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Abstract

Purpose – The objective is to analyze the relationship between big data analytics 
(BDA) capability and the development of sustainable manufacturing and circular 
economy (CE) in Brazilian industries.

Theoretical framework – The construction of BDA capability, according to the 
resource-based theory, is established through the implementation, integration and 
processing of big data resources. It is argued that BDA capability can contribute 
to the sustainable development of industries based on the collected data, as well 
as influencing the development of CE.

Design/methodology/approach – The research was descriptive and quantitative, 
and was conducted using a survey of employees in Brazilian industries that use 
big data. The hypotheses were tested using structural equation modeling.

Practical & social implications of research – BDA capability has a positive 
and significant relationship with sustainable manufacturing and CE. Sustainable 
manufacturing is a complementary mediator between BDA capability and CE.

Originality/value – The study provides knowledge on the interaction between 
BDA and the development of sustainable and circular practices in Brazilian 
industries, providing incentives for changes in manufacturing companies that can 
successfully reduce social pressures due to resource scarcity, sustainable production 
and supply chain uncertainty.
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1 introduction

The technological advances unleashed by Industry 
4.0 have an exponential impact on organizations, so in 
order to remain competitive in the market, they seek 
to implement strategies to adhere to technological 
innovations in order to achieve competitive and financial 
performance. The adoption of these technologies is related 
to the possibilities of generating value and seeking or 
maintaining competitive advantage through optimizing 
processes, improving customer relationships, and making 
accurate decisions (Ibarra et al., 2018; Bai et al., 2020; 
Kristoffersen et al., 2021).

In parallel, the adoption of these technologies 
for competitive advantage, growing socio-economic 
disparity, changing climatic conditions and depleting 
natural resources have forced organizations to rethink their 
operations management practices in order to address the 
pillars of sustainability (Kleindorfer et al., 2005; Tayal et al., 
2020). In this sense, organizations have used technology 
to help achieve more sustainable production. However, 
it is necessary to develop the firm’s capabilities, not just 
implement new technologies, which is achieved through 
the strategic combination of resources, according to the 
resource-based theory (RBT) (Barney, 1991; Grant, 1991; 
Yu et al., 2018; Mikalef et al., 2018).

Among Industry 4.0 technologies, big data stands 
out (Jabbour et al., 2019; Bai et al., 2020). Big data is 
understood as a technological disruption in business and 
academic ecosystems since the rise of the internet and 
the digital economy (Agarwal & Dhar, 2014), and is 
defined by the rapid processing of large volumes of data, 
structured or unstructured, of various types. It plays an 
important informational role in organizational decision 
making, so it is necessary to build the big data analytics 
(BDA) capabilities established by the implementation, 
integration, and processing of big data resources (Gupta 
& George, 2016).

Building BDA capability occurs through the skills 
applied to big data in conjunction with other resources 
that help visualize and analyze data (Gupta & George, 
2016). When this capability is developed, it enables 
informed decision making, greater bargaining power in 
negotiations with suppliers and customers, improved 
supply chain, improved demand planning, better sales 
planning capacity, operations, and agility (Schoenherr 
& Speier‐Pero, 2015; Zhang  et  al., 2017; Queiroz & 
Pereira, 2019; Cabrera-Sánchez & Villarejo-Ramos, 

2019). As a result, big data technology is also attracting 
attention due to the possibilities related to safer processes, 
efficient resource consumption, and the development of 
more flexible and intelligent processes (Jabbour et  al., 
2018), i.e. with the potential for sustainable production 
in industries (Enyoghasi & Badurdeen, 2021).

In this way, the implementation of sustainable 
practices can be facilitated by BDA capability by providing 
information for more efficient use of energy and materials 
as well as better safety (Enyoghasi & Badurdeen, 2021), in 
addition to making processes more flexible and products of 
higher quality (Azeem et al., 2022). Therefore, it is argued 
that big data technology can contribute to the advancement 
of sustainability in industries based on the data collected. 
When big data is integrated with data visualization and 
analysis systems, BDA is implemented, which makes 
it possible to control and reduce energy consumption 
and improve service decisions, maintenance, quality, as 
well as product design and sustainable business models 
(Majeed et al., 2021; Enyoghasi & Badurdeen, 2021).

In addition to contributing to more sustainable 
manufacturing, BDA capability can have an impact on 
the development of circular economy (CE). According to 
MacArthur (2013), CE is an economic system that aims to 
introduce a circular pattern into the production chain, so 
that products can be reintroduced through remanufacturing, 
recycling and reuse. It is argued that CE is expanding with 
the help of Industry 4.0 technologies, which enable the 
creation of new business models that allow for less material 
consumption and the reuse of waste as a resource in other 
industrial processes (Majeed et al., 2021; Ang et al., 2021).

In addition, Okorie et al. (2018) point out that 
technological infrastructure such as sensors and RFIDs are 
increasingly being used in electronic equipment, allowing 
a product to be tracked for recycling and supporting 
remanufacturing and reuse of parts or components at 
the end of the product’s useful life. This enables greater 
circularity (reducing waste in the production process and 
reusing waste as a material), among other sustainability 
benefits. Specifically, Kristoffersen  et  al. (2020) and 
Awan et al. (2021) point out that BDA is a facilitator of CE.

According to Gupta  et  al. (2019), big data 
functionalities can be used to generate insights for process 
integration and resource sharing. In the same vein, Awan et al. 
(2021) argue that BDA capabilities enable companies 
to successfully use their infrastructure and experience to 
develop processes and products that are compatible with 
the reuse of waste, as well as the possibility of recycling. 
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Given the observation that BDA capabilities influence 
sustainable manufacturing and CE, the research question 
guiding this study is: Is big data analytics capability related 
to the development of sustainable manufacturing and 
circular economy in Brazilian industries?

This question arises from the potential that Industry 
4.0 technologies have given to manufacturing companies 
to face the challenges of limited natural resources and 
negative social and environmental impacts, which are 
challenges presented in the Sustainable Development 
Goals (SDGs) (United Nations, 2015; Awan et al., 2021; 
Enyoghasi & Badurdeen, 2021). Thus, considering that 
Brazil is one of the largest producers of greenhouse gas 
emissions and that environmental and socioeconomic 
issues are discussed globally, there is an urgent need to 
develop the CE paradigm (Nobre & Tavares, 2017).

This paradigm can be supported by BDA 
capability, which has shown its potential for sustainable 
practices (Nobre & Tavares, 2017; Raut  et  al., 2019; 
Kristoffersen et al., 2020; Awan et al., 2021). As technology 
and sustainability are increasingly being discussed in an 
integrated way, this integration is essential in organizations 
seeking to build capacities to overcome the challenges of 
the environment (Jabbour et al., 2019, 2020a; Raut et al., 
2019). Furthermore, Raut et al. (2019) noted that BDA 
and sustainability practices can be different in developed 
and developing economies. Brazil, as an emerging 
economy, needs to develop, but it needs to be sustainable 
in light of the climate crisis. Therefore, this study makes it 
possible to map the relationship between BDA capability, 
sustainable manufacturing, and CE from the perspective 
of Brazilian industry.

2 Theoretical framework

2.1 Resource-based theory and big data 
analytics capability

Resource-based theory (RBT) states that 
organizations are made up of resources, routines, and 
capabilities for developing core competencies (Barney, 1991; 
Grant, 1991). These are derived from the combination of 
organizational resources integrated into complex patterns 
through routines (Barney, 1991; Grant, 1991, 1996).

Big data technology is a resource that has been 
adopted by industries to provide insights for decision 
making. Big data is known for its large volume of data, 
variety and speed of data production, and is considered 

to be a multidimensional structure (Tayal et al., 2020), 
which enables predictive analysis to be carried out, also 
known as big data analytics (BDA) (Ardolino et al., 2018). 
In order for this technology to be advantageous in an 
organization, it is necessary to build BDA capabilities 
(Gupta & George, 2016). Capabilities are understood 
as a set of routines consisting of a set of tangible and 
intangible resources (Peng et al., 2008).

Thus, the tangible resources of BDA are 
software, machine learning, data mining techniques, 
and computational statistics. The intangible resources 
are knowledge and wisdom. The first is experience, 
accumulated learning combined with information that 
results in valuable insights, enabling the application of 
artificial intelligence and algorithms to develop business 
intelligence and support decision making. The second 
is wisdom, which is established through ethical and 
social considerations and personal judgments applied to 
knowledge, supporting the appreciation and understanding 
of motive for decision making in terms of appropriate 
behavior (Ardolino et al., 2018).

Thus, when organizations include the set of 
BDA resources in their organizational routines, they 
constitute a BDA capability. Dubey et al. (2019b) believe 
that a company has BDA capability when it routinely: 
a) combines and integrates information from many data 
sources for use in decision making; b) uses advanced 
analytical techniques (e.g., simulation, optimization, 
regression) to improve decision making; c) uses data 
visualization techniques (e.g., dashboards) to help users 
or decision makers understand complex information; d) 
uses dashboards to break down information to aid in root 
cause analysis and continuous improvement.

BDA capability has a positive impact on organizational 
performance and favors more accurate decision making 
(Bag et al., 2021). In addition to enabling the sharing of 
data from various sources, linking cyber systems, the internet 
of things, and business management to provide insights 
and support organizational processes, it also enables the 
adoption of socio-environmental practices (Dubey et al., 
2019a) and the management of sustainable operations in 
the supply chain (Tayal, Solanki & Singh, 2020).

2 .2  BDA capabil ity,  sustainable 
manufacturing and circular economy

Sustainable manufacturing involves manufacturing 
companies integrating interdependent social, environmental 
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and economic processes, products and practices into 
their systems (Enyoghasi & Badurdeen, 2021). Social 
and environmental practices can be facilitated by BDA 
capabilities (Dubey  et  al., 2019a), which enable the 
measurement and control of environmental indicators 
and the creation of new business models that promote 
sustainability (Gupta & George, 2016; Dubey et al., 2019b; 
Jabbour et al., 2019; Raut et al., 2019; Azeem et al., 2022).

According to the UN, technology can contribute 
to sustainable development by enabling production with 
less environmental impact. Among the technologies, big 
data stands out as an important tool for organizations to 
implement sustainable practices. For this to be possible, it is 
necessary to develop BDA capabilities to help manufacturing 
become more sustainable (Ren et al., 2019; Dubey et al., 
2019a; Jabbour et al., 2019; Bai et al., 2020). According 
to Zeng et al. (2017), sustainable manufacturing is defined 
as manufacturing that adopts sustainable practices in its 
production chain, including environmental, social and 
economic aspects.

In Brazil, according to the National Confederation 
of Industry (CNI), industries have adopted practices 
aimed at avoiding water and energy wastage, developing 
reforestation activities, monitoring greenhouse gases 
and using renewable energy sources. These practices are 
possible thanks to the large volume of data available, which 
has the informational potential to generate knowledge, 
optimize performance indicators and provide decision 
support, feedback and forecasting (Nagorny et al., 2017).

In this way, BDA capabilities in environmental 
management can provide valuable information on resource 
use, energy efficiency, waste generation, and pollution 
levels, as well as alerting us to the need for corrections 
and opportunities in production. This can improve 
production capacity, reduce resource consumption, make 
manufacturing companies environmentally responsible, 
improve product quality and make processes more flexible 
(Carvalho et al., 2020; Azeem et al., 2022). In light of the 
above, the following research hypothesis is formulated:

H1: BDA capability has a positive impact on 
the development of sustainable manufacturing.

The integration of big data technology with 
circular economy (CE) is advocated by Jabbour  et  al. 
(2019) due to the synergy between the two, providing 
a perspective of social and environmental sustainability. 
CE is a concept that aims to reintroduce waste into the 

production chain rather than discarding it into nature, 
and is a regenerative systems approach with a “cradle to 
cradle” perspective. It aims to eliminate waste, reduce energy 
consumption and improve sustainability performance 
through closer ties between organizations (MacArthur, 
2013; Geissdoerfer et al., 2017; Navare et al., 2021).

The concept of CE has characteristics of closed-
loop systems, adaptation of product design, creation of 
new business models, reversal of production cycles, and 
improvement of production technologies (Malek & Desai, 
2019; Ellen MacArthur Foundation, 2022). In this sense, 
BDA capability can help plan strategies that make up the 
concept of CE, such as minimizing emissions, energy 
consumption, and tightening and closing energy and 
material loops through efficient and effective material flow 
management. This capability can also contribute to the 
development of products with intelligent design, which 
contributes to the implementation of circular businesses 
and benefits companies and society (Nobre & Tavares, 
2017; Geissdoerfer  et  al., 2017; Jabbour  et  al., 2018, 
2019; Desing et al., 2020).

BDA allows the creation of new business models 
that help develop the CE economic model, such as additive 
manufacturing, which uses 3D scanning, 3D printing and 
redistributed manufacturing to produce based on data, 
resulting in the optimization of products and the design of 
components (Moreno et al., 2017; Carvalho et al., 2020; 
Colorado et al., 2020; Majeed et al., 2021; Gupta et al., 
2021). Another possible business model that has been 
implemented is servitization, which consists of offering 
services and business solutions that add value to consumers, 
rather than just products produced by industries. Although 
there are challenges to servitization, it has great potential to 
benefit sustainable practices and CE (Kamal et al., 2020).

In addition, BDA capability has led to information 
sharing and closer ties between organizations (Jabbour et al., 
2020b), enabling the creation of tools to help select suppliers 
that support sustainable practices (Wang et al., 2021), and 
improving interactions between organizations, suppliers 
and customers, creating a sustainable supply chain network 
(Gupta & George, 2016; Zeng et al., 2017; Gupta et al., 
2019; Awan et al., 2021). This makes it more feasible to 
share data through collaboration platforms (Tseng et al., 
2018). Furthermore, globally, ISO/TC 323 on CE was 
established in 2008 to standardize the field of CE and 
develop support tools and guidelines for implementation 
(International Organization for Standardization, 2018). 
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In this way, BDA can provide benefits to CE. Therefore, 
the following research hypothesis is formulated:

H2: BDA capability has a positive impact on the 
development of circular economy.

CE is considered to be holistic strategic 
perspective that includes green and sustainable business 
models (Reslan et al., 2022). Sustainable manufacturing 
involves the integration of the sustainable perspectives 
(social, economic and environmental) into products, 
processes and operating systems (Enyoghasi & Badurdeen, 
2021). Industries that adopt this perspective contribute 
to the promotion of CE through recycling, reuse and 
remanufacturing (MacArthur, 2013). By focusing on 
companies and their products, the development of CE can 
maximize the lifespan of products (Alaerts et al., 2019), 
and waste can be reintroduced into the production chain 
as a resource. In addition, new business models such as 
additive manufacturing have shown great potential for 
environmentally clean production and reduced energy 
consumption, as well as lower costs, shorter production 
times and product customization (Majeed et al., 2021).

The concepts of sustainable manufacturing and 
CE are often used interchangeably in the literature, which 
can lead to confusion. While sustainable manufacturing 
focuses on integrating a sustainable perspective (social, 
economic and environmental) into manufacturing processes, 
products and operating systems, CE is an economic model 
that aims to promote sustainability in different sectors 
of the economy, including manufacturing, cities and 
regulations (Enyoghasi & Badurdeen, 2021).

For example, it can be seen that CE has been 
applied to networks of companies that adopt sustainable 
practices in their operations, with the aim of better 
managing the flow of products and controlling the waste 
generated. In this sense, collaboration between customers 
and suppliers in a closed-loop supply chain, through 
recycling, remanufacturing and reuse, has been widely 
explored as a way of promoting sustainability and reducing 
environmental impact (MacArthur, 2013; Desing et al., 
2020; Navare et al., 2021; Acerbi et al., 2021). Therefore, 
the following research hypothesis is presented:

H3: The development of sustainable manufacturing 
has a positive impact on CE development.

Some manufacturing companies that adopt BDA 
capabilities use their resources to observe products in 

real time, reduce processing costs and improve product 
lifecycles, contributing to the adoption of sustainable 
practices (Enyoghasi & Badurdeen, 2021). In addition, 
BDA capabilities can provide improvements in supply chain 
management and performance as well as in information 
monitoring (Nobre & Tavares, 2017; Bag et al., 2021; 
Jabbour et al., 2020a), reducing information asymmetry 
by enabling data sharing among supply chain partners 
(Nobre & Tavares, 2017; Dubey et al., 2019a).

The integration of BDA capability and CE has 
increased the quality of decision making in relation to 
CE development, adding informational and sustainable 
value. It has developed a fundamental role in society, 
changing perspectives on environmental conservation and 
human behavior, resulting in a paradigm shift (Nobre & 
Tavares, 2017; Desing et al., 2020; Awan et al., 2021). 
For example, governments have called for the creation 
of indicators suitable for effectively monitoring progress 
towards a CE (Alaerts et al., 2019). Therefore, the following 
research hypothesis is proposed:

H4: BDA capability and CE development are 
mediated by sustainable manufacturing.

Based on the hypotheses presented, Figure 1 illustrates 
the theoretical model proposed in this research.

3 Research methods and procedures

The research is descriptive, quantitative and was 
conducted through a survey of employees in Brazilian 
industries that use big data technology. The population 
studied are Brazilian industries that use big data. The choice 
of this population is due to the fact that industries have 
been evolving rapidly due to technological advances, 

Figure 1. Theoretical research model
Source: Own elaboration
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which has enabled the development of innovations for 
sustainable production, providing new business models 
that reduce environmental and social impacts (Elkington, 
2019). Thus, a sustainable perspective has become urgent, 
resulting in innovations that bring together economic, 
social and environmental aspects (Malek & Desai, 2021; 
Ang et al., 2021). To access the target population and 
compose the sample, users of the LinkedIn platform 
were tracked using the terms “big data,” “data analytics” 
and “data scientist,” who are employees of Brazilian 
industries with functions related to the development 
of BDA capability. Thus, the sample is made up of 
respondents who hold positions such as: Data Scientist, 
Manufacturing Excellence, Infrastructure Analyst, Data 
Analyst, Manufacturing IT, Market Intelligence Analyst, 
Business Intelligence Analyst, Continuous Improvement 
Manager, Business Intelligence, Head of Manufacturing 
Excellence, and Quality Manager and Controller.

Next, 450 invitations to connect via LinkedIn 
were sent to employees of these companies who had roles 
related to management and BDA, of whom 204 accepted 
to join the network. Those who accepted the invitation 
were sent the link to the survey instrument via Google 
Forms. To increase adherence, the survey instrument was 
sent by e-mail if requested. This data collection period 
was from May 6 to June 1, 2021.

The minimum sample size was estimated using 
the G*Power3.1.9.4 software (Faul et al., 2009), using a 
test power of 0.80 and a median effect size (f2) of 0.15, 
according to the recommendations of Hair et al. (2021), 
which resulted in a minimum sample of 55 cases. There 
were a total of 154 responses, of which 41 were excluded, 
18 because they did not use big data technology and 
23 because they were not from the industrial sector. 
Therefore, the final sample consisted of 113 responses 
that were considered valid (Supplementary Data 1 – 
Database). This data collection period took place between 
April and July 2022.

The research instrument (Appendix A – Research 
Instrument) consists of three constructs: BDA capability, 
measured by four statements adapted from Dubey et al. 
(2019b); sustainable manufacturing, contained in five 
statements based on the studies of Zeng et  al. (2017) 
and Bag et al. (2021); and CE, formed by five statements 
adapted from Zeng et al. (2017). As the statements used 
in the study came from foreign research instruments, the 
process of translation and back-translation was applied to 
avoid distorted measurements and to measure what was 

really intended. Subsequently, the research instrument 
was pre-tested with two professionals in the field and 
three PhD students to eliminate any possible ambiguity. 
The constructs were measured using 14 multiple items 
and the respondents’ level of agreement was measured 
using a Likert scale ranging from (1) strongly disagree to 
(5) strongly agree. The description of the variables was 
organized into codes (Appendix A. Research Instrument). 
In addition to the statements, the survey instrument used 
a control question in order to select industries that use 
a large volume of structured and/or unstructured data.

The hypotheses were tested using structural 
equation modeling (SEM), using the RStudio program. 
The SEM was estimated using the partial least squares 
path modeling (PLS) method, due to the non-normality 
of the data distribution and the size of the sample. 
The SmartPLS software v.3.3.9 (Hair et al., 2021) was 
used to carry out the analysis.

To avoid common method bias, the study followed 
the recommendations of Podsakoff et al. (2003). First, the 
statements in the questionnaire were organized randomly 
to avoid any possible association between the constructs 
on the part of the respondents. The questionnaire was 
then sent directly to the participants. After collection, 
Harman’s single factor test was carried out, where it 
was observed that one factor accounted for 24.24% of 
the variance, indicating that there was no evidence of 
common method bias.

4 Analysis and discussion of the 
results

4.1 Sample characteristics

Each response received represents one surveyed 
company. The characteristics of the companies whose 
employees took part in the survey are shown in Table 1.

When analyzing the characteristics of the 
industries, it was possible to see that companies with more 
than 99 employees accounted for 97.35% of the total 
responses, followed by companies with between 50 and 
99 employees (2.65%). As for the industrial sectors, 
there was a rough segmentation between the activities 
according to the participants’ comments. There were four 
groups with the highest percentages, with the food sector 
in first place with 32.74%, followed by agribusiness with 
12.39%, the automotive group in third with 11.50%, 
and cosmetics in fourth with 11.50%.
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4.2 Evaluation of the measurement 
model

The evaluation of the measurement model 
(Supplementary Data 2 – PLS Algorithm) began with an 
assessment of the reliability of the indicator. The literature 
recommends that indicators have loadings above 0.708, 
but in social science studies, loadings below 0.708 can 
be considered in conjunction with a careful analysis of 
the effects on reliability and validity (Hair et al., 2021). 
Therefore, three indicators were excluded, two of which 
related to the sustainable manufacturing construct and 
one to CE (Table 2).

After the exclusion, indicator Q4 still had a lower 
loading than recommended (0.700), and it was decided 
to keep it because there was no significant change in 
composite validity (Hair  et  al., 2021). After adjusting 
the measurement model, it can be said that the items 
in the research instrument do not show redundancy or 
undesirable response patterns, and also that the constructs 
explain 64.6% (BDA Capability) or more of the variance 
of the indicators that make up the construct.

Next, the internal consistency of the measurement 
model was assessed using Cronbach’s alpha and composite 
reliability. The Cronbach’s alpha of the latent variables 
showed values above 0.70, which is considered satisfactory 
for the lower limit of acceptability according to Hair et al. 
(2021). With regard to composite reliability, values between 
0.70 and 0.90 are presented for the latent variables, which 

is considered satisfactory to good, indicating that the 
indicators are valid and do not have redundancy problems. 
With regard to the average variance extracted (AVE) of 
the constructs, all the constructs have values considered 
acceptable, demonstrating the existence of convergent 
validity (Hair  et  al., 2021). Next, the discriminant 
validity of the constructs was estimated to measure the 
empirical distinction between the constructs. As shown 
in Table  3 (shaded), discriminant validity is present. 
As an additional discriminant analysis, the heterotrait-
monotrait ratio (HTMT) was evaluated. Henseler et al. 
(2015) propose a threshold value of 0.85 for structural 
models with more conceptually distinct constructs, thus 
confirming the empirical distinctiveness of the constructs.

4.3 Structural model evaluation and 
hypothesis testing

The structural model was then evaluated 
(Supplementary Data 3 – PLS Bootstrapping), checking 
the model’s collinearity (VIF), explanatory power (R2) 
and effect (Table 4). According to Hair  et  al. (2021), 
VIF values above 5 indicate the existence of probable 
collinearity problems between the latent predictor variables, 
but collinearity can also occur with values between 
3 and 5. The values obtained in the internal VIF show 
that there is no collinearity between the latent predictor 
variables of BDA capability and sustainable manufacturing 
(Hair et al., 2021).

Next, the explanatory power of the model was 
assessed using the coefficient of determination (R2). 
R2 values range from 0 to 1. In the social sciences, 
R2 is considered weak, moderate and strong at 0.25, 
0.50 and 0.75, respectively (Hair et al., 2021). In the 
case of sustainable manufacturing, the R2 value is 0.222, 
indicating that BDA capability explains 22.2% of the 
variation in sustainable manufacturing. With regard to the 
CE variable, there is moderate explanatory power, with a 
coefficient of determination value of 0.579, indicating that 
BDA capability and sustainable manufacturing explain 
57.9% the CE variable.

Significance is assessed using the path coefficient 
t-values or confidence intervals calculated based on the 
bootstrapping sample (Hair et al., 2021). According to 
Hair et al. (2021), the bootstrapping samples estimate the 
PLS path model and determine the standard deviation 
and standard error of the estimated coefficients using 
the sampling distribution. Values greater than 1.96 were 

Table 1  
Company characteristics

company Size Frequency %
From 50 to 99 employees 3 2.65
More than 99 employees 110 97.35
Sectors
Food 37 32.74
Agribusiness 14 12.39
Automotive 13 11.50
Cosmetics 13 11.50
Mining and other commodities 7 6.19
Consumer goods 6 5.31
Pharmaceuticals and hospitals 6 5.31
Construction 5 4.42
Fuel 4 3.54
Apparel 3 2.65
Supplies 3 2.65
Appliances and Pulp and Paper 2 1.76
Source: Research data.
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Table 2  
Model fit indices

indicator loadings composite Reliability cronbach’s Alpha convergent Validity (AVE)

Big data analytics 
capability

Q1 – 0.846

0.879 0.823 0.646
Q2 – 0.858
Q3 – 0.801
Q4 – 0.700

Sustainable 
manufacturing

Q5 – Excluded

0.909 0.850 0.769
Q6 – 0.882
Q7 – 0.900
Q8 – 0.848

Q9 – Excluded

Circular economy

Q10 - 0.858

0.895 0.842 0.682
Q11 – 0.891
Q12 – 0.830

Q13 – Excluded
Q14 – 0.714

Source: Research data.

Table 3  
Discriminant Validity

BDA capability circular Economy Sustainable Manufacturing
BDA Capability 0.803

Circular Economy 0.537 0.610 0.826
Sustainable Manufacturing 0.471 0.528 0.729 0.840 0.877

Source: Research data.

Table 4  
Structural model fits

R2
ViF

BDA capability Sustainable 
Manufacturing circular Economy

BDA Capability - 1.000 1.285
Sustainable Manufacturing 0.222 1.285

Circular Economy 0.579
Source: Research data.

Table 5  
Significance and Relevance of the Structural Model

Relationship Hipotheses total Effect St. Dev. t Statistic p-values
Direct H1 BDA Capability > Sustainable Manufacturing 0.471 0.086 5.506 0.000

Direct and Indirect H2 and H4 BDA Capability > Circular Economy 0.536 0.059 9.032 0.000
Direct H3 Sustainable Manufacturing > Circular Economy 0.612 0.074 8.322 0.000

Indirect H4 BDA Capability > Circular Economy 0.288 0.064 4.522 0.000
Source: Research data.
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considered for the t-values and p <0.05 for the structural 
path of the path diagram (Hair et al., 2021). The effect is 
verified by the path coefficient, which varies between -1 and 
+1, with values close to +1 indicating a strong positive 
relationship and vice versa, and the closer to zero, the 
smaller the relationship (Hair et al., 2021). Table 5 shows 
the significance and relevance of the theoretical model.

The results obtained indicate that each path in 
the structural model has a significant relationship, with 
p-values < 0.000 and t-values greater than 1.96 at a 5% 
significance level.

4.4 Discussion of the hypotheses

The first hypothesis (H1) seeks to analyze the 
relationship between BDA capability and the development 
of sustainable manufacturing. It indicates that the BDA 
capability construct is relevant in explaining the sustainable 
manufacturing construct, reflecting the development of 
sustainable practices in industries with the help of BDA 
(Raut et al., 2019; Zhang et al., 2022). This is because 
big data makes it possible to provide useful information 
that benefits decision making in the lifecycle and 
complex environments of businesses (Ren et al., 2019). 
It contributes to less resource-intensive manufacturing 
and more accurate environmental and social performance, 
through BDA capabilities that provide decision support, 
feedback and forecasting (Nagorny et al., 2017). BDA has 
transformed the manufacturing sector, making processes 
in manufacturing companies more flexible to new changes 
and enabling exploration for improvement (Azeem et al., 
2022). It provides data-driven solutions and enables the 
analysis of product end-of-life and decision making in 
relation to production, energy consumption and pollutants 
(Cui et al., 2020).

The second hypothesis (H2) sought to verify the 
relationship between BDA capability and CE development, 
through the direct relationship between the constructs of 
BDA capability and CE. This relationship was significant, 
indicating that BDA capability can contribute to CE 
development, confirming the idea of Jabbour et al. (2019) 
about the integration of big data technology and CE, as 
BDA capability can help in the strategic planning of CE 
concepts, such as efficiency in material flow management, 
minimization of energy consumption and emissions of 
polluting gases, as well as in intelligent design projections 
that help in the implementation of circular businesses in 

society (Nobre & Tavares, 2017; Geissdoerfer et al., 2017; 
Jabbour et al., 2019; Desing et al., 2020).

According to Kristoffersen et al. (2020), BDA is 
considered a key enabler for CE, but there is little guidance 
on the potential of circular strategies. Despite this, data can 
provide patterns and help reduce uncertainty, operational 
complexity and resistance to adopting the CE paradigm 
(Gupta et al., 2019). In addition, Hapuwatte and Jawahir 
(2019) point out that predictive models, developed in 
conjunction with optimization processes that include 
sustainability data, can support product design and provide 
favorable and sustainable conditions for manufacturing. 
According to Cui et al. (2020), BDA can contribute to 
predicting the behavior of various production systems, 
allowing factories to implement preventative measures 
with precision.

The third hypothesis (H3) investigates the 
relationship between sustainable manufacturing and CE, 
which proves to be significant. It indicates the relevance 
in explaining CE, confirming the studies of Reslan et al. 
(2022), who point out that sustainable manufacturing is 
integrated in the holistic perspective of CE. Sustainable 
manufacturing contributes to CE through products with 
circular design, that is, products that are produced in a way 
that maximizes their useful life (Alaerts et al., 2019), or it 
provides processes related to projects for remanufacturing, 
disassembly and repairability (Jabbour et al., 2018).

It also enables better management of product flow 
between manufacturing companies through cooperation 
(Navare et al., 2021; Acerbi et al., 2021). In addition, 
smart devices such as RFIDs, readers, sensors and tags 
enable records that play a key role throughout the assembly 
process and subsequent lifecycle, improving records of 
energy consumption, fault history and material delivery, 
which can result in effective sustainable production 
(Ren et al., 2019).

The last hypothesis (H4) analyzes the relationship 
between BDA capability and CE development mediated 
by sustainable manufacturing. This analysis is based on 
the indirect relationship between BDA capacity and CE. 
It shows that sustainable manufacturing mediates the 
relationship between BDA capacity and CE, i.e. sustainable 
manufacturing contributes to CE. This mediation can 
be seen when managers in manufacturing industries use 
data to develop strategies that enable the transformation 
of linear production into a circular system, where BDA 
capability is fundamental for efficient decision making 
in the processes of material recovery and product reuse 
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(Awan et al., 2021). This is a useful finding because the 
emergence of new forms of digital business models and 
the digital economy has greatly increased the demand 
for data-driven decision making in strategic processes 
(Awan et al., 2021).

This is possible because BDA helps in collaboration 
and the sharing of information on pollution control, waste 
emissions and carbon footprints, enabling manufacturing 
firms to improve their sustainable business performance 
(Raut et al., 2019) and sustainability in supply chains 
(Dubey et al., 2019a). For this to happen, there needs to be 
a focus on developing capabilities that enhance integrated 
actions (Jabbour et al., 2018). This supports the study 
by Jabbour et al. (2020a), which shows that big data is 
useful in improving sustainable supply chains, and for the 
benefits of BDA to be applied to sustainable manufacturing, 
there needs to be science and guidance for sustainable 
management in supply chains. This will allow for better 
management of product flows between manufacturing 
companies through collaboration (Navare et al., 2021; 
Acerbi et al., 2021). In addition, smart devices such as 
RFIDs, readers, sensors and tags enable records that play a 
key role throughout the assembly process and subsequent 
lifecycle, improving records of energy consumption, fault 
histories and material delivery, which can lead to effective 
sustainable production (Ren et al., 2019).

5 concluding remarks

Considering the economic, environmental and 
social issues being addressed globally, and the benefits 
that BDA provides in the sustainable development of 
manufacturing companies, this study aimed to identify the 
relationship between BDA capability and the development 
of sustainable manufacturing and CE in Brazilian industries. 
The results show that BDA capability is related to the 
development of sustainable manufacturing and CE.

It can be seen that BDA capability has benefited 
the development of CE, through the design of products 
for regeneration, i.e. waste can be used as a resource in 
new business models. Furthermore, in the interactions 
between organizations, improvements can be seen in the 
management and performance of supply chains, enabling 
sustainable practices between manufacturing companies 
and improving coordination between partners, leveraging 
the CE paradigm. Thus, in the manufacturing sector, 
BDA is a catalyst that allows the organization to grow 

and take care of the environment and resources, as well 
as gain competitive advantage.

The study draws on the literature to show that 
BDA capability is related to the development of sustainable 
manufacturing and CE. In the relationship between BDA 
capability and CE, the presence of the mediating variable 
sustainable manufacturing is noted, contributing to a better 
understanding of this effect in the relationship. The study 
focuses on Brazilian industries that use big data technology, 
providing better knowledge of the interaction between 
this technology and the development of sustainable and 
circular practices in industries, enabling incentives for 
changes in manufacturing companies that can succeed 
in reducing social pressures.

The proposed model uses a limited sample 
of different types of Brazilian industries, so a more 
comprehensive study is recommended, in addition to 
focusing on specific industries. In addition, a qualitative 
analysis is recommended to understand how operations 
management occurs in sustainable and circular practices 
through BDA capability. It is also suggested that the impact 
of BDA capability, sustainable manufacturing and CE on 
value creation and innovation generation in products, 
processes, management and marketing be analyzed.
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APPENDiX A. RESEARcH iNStRUMENt

Big Data capability (Dubey et al., 2019b)
Scale: (1) strongly disagree and (5) strongly agree
Q1. Our company easily combines and integrates information from many data sources for use in decision making.
Q2. Our company uses advanced analytical techniques (e.g. simulation, optimization, regression) to improve 

decision making.
Q3. Our company routinely uses data visualization techniques (e.g. dashboards) to help users or decision makers 

understand complex information.
Q4. Our dashboards give us the ability to drill down into information to support root cause analysis and 

continuous improvement.
Sustainable Manufacturing (Zeng et al., 2017; Bag et al., 2021)
Scale: (1) strongly disagree and (5) strongly agree
Q5. Our company uses clean energy (solar, wind, etc.) in the production process.
Q6. Our company is concerned about the logistics process to reduce environmental impacts.
Q7. Our company gives preference to partners who comply with environmental protection rules and regulations.
Q8. Our company works with product design and processes that strive to reduce waste.
Q9. Our company has a waste conversion or disposal program.
circular Economy (Zeng et al., 2017)
Scale: (1) strongly disagree and (5) strongly agree
Q10. Our company is committed to processes that reduce the consumption of raw materials and energy.
Q11. Our company uses materials that can be reused.
Q12. Our company uses waste materials to manufacture other products.
Q13. The companies we work with participate in the management of manufacturing waste.
Q14. Our company is committed to lean manufacturing.
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