
Revista Brasileira de Ensino de Física, vol. 45, e20230041 (2023) Articles
www.scielo.br/rbef cb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0041 Licença Creative Commons

A small oscillation model for the “water dancing ball”
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Inspired by the “water dancing ball" problem proposed in the International Physicists’ Tournament 2019, we
study the small-angle oscillations of a cylinder on a plane subject to a thin sheet of water. The interaction between
the water flow and the cylinder is modeled using basic physics principles such as Newton’s laws, momentum, and
energy conservation. We found that the flux of water around the cylinder applies a force which is responsible for
the oscillations of the cylinder. From the motion equation of the cylinder, the period of oscillation is calculated
in the harmonic approximation. Our results are contrasted with the period measurements presented recently by
Pagaud and Delance, with a good agreement found, showing an error of only 10%.
Keywords: Classical Mechanics, Oscillations, Coandă effect.

1. Introduction

The International Physicists’ Tournament (IPT) is an
annual competition among teams of physics students
from all around the world. Every year, a list of 17
problems is created for the IPT. The solutions to the
problems are presented in “Physics Fights” where three
teams compete with each other. In each fight, the
teams have to play the roles of Reporter, Opponent and
Reviewer. Unlike the typical physics exam, the problems
used in the IPT allow multiple approaches (theoretical
and/or experimentally), and the solutions must also
be presented, reviewed, and challenged by the other
participants. The performance of the teams in each role
is judged by an experienced jury, usually consisting of
professors from different Universities. Detailed informa-
tion about the IPT can be found on the official web page
of the tournament. [1].

The original “water dancing ball” problem was pre-
sented in the IPT 2019 and consisted of a ball subjected
to a vertical water jet. Because of the interaction with
the jet, the ball starts to oscillate instead of being ejected
outward from the jet as we might intuitively think.
This phenomenon is closely related to the Coandă effect
which basically states that “the tendency of a jet of fluid
emerging from an orifice is to follow an adjacent flat or
curved surface and to entrain fluid from the surroundings
so that a region of lower pressure develops” [2–5]. The
main objective of the problem is to estimate the period of
oscillation and its dependency on the system parameters.
This is a problem of fluid dynamics with complicated
time-dependent boundary conditions. There are several
approaches to address this problem depending on the
approximations made to simplify it. For instance, a very
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simplistic model could assume that the impact of the jet
is an elastic collision where the horizontal component
of the momentum is preserved. In this simple model,
the oscillation of the ball is given by the torque due to
the vertical force applied by the jet. A more elaborate
model could use the static pressure distribution due
to the jet around a ball [6, 7]. From the pressure
distribution, it is possible to calculate the force on the
ball and determine the subsequent movement. Recently,
a theoretical and experimental study about the “water
dancing ball” developed by former IPT participants was
presented in Ref. [8]. In this work, the ball is replaced
by a cylinder and some experimental measurements of
the oscillation period are contrasted with the results
given by a simple model based on an empirical force
and torque which depends on two fit parameters. In this
paper, we also present a simple approach to describe
the motion of the cylinder based on basic physics
tools such as Newton’s laws, momentum, and energy
conservation [9–12]. However, our model does not involve
any fit parameter. In this way, the solution presented can
be understood by young physics or engineering students
without knowledge of advanced tools such as Lagrangian
mechanics, Navier-Stokes equations, etc. We consider
that the proposed solution can be used as an example
in basic physics courses to show students how the use of
different physical concepts can describe the behavior of
non-trivial mechanical systems.

2. Description of the Model

Consider a cylinder of finite length and radius R on
a flat horizontal rigid surface subjected to a vertical
water jet with constant flux. The jet, a thin vertical

Copyright by Sociedade Brasileira de Física. Printed in Brazil.

www.scielo.br/rbef
https://orcid.org/0000-0002-1528-7345
mailto:diego.luis.gonzalez@correounivalle.edu.co


e20230041-2 A small oscillation model for the “water dancing ball”

Figure 1: (a) The position of the center of the cylinder is denoted by x, and θc represents the point where the jet hits the cylinder.
(b) After the collision, an incoming mass differential ∆M splits into two parts, ∆M1 and ∆M2, which move in opposite directions
on the cylinder. (c) The diagram depicts the forces acting on an arbitrary mass differential of water.

sheet of water with thickness ϵ, falls on the cylinder
parallel to its axis. The mass, length, and radius of
the cylinder are Mb, L, and R, respectively. Experience
shows that due to the action of the jet, the cylinder starts
to oscillate (see the supplementary material of Ref. [8]).
As mentioned before, for the sake of simplicity it is
necessary to use several assumptions in order to simplify
this complex problem avoiding the use of Navier-Stokes
equations with moving boundary conditions. The first
approximation we use in this paper assumes that the
cylinder performs planar motion for a significant dura-
tion. The flow is considered laminar and incompressible,
there is no water mass loss during the impact and the
cylinder rolls without sliding on the flat rigid horizontal
surface. The water only flows over the circular face of
the cylinder as shown in Fig. 1. In this way the cross
section of the water jet is A = ϵ, L. These assumptions
are expected to hold approximately for small enough
flow rates. The density of the water is ρ and its velocity
just before the impact with the cylinder is v. Thus, the
incoming mass flux of water on the cylinder is ρAv.
The position of the center of mass of the cylinder is x,
and the center of the jet strikes the cylinder at an angle
θc (see Fig. 1 (a)). In the chosen coordinate system, the
vertical axis, y, coincides with the water jet while the
horizontal axis, x, is at a height R above the surface.
We assume that the friction force between the cylinder
and the flat surface is given by the Coulomb friction law
and that the water that flows off the cylinder does not
affect how the cylinder rolls. The angular position θc

and the position of the cylinder’s center are related by
x = −R sin(θc), and both are functions of time t whose
forms are yet to be determined. As usual, the gravity
acceleration is g⃗.

3. Stationary Approximation for the
Flow Distribution

In this revised model, the water jet that makes contact
with the cylinder bifurcates into two sections, which
move in diametrically opposing directions along the

cylinder, as depicted in Fig. 1 (b). We make the assump-
tion that the water layer’s angular velocity adheres to
β̇(θ) = β̇1 for π ≥ θ ≥ θc (ℜ1) and β̇(θ) = −β̇2
for 2π + θc ≥ θ ≥ π (ℜ2). For simplicity’s sake, we
posit that the flow entirely encapsulates the cylinder,
with β̇1 and β̇2 remaining constant. This presumption
overlooks the augmentation in kinetic energy of ∆M1,2
due to the alteration in gravitational potential energy as
it navigates around the cylinder; in essence, it presumes
that v2 ≫ 2gR. The position of ∆M1,2 can be expressed
as the summation of the center of the cylinder’s position
and the vector r⃗i = R sin(θ)̂i + R cos(θ), ĵ. It should be
noted that r⃗i signifies the position of ∆Mi in relation
to the center of the cylinder. The equation (1) below
illustrates the velocity of a water mass differential at
the position θ on the cylinder:

v⃗i =
(
ẋ + Rβ̇(θ) cos(θ)

)
î − Rβ̇(θ) sin(θ)ĵ, (1)

where i = 1, β̇(θ) = β̇1 corresponds to ℜ1 and i = 2,
β̇(θ) = β̇2 aligns with ℜ2. To evaluate the flux in the ℜ1
and ℜ2 regions, we conjecture that during the collision,
mass, tangential momentum, and energy remain con-
served. ∆M denotes the incoming water mass flux over
a time interval of ∆t. As displayed in Fig. 1(b), following
the collision, ∆M partitions into ∆M1 and ∆M2. Thus,
mass conservation is demonstrated by equation (2) as

∆M = ∆M1 + ∆M2, (2)

while equations (3) and (4) respectively encapsulate the
conditions of momentum and energy conservation as

∆M1vt
1 − ∆M2vt

2 = ∆Mv sin(θc) (3)

and

∆M1(vt
1)2

2 + ∆M2(vt
2)2

2 = ∆Mv2

2 , (4)

In the equations (3) and (4), vt
i represents the tan-

gential components of the velocities of ∆Mi. Radial
momentum is not conserved owing to the application
of the normal force by the cylinder’s surface. In effect,
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the normal force transforms radial momentum into tan-
gential momentum. Moreover, the tangential velocities
of ∆M1 and ∆M2 are given by vt

1,2 = v⃗1,2 · êθ, with
êθ = cos(θ)̂i − sin(θ)ĵ, as shown in Fig. 1 (a). In this
scheme, ∆M1,2 = ρ, A1,2, vt

1,2, ∆t whereby A1,2 refers to
the cross-sectional area of the flux in the ℜ1,2 regions.
Moving forward, we will assume that the transverse area
in the ℜ1 and ℜ2 regions are equal, or in other words,
A1 = A2. Solving equations (2) to (4) for A1,2 and β1,2
(as shown in Appendix A), we discover the following:

A1,2 = A√
4 − 3 sin2(θc)

, (5)

and

β̇1,2 = − ẋ

R
cos(θc) + v

± sin(θc) +
√

4 − 3 sin(θc)2

2R
, (6)

Here, the plus and minus signs correspond respectively
to the indices 1 and 2. A significant limitation of equa-
tion (6) is the dependency of β̇1,2 on the cylinder velocity
ẋ. This results in a nonlinear differential equation that
necessitates numerical solution. However, for instances
where v ≫ ẋ, it is plausible to disregard the first
term in equation (6). This “stationary approximation”
assumes that the time taken for mass ∆Mi to move on
the cylinder from the point of impact until it reaches
the ground is minimal enough such that the cylinder
essentially remains stationary in that time interval. The
stationary approximation fails if the oscillation period
compares to the time taken by the fluid to reach the
ground, i.e., πR/v ∼ T , where T signifies the oscillation
period. Hence, sufficiently large fluxes are required so
that πR/v ≪ T . The parameters considered in this
paper satisfy this condition. The behavior of the mass
flux Ṁ1,2 = lim ∆t → 0∆M1,2/∆t in the stationary
approximation is depicted in Fig. (2). As θ transitions
from −π/2 to π/2, Ṁ1 rises from zero to Av/R while
Ṁ2 descends from Av/R to zero. Additionally, it’s worth
noting that for small values of θ, the flux behaves
linearly. Moving forward, we will utilize equations (5)

-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2
0,0

0,2

0,4

0,6

0,8

1,0
-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2

0,0

0,2

0,4

0,6

0,8

1,0

M
1
an
d
M
2

�

M1

M2

A v/R=1

Figure 2: Mass flux in the regions ℜ1 and ℜ2 as functions of
θc. A linear behavior is found for a wide region of the domain
of the function.

and (6) to estimate the mass flux Ṁ1,2 = ρA1,2Rβ̇1,2 in
the ℜ1 and ℜ2 regions.

4. Equations of Motion

To derive the equations of motion for the cylinder, we
must ascertain the forces acting upon it. Essentially, we
account for the interaction between the water and the
cylinder using two forces. The first one is the impact
force exerted by the water jet on the cylinder, applied
at position θc. The second force stems from the water
flowing around the cylinder and thus is applied across
the entirety of the curved surface of the cylinder.

4.1. Impact force

In our model, the force arising from the impact of the
jet on the cylinder, denoted as F⃗c, is determined by
the relationship between the net force and the momen-
tum change of an incoming mass differential, ∆M .
We operate under the assumption that the tangential
component of the velocity of ∆M is preserved during the
collision. This is a sensible assumption for fluids with low
viscosity where the exerted force by the fluid is nearly
perpendicular to the surface. Consequently, F⃗c is a radial
force. Thus, we determine

Fc − ∆Mg cos(θc) = ∆M1vr
1 + ∆M2vr

2 + ∆Mv cos(θc)
∆t

,

(7)
where the radial component of the velocity is given by
vr

1,2 = v⃗1,2 · êr. Using the Eqs. (1) and (7), it can be
shown that the force applied during the collision by the
cylinder on the mass differential ∆M is given by

Fc = ρAv (ẋ sin(θc) + v cos(θc)) , (8)

where it is assumed that the impact is instantaneous,
thus, ∆M, ∆t → 0, with ∆M/∆t → ρAv. The force
given by Eq. (8) is proportional to the incoming mass
flow and not only depends on v but also on the speed of
the cylinder.

4.2. Force due to the flowing water around the
cylinder

The water circulating around the cylinder exerts an
additional force on the cylinder, which can be split
into normal and tangential components, N and fv,
respectively. To compute this force, we consider a mass
differential, ∆M , at the position θ on the cylinder. The
forces affecting ∆M are illustrated in Fig. 1(c), where
the radial (∆N) and tangential (∆fv) forces exerted
on ∆M are depicted. The force related to the pressure
is represented as F⃗p. The motion equations for ∆M
corresponding to the vertical and horizontal directions
are

∆N cos(θ) + ∆fv sin(θ) − ∆Mg + ∆Fp sin(θ)

= −∆MRβ̇(θ)2 cos(θ). (9)
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and

∆N sin(θ) − ∆fv cos(θ) − ∆Fp cos(θ)

= ∆M
(
ẍ − Rβ̇(θ)2 sin(θ)

)
, (10)

respectively. Therefore, the total horizontal component
of the normal force applied on the cylinder Nx =
−

∫
dθ∆N sin(θ) can be written as

Nx = −
∫ 2π

0
dθRAρ

(
− Rβ̇(θ)2 + g cos(θ)

+ ẍ sin(θ)
)

sin(θ), (11)

where Eqs. (9) and (10) are used to eliminate ∆Fp and
the dependence on ∆M is encoded in the term RAρdθ,
which accounts for the distributed mass in a differential
sector dθ of the cylinder. The additional negative sign
stems from Newton’s third law, providing the correct
force direction since in Eq. (10) we have the force on
the water mass differential exerted by the cylinder.
The integration can be readily performed to find

Nx = ρAR2 (
β̇2

1 − β̇2
2
)

(1 + cos(θc)) − ρAπRẍ. (12)

The first term in Eq. (12) includes the effect of the
relative movement between the water mass on the
cylinder and the cylinder itself. According to Eq. (6),
this term is zero for the equilibrium position θc = 0,
but for arbitrary values of θc, its value depends on the
competition between the mass fluxes in regions ℜ1 and
ℜ2. The second term in Eq. (12) is the force required
to move the mass of water around the cylinder with a
horizontal acceleration of ẍ.

The tangential component f⃗v due to the friction
between the cylinder and the water is proposed to be
proportional to the relative velocity between the cylinder
and the mass ∆M [13]. In this way, the horizontal
component of f⃗v, fx

v , can be written as

fx
v = c R

[∫ π

θc

dθ
∣∣θ̇ − β̇1

∣∣ cos(θ)

−
∫ 2π+θc

π

dθ
∣∣θ̇ + β̇2

∣∣ cos(θ)
]

= c x
(∣∣θ̇ − β̇1

∣∣ +
∣∣θ̇ + β̇2

∣∣) , (13)

with c a constant which depends on the viscosity of the
fluid. Similarly, the torque due to fv around the center
of mass, τv, is given by

τv = cR2 ∣∣θ̇ − β̇1
∣∣ (π − θc) − cR2 ∣∣θ̇ + β̇2

∣∣ (π + θc). (14)

As expected, both fx
v and τv are zero at the equilibrium

position for θ̇ = 0.

4.3. Resulting equations

Using Eqs. (8), (13) and (14) the equation of motion for
the center of mass of the cylinder can be written as

Nx + fx
v + fr − Fc sin(θc) = Mbẍ, (15)

where fr represents the friction force between the cylin-
der and the surface. The minus sign before Fc is due
to Newton’s third law. To determine fr we consider the
rotational motion around the center of mass which is
given by

−frR + τv = I0

R
ẍ. (16)

Note that to write Eq. (16) we have used the “rolling
without slipping” condition which completely deter-
mines the friction force, as stated before we assume
that this condition holds despite the thin layer of water
between the surface an the cylinder. Thus, using Eqs.
(15) and (16) to eliminate θ̈ we find

Nx + fx
v + τv

R
− Fc sin(θc) =

(
Mb + I0

R2

)
ẍ, (17)

where Fc, Nx, fx
v and τv, are given by Eqs. (8), (12), (13)

and (14), respectively. Equation (17) does not involve
any fit parameter and can be solved numerically by stan-
dard methods such as Euler or Runge-Kutta methods.
It is worth noting that to arrive to Eq. (17) we not only
use conservation laws, but also, we have assumed that
the motion of the water around the cylinder is given by
Eq. (1). This last assumption is used to calculate the
force applied by the cylinder on the flowing water. The
third Newton’s law does the rest of the work.

5. Results

For arbitrary values of the parameters Eq. (17) must
be solved numerically. However, in the limit of small
oscillations and zero viscosity (c = 0) Eq. (17) takes
a simple form. In this case θc ≈ −x/R, β1,2 ≈ v/r ±
θc v/(2r) and A1,2 ≈ A/2. Similarly, the impact force Fc

given by Eq. (7) can be written as

Fc ≈ Aρv

(
v − xẋ

R

)
, (18)

while the horizontal component of the normal force given
by Eq. (12) takes the form

Nx = −1
2AρπẍR − 2Aρv2 x

R
. (19)

Using these results, it is easy to find that, for small
oscillations, Eq. (17) reduces to

Meff ẍ = − A ρ v2

R
x, (20)

where we have defined the effective mass according to
Meff = π A ρ R/2+Mb + I0/R2. Therefore, in this limit
the oscillation period is given by

T = 2π

√
R Meff

A ρ v2 . (21)

Revista Brasileira de Ensino de Física, vol. 45, e20230041, 2023 DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0041



González e Cadavid e20230041-5

119,0 119,5 120,0 120,5 121,0

-0,01

0,00

0,01

119,0 119,5 120,0 120,5 121,0

-0,01

0,00

0,01

-F
c Sin(θ

c )and
N
x (N

)

x(
m
)

t(s)

x(t)
-FcSin(θc)
Nx

Figure 3: Behavior of the position of the center of the
cylinder. The horizontal component of the force applied by the
water around the cylinder is twice larger than the horizontal
component of the impact force Fc.

In order to check the validity of the model, we solved
numerically Eq. (17) taking c = 0 and using the
parameters reported in Ref. [8], A = 1.22 × 10−5 m2,
ρ = 1000 kg/m3, v = 1.72 m/s, Mb = 0.0124 kg,
R = 0.029 m and g = 9.81 m/s2. The solution for long
times is shown in Fig. 3, the position of the center
of the cylinder is represented by the solid line. The
forces Nx and Fc are included, dotted and dashed lines
respectively. Note that Nx acts as a restoring force while
the impact force tries to move away the cylinder from
the equilibrium position. However, the maximum value
of Nx is close to 0.014N which is almost twice the
maximum value of the impact force. In fact, in the small
oscillation limit, from Eqs. (18) and (19) it can be shown
that −Fc sin(θc) ≈ Aρv2x/R and Nx ≈ −2Aρv2x/R,
i.e., the horizontal component of the impact force is
the half of Nx. Our results show that the origin of
the oscillations is due to the difference between the
forces applied by the water in regions ℜ1 and ℜ2.
For the parameters mentioned before, the authors of
Ref. [8] experimentally found that the oscillation period
is approximately T ≈ 0.8 s which is close to that from
Eq. (21), T ≈ 0.89 s and in agreement with Fig. 3 which
shows the numerical solution of Eq. (17).

The behavior of T as function of the Meff is shown
in Fig. 4, the experimental data reported in Ref. [8]
were also included. Our model describes qualitatively
and quantitatively the oscillations and the period T
of the cylinder and, in contrast with the previous
analytical model presented in [8], ours does not involve
fit parameters.

Finally, Fig. 5 shows the behavior of the net torque
τN = I0 ẍ/r as a function of the position of the center
of mass of the cylinder. We use the same parameters as
before but now taking c = 0.0001 kg/s. The plotted data
were taken in the interval 2s > t > 1s. The blue and red
points correspond to the part of the trajectory where
the cylinder is moving to the right and left, respectively.
The friction force generates the “hysteresis” phenomena
reported in Ref. [8] which is related with the energy
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Figure 4: Behavior of the oscillation period as function of the
effective mass.
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Figure 5: Behavior of the net torque τN as a function of x(t).

loss and the subsequent decrease in the amplitude of
oscillation.

However, for larger values of the flux, we can expect
that the impact force is large enough to generate the
opposite effect, i.e., increase the amplitude of oscilla-
tion [8]. Due to the assumptions used, especially the
mass conservation during collision, this behavior is not
reproduced by our model where for small oscillations the
condition 2 |Fc| sin(θc) ≈ Nx guarantees the stability of
the oscillations regardless the value of the parameters.
This relation strongly depends on the assumption of
mass conservation of water during the collision. If the
speed before the collision of the incoming water is large
enough the loss of water is not negligible and Fc can be
larger than Nx throughout the entire trajectory. In this
case there are not oscillations and the cylinder moves
away from the water jet.

6. Conclusions

The model presented here, although simple and involv-
ing certain assumptions, provides both a qualitative and
quantitative description of the oscillations experienced
by a cylinder subjected to a vertical water jet. Our
calculations are based on foundational mechanics con-
cepts; hence, we believe that this system, as presented,
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can serve as an illustrative example in engineering
dynamics courses. Despite the simplifications made, the
predicted oscillation period in the small oscillations limit
closely matches that found experimentally by Pagaud
and Delance, with an error near 10%. In our model,
the oscillations are a result of the force applied by the
water flow around the cylinder. We determined that
the period is proportional to the square root of the
effective mass (M1/2

eff ), which aligns with the results from
Pagaud’s experiments. The effective mass incorporates
three distinct contributions: the mass of the cylinder,
the inertia associated with rotation, and the mass of
the water around the cylinder. The latter contribution is
included empirically in the model proposed in Pagaud’s
research but appears naturally in our model. The period
also depends on the cylinder’s radius, the incoming water
flux, and the speed of this flux. Lastly, we would like to
emphasize that the approach utilized in this study does
not involve any fitting parameters.
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