation (8), we identify N(2,1) and N(2,2).
For i = 3 and j = 1, 2, 3, we have

N(3,1) = α2Ns, (9)

N(3,2) = 2αβNs, (10)

N(3,3) = β2Ns. (11)

In parallel, we can also write

(α+ β)2Ns = α2Ns + 2αβNs + β2Ns, (12)

which can be conveniently written as

(α+ β)3−1Ns = α3−1β1−1Ns︸ ︷︷ ︸
N(3,1)

+ 2α3−2β2−1Ns︸ ︷︷ ︸
N(3,2)

+ α3−3β3−1Ns︸ ︷︷ ︸
N(3,3)

. (13)

From equation (13), we identifyN(3,1),N(3,2), andN(3,3).
For i = 4 and j = 1, 2, 3, 4, we have

N(4,1) = α3Ns, (14)

N(4,2) = 3α2βNs, (15)

N(4,3) = 3αβ2Ns, (16)

N(4,4) = β3Ns. (17)

We can write

(α+ β)3Ns = α3Ns + 3α2βNs + 3αβ2Ns + β3Ns, (18)

which, for convenience, can be written as

(α+ β)4−1Ns = α4−1β1−1Ns︸ ︷︷ ︸
N(4,1)

+ 3α4−2β2−1Ns︸ ︷︷ ︸
N(4,2)

+ 3α4−3β3−1Ns︸ ︷︷ ︸
N(4,3)

+α4−4β4−1Ns︸ ︷︷ ︸
N(4,4)

.

(19)

From equation (13), we identify N(4,1), N(4,2), N(4,3),
and N(4,4).
The same pattern found in equations (8), (13), and

(19) can be obtained for (α + β)s, with s = 4, 5, 6. . ..
Thus, from these equations, one can see that N(i,j) can
be written in terms of binomial coefficients. It is well
known that

(α+ β)n =
n∑

k=0

n!
k! (n− k)!α

kβn−k. (20)
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Taking as basis equations (8), (13), and (19), and making

n = i− 1, (21)

k = i− j, (22)

equation (20) can be written as

(α+ β)i−1 =
i∑

j=1

(i− 1)!
(i− j)! (j − 1)!α

i−jβj−1. (23)

Multiplying both sides of equation (23) by Ns, and
comparing with equations (8), (13), and (19), we can
write

(α+ β)i−1Ns =
i∑

j=1

(i− 1)!
(i− j)! (j − 1)!α

i−jβj−1Ns︸ ︷︷ ︸
N(i,j)

,

(24)

from which we identify N(i,j), and thus obtaining
equation (4).
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