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Moments of inertia by summation
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This study delves into moment of inertia in rigid body mechanics, a crucial concept in physics. While it’s
traditionally taught through integration, we propose an alternative method using discrete mass segments. This
approach simplifies calculations, particularly for symmetric bodies, without complex integration procedures. Our
goal is to enhance students’ understanding of fundamental physics principles, making the subject more accessible.
We also provide visual aids and online animations to aid comprehension.
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1. Introduction

In the initial exploration of rigid body mechanics, there
arises a necessity to elucidate an abstract notion per-
taining to the mass distribution of objects in rotational
motion about a specified axis. This physical quantity
is denoted as the moment of inertia. Typically, it finds
comprehensive treatment towards the culmination of
the introductory university physics course, attended
by engineering, exact science, and various educational
program students.

However, within the majority of university curricula,
these same students concurrently engage in the study of
differential and integral calculus. Through this mathe-
matical endeavor, they acquire a set of new concepts and
analytical tools that can be skillfully employed in the
computation of the moment of inertia for rigid bodies
exhibiting a specific class of symmetry, such as axial,
radial, or spherical symmetry.

Although the definition of the moment of inertia
[1, 2] originates from the discrete distribution of mass
through a summation of massive points with a constant
separation between them and positioned at a certain
distance from the axis of rotation, lets us to extend
this notion to the integration of contributions from
infinitesimal elements of mass of a continuous body
spatially distributed along the axis of rotation:

I =
∑

j

mjr2
j , (discrete), (1a)

I =
∫

dm r2, (continuous). (1b)
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However, the principal objective of the physics discipline
is not centered on instructing functional integration
techniques. Instead, its core mission is to instill a pro-
found understanding of the diverse concepts governing
the characterization of both translational and rotational
motion within rigid bodies. This necessitates a shift in
pedagogical approach, which in turn enhances students’
comprehension of novel physical principles.

To this end, this study introduces an alternative
methodology for determining the moment of inertia
in the case of commonly encountered symmetric rigid
bodies, a subject widely documented in the literature.
This approach circumvents the need for explicit inte-
gration procedures as previously indicated [3–5], as
well as the reliance on theorems pertaining to parallel
and perpendicular axes. Instead, our approach involves
the partitioning of the body into a set of N discrete
mass segments, each possessing its unique moment of
inertia. The cumulative effect of these individual inertial
components converges towards the moment of inertia of
the entire rigid body as the collection size approaches
infinity, symbolized as N →∞.

Accordingly, within the forthcoming exposition that
delineates the methodology for computing the moment
of inertia for certain rigid bodies, there arises a requisite
engagement with the ensuing outcomes. These outcomes
pertain to the summation of the initial N integer
values raised to varying exponents, encompassing linear,
quadratic, cubic, and quartic orders. It is noteworthy
that these outcomes are amenable for direct application
without necessitating a formal demonstration of their
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derivation [6, 7],
N∑

j=1
j = 1+2+3+ · · ·+N = N(N +1)

2 ,

N∑
j=1

j2 = N(N +1)(2N +1)
6 = 1

3 N3+ 1
2 N2+ 1

6 N,

N∑
j=1

j3 = N2(N +1)2

4 = 1
4 N4+ 1

2 N3+ 1
4 N2,

N∑
j=1

j4 = N(N +1)(2N +1)(3N2+3N −1)
30 .

(2)

On the other hand, to facilitate a deeper comprehension
of the outlined procedure for calculating the moment of
inertia of different rigid bodies, we will provide visual
analyses and freely accessible animation videos available
online.

2. Solid Bar: Rod

To begin the physical calculation of the moment of
inertia of a rigid rod with mass M and length L, which
can freely rotate about an axis perpendicular to its
length at a distance s from one of its ends, we can
conceptualize the rod as an ensemble of N mass points,
each with an individual mass m = M/N , uniformly
distributed along the length L. The positions of these
mass points are defined by xj = L(j − 1)/(N − 1).
Regarding an axis of rotation located at a distance s
within the interval [0, L] from the boundary, the moment
of inertia for each individual mass point can be expressed
as follows,

Ij = M

N

(
s−xj

)2
. (3)

Where j is the index denoting the individual mass point.
The total moment of inertia is given by eq.(1a) as,

I =
N∑

j=1

M

N

(
s2 + x2

j − 2sxj

)
,

=
N∑

j=1

M

N

[
s2 + L2(j2+1−2j)

(N −1)2 − 2sL(j−1)
(N −1)

]
,

= Ms2 + 2MsL

(N −1) + ML2

(N −1)2 + ML2

N(N −1)2

N∑
j=1

j2

− 2ML2

N(N −1)2

N∑
j=1

j − 2MsL

N(N −1)

N∑
j=1

j.

(4)

When we substitute the summations into their corre-
sponding expression in eq.(2) and subsequently rear-
range the terms through a series of simplifications, we
get,

I =Ms2−MsL+ ML2N

(N −1)2 + ML2(N +1)(2N +1)
6(N −1)(N −1) . (5)

When the amount of partitions goes to infinity (N →∞),
physically we have a transition from a discrete distribu-
tion of mass to a continuous rigid body,

I =Ms2−MsL+
�

�
�
�>

0
ML2N

(N −1)2 + ML2

6 �
�
��>

1
(N +1)
(N −1)�

�
�
�>

2
(2N +1)
(N −1) . (6)

We subsequently obtained the moment of inertia for a
rigid rod rotating about an axis significantly distant
from its end by a distance denoted as s,

I = Ms2 − MsL + 1
3 ML2. (7)

It is noteworthy to mention that the moment of inertia
demonstrates a quadratic relationship with respect to
the variable s, displaying a positively concave behavior.
The maximal magnitudes of the moment of inertia
coincide with the endpoints of the parameter s, wherein
I0 =IL holds. This signifies that at the midpoint s=L/2,
the moment of inertia attains its minimum value due to
the inherent symmetry of mass distributed around the
central axis. Thus, the rod manifests its least moment of
inertia as the rotational axis passes through its center of
mass,

I0 = 1
3 ML2, ICM = 1

12 ML2. (8)

The reason why the moment of inertia of a rod, relative
to its center of mass, is four times less than when it
rotates about its end is due to the fact that one-half
of its length represents the distance between these two
rotating axes. According to the definition of moment of
inertia, it exhibits a quadratic dependence on distance.
Therefore, the one-half factor reduces to one-quarter,
which explains why the moment of inertia at the center
of the rod is smaller.

Finally, in Figure 1 we observe the variation in
moment of inertia as the rod transitions from discrete
to continuous, encompassing an increasing number of
closely spaced point masses. We encourage you to view
the accompanying video by clicking here [8], which pro-
vides a comprehensive visualization of the progression
from a finite number of point masses to an infinite
quantity, depicting the continuous limit.

3. Ring

Calculating the moment of inertia for a ring rotating
about an axis perpendicular to its plane can be some-
what intuitive. In this scenario, we will discretize the
ring into a series of N equidistant point masses, each
having a mass of m=M/N . Consequently, the moment
of inertia for each individual point mass j is expressed as
Ij =MR2/N . Consequently, the total moment of inertia
for this assembly of point masses can then be computed
through the summation of their individual contributions,

Iring =
N∑

j=1

MR2

N
= MR2

N
N = MR2. (9)
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Figure 1: Solid rod as a collection of point masses. In each
instance, the situation depicted above illustrates a rod under-
going rotational motion around its end (s = 0), whereas the
situation below exemplifies a rod rotating about its center of
mass (s=L/2).

This process underscores the noteworthy observation
that the outcome remains unaltered regardless of the
degree of discretization necessitated to compose the
rigid ring. However, it is worthwhile to acknowledge that
this approach aids students in grasping the fundamental
notion of spatial mass distribution within a rigid body,
all without the requirement of intricate integration
procedures.

4. Disc

In connection to the preceding outcome, we will consider
a solid disc of mass M and radius R as a collection of
N thin rings closely spaced, every one with a mass m=
M/N and radius rj = jR/N . If the mass is uniformly
distributed throughout the entire circumference of the
collection of thin rings, represented by the summation∑N

j=1 2πjR/N , the concept of linear mass density can
be introduced as follows,

λ = Mass
Length = M

πR(N +1) . (10)

Thus, each ring has a moment of inertia denoted as
Ij = 2πλ(jR/N)3, where j is the index denoting the
individual ring. The summation of these individual
inertias yields the total moment of inertia,

I = 2πλ
R3

N3

N∑
j=1

j3,

= 2π
M

πR(N +1)
R3

N3
N2(N +1)2

4 ,

= 1
2 MR2

(
N +1

N

)
.

(11)

As the number of rings tends towards infinity (N →∞),
the expression within the parentheses approaches unity.
Ultimately, this yields the moment of inertia of a disc
with respect to an axis of rotation passing through its
center of mass and perpendicular to its plane,

Idisc = 1
2 MR2. (12)

In contrast to the moment of inertia exhibited by a ring,
our recent findings reveal that the moment of inertia
of a solid disc is precisely half that of a ring. This
phenomenon can be elucidated by partitioning the entire
mass of the disc into two radial components with the
same mass: a central disc with a radius of R/

√
2 and a

wide annular ring with an inner radius of R/
√

2 and an
outer radius of R. This physical approach demonstrates
that the entire mass of the solid disc, in terms of its
moment of inertia about its center, can be equivalently
represented as that of a thin ring with identical mass but
a radius of R/

√
2. However, it is essential to emphasize

that in the case of the solid disc, mass distribution is
uniform across its entire surface, encompassing even the
inner regions.

Finally, in Figure 2 we can observe the variation in
the moment of inertia of a solid disc discretized into
an assembly of thin rings. As N increases, it becomes
evident that the moment of inertia undergoes a reduction
from unity to a value approximating one-half. However,
as we progressively augment the number of subdivisions,
it becomes apparent that an infinite aggregation of these
thin rings converges to form a solid disc characterized by
a distinct moment of inertia. We encourage you to view
the accompanying video by clicking here [9]. This video
offers an elaborate visualization of the transition from a
finite number of rings to an infinite continuum.

Figure 2: Rigid disc as a collection of thin rings.
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5. Spherical Shell

For this particular rigid body characterized by three-
dimensional symmetry (spherical symmetry), a spherical
shell of mass M and radius R rotates about its center.
We can analyze it as an assemblage of thin rings akin
to geographical lines of latitude encircling our planet.
Considering each ring with mass m = M/N and radius
rj =jR/N , where j is the index denoting the individual
ring. These rings are situated at a vertical distance from
the equatorial plane given by zj = ±

√
R2−r2

j , with the
± sign indicating their position on the upper or lower
hemisphere. The moment of inertia of each thin ring is
given by the expression,

Ij = M

N

(
jR

N

)2
= MR2

N3 j2. (13)

The total moment of inertia is obtained by accounting
for the contributions from the rings on both hemispheres
(twice). This cumulative moment of inertia can be
expressed as,

I = 2
N∑

j=1
Ij = 2MR2

N3

[
1
3 N3+ 1

2 N2+ 1
6 N

]
,

= MR2
[

2
3 + 1

N
+ 1

3N2

]
.

(14)

As the number of rings approaches infinity (N → ∞),
certain terms become negligible, leading to the physical
consideration of an infinitely sized collection of thin rings
join together to compound a spherical surface of mass
uniformly distributed on its area. The moment of inertia
for this configuration is then given by,

IShell = 2
3 MR2. (15)

In contrast to the obtained result, we can observe that
the spherical shell exhibits a greater moment of inertia
than that of a solid disc with the same mass and radius.
To understand the significance of the factor 2/3, we must
analyze the spherical surface and compare it to that of
a disc with the same radius. For the former, its surface
area is four times greater than that of the disc, which
is πR2. In light of this, we determine the radius of a
concentric cap about the axis of rotation that has an
equivalent area to that of a disc with radius R, we can
use the expression for the area of a spherical cap, which
is 2πRh, where h is its height. Thus, the radius of the
cap should be

√
3R/2 to match the area of the disc.

Conversely, for a solid disc to match the moment of
inertia of the spherical shell, its radius should be larger
than the sphere’s radius by a factor of 2/

√
3. In essence,

the factor 2/3 arise from equating the moment of inertia
of the spherical shell to that of a disc with a radius 2/

√
3

times larger than the sphere’s radius.
Finally, in Figure 3, we can observe the variation in

the moment of inertia of a spherical shell comprised

Figure 3: Spherical shell as a collection of thin rings.

of an assemblage of N rings. As the number of rings
increases, it becomes evident that the moment of inertia
experiences a reduction, transitioning from two to a
value that approximates two-thirds. Therefore, as the
number of rings approaches infinity, convergence occurs,
resulting in the formation of a rigid spherical shell distin-
guished by a unique moment of inertia. We recommend
viewing the accompanying video for a comprehensive
visual representation of the entire process, encompassing
the evolution from a finite number of rings to an infinite
continuum. To access the video, please click here [10].

6. Solid Sphere

In this concluding analytical scenario, we opt to assemble
a rigid solid sphere characterized by a mass M and a
radius R using a collection of N concentric shells with
radii rj = jR/N , where j signifies the index indicating
each individual shell. Assuming a uniform distribution
of the total mass M across the surfaces of these shells,

Area =
N∑

j=1
4πr2

j = 4πR2

N2

N∑
j=1

j2,

= 4πR2

N2
N(N +1)(2N +1)

6 ,

= 2
3 πR2 (N +1)(2N +1)

N
.

(16)

Subsequently, introducing the notion of surface mass
density, we find that,

σ = Mass
Area = M

2
3 πR2 (N+1)(2N+1)

N

. (17)
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The moment of inertia of the j-th shell is given by,

Ij = 2
3 mjr2

j ,

= 8
3 πσ

j4R4

N4 .
(18)

Therefore, summing these individual moments of inertia
yields the collective moment of inertia for this discretized
solid sphere, assembled through N concentric shells with
respect to its center,

I = 8
3 π

M
2
3 πR2 (N+1)(2N+1)

N

R4

N4

N∑
j=1

j4,

= 4MR2

(N +1)(2N +1)
N(N +1)(2N +1)(3N2+3N −1)

30N3 ,

= 4
30 MR2

(
3 + 3

N
− 1

N2

)
.

(19)

As the quantity of shells tends towards infinity (N →∞),
specific terms diminish in significance, culminating in
the physical concept of an aggregate of infinitesimally
sized spherical shells fusing to form a solid rigid sphere.
In the limiting scenario, the moment of inertia for this
arrangement is expressed as follows,

Isphere = 2
5 MR2. (20)

The factor 2/5 has physical significance, indicating that
the mass within a solid sphere is evenly distributed
throughout its entire volume. Consequently, the moment
of inertia for a solid sphere is 60 percent less than that of
a spherical shell with equivalent mass and radius. This
reduction arises due to the greater concentration of mass
toward the central region within the solid sphere.

Finally, in Figure 4 we can observe the variation in
the moment of inertia of a rigid sphere comprised of

Figure 4: Solid sphere as a collection of spherical shells.

an assemblage of N spherical shells. With an increasing
number of shells, a discernible reduction in the moment
of inertia occurs, transitioning from a two-thirds ratio
to an approximation of two-fifths. Consequently, in the
limit as the number of shells approaches infinity, a state
of convergence emerges, resulting in the formation of a
solid rigid sphere characterized by a distinctive moment
of inertia. A comprehensive visual representation of this
progression, spanning from a finite number of shells to
an infinite continuum, is provided in the accompanying
video. To access the video, please click here [11].
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