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ABSTRACT

Time series modelling applied to study water table depths monitoring data is an elegant way to model irregular and continuous data. 
When successive observations are dependent, future values may be predicted from past observations, and target parameters can be 
estimated. These may include expected values of  groundwater levels, or probabilities that critical levels are exceeded at certain times 
or during certain periods. These target parameters are estimated with the purpose of  obtaining characteristics of  the development 
of  a certain domain in time and such characteristics can, for instance, be extrapolated to future situations. In a system identification 
approach, is it possible to establish the dynamic relationship between water table perturbations and climatological events, vegetation, 
hydrogeological local conditions, management and groundwater abstraction. The aim of  this work was demonstrate the use of  a 
physical-based time series model to stablish the relationship between precipitation and water table depths from hydrogeological 
monitoring data. The results enabled to infer about water table dynamics even when it is affected by different climatological patterns, 
simulating mean, maximum and minimum states.

Keywords: Modelling; Groundwater; Monitoring; PIRFICT model.

RESUMO

A análise de séries temporais aplicada ao estudo de dados de monitoramento do nível freático é uma maneira elegante de modelar 
dados irregulares e contínuos. Quando observações sucessivas são dependentes, os valores futuros podem ser previstos a partir de 
observações passadas, e os parâmetros alvo podem ser estimados. Estes podem incluir os valores esperados das profundidades das 
águas subterrâneas, ou probabilidades de que os níveis críticos sejam excedidos em determinados momentos ou durante determinados 
períodos. Estes parâmetros alvo são estimados com a finalidade de obter características do desenvolvimento de um determinado 
domínio no tempo, e tais características podem, por exemplo, ser extrapoladas para situações futuras. Através de uma abordagem de 
identificação de sistema, é possível estabelecer a relação dinâmica entre perturbações nos níveis freáticos e eventos climáticos, vegetação, 
condições hidrogeológicas locais, manejo e abstração das águas subterrâneas. O objetivo desse trabalho foi demonstrar a aplicação de 
um modelo de séries temporais fisicamente embasado no estabelecimento da relação entre precipitação e oscilação de níveis freáticos 
a partir de dados de monitoramento hidrogeológico. Os resultados permitiram inferir sobre a dinâmica dos níveis freáticos mesmo 
quando afetados por diferentes padrões climatológicos, simulando estados médios, mínimos e máximos de alturas do nível freático.

Palavras-chave: Modelagem; Águas subterrâneas; Monitoramento; Modelo PIRFICT.
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INTRODUCTION

A common thread in environmental studies is the need for 
methodological tools capable of  describing and predicting these 
complex and, typicall high-dimensional processes (CRESSIE; 
HOLAN, 2011). Environmental time series studies are fundamental 
to a large objective of  sustainability and adaptation. To know how, 
and at last analysis, why enviromental processes changes over 
time gives governs and police makers a means of  a rational and 
informed decision making processes.

A general class of  time series models based on linear 
regression are described by Box and Jenkins (1976) while Hipel and 
McLeod (1994) present several applications of  these methods in 
hydrology, as well extension developed between both publications. 
Even with recent physical-mechanistic spatially distributed models 
developements, simple time series models continue being used 
in a large variety of  applications, but they do not stop evolving 
with collaborations of  disciplines such as systems identification, 
engineering control, signal processing and filtering in their 
developments (VON ASMUTH et al., 2012). The advantages of  
time series models over more complex models are their accuracy, 
ease of  construction and robustness of  the statistical bases that 
govern the models. This is mainly due to time-series models 
considering the system as a whole, while other models are based 
on the representative elementary volume (REV). When considering 
REV, the modeler automatically impute the notion of  spatial scale 
to modeling, which requires a lot of  data to solve the model.

Applications of  time series analysis can be used to fill and 
complete irregular hydraulic head series from precipitation data 
(YI; LEE, 2003); to evaluate the interaction between groundwater 
and surface water (HATCH et al., 2006), or even be extended to 
the evaluation of  multiple stresses like baseline flow, pumping, 
vegetation, climate, dams, in the behavior of  groundwater levels 
(VON ASMUTH et al., 2008). More complex time series models 
can estimate groundwater recharge (YIHDEGO; WEBB, 2011), 
capture nonlinear soil drainage behavior (PETERSON; WESTERN, 
2014) or even define recharge response time from precipitation 
(HOCKING; KELLY, 2016; MANZIONE et al., 2017).

The aim of  this work was to use the dynamic relationship 
between precipitation and groundwater levels oscillation established 
by a time series model to simulate groundwater characteristics, such 
as medium and extreme levels, from hydrogeological monitoring 
data, in order to provide relevant information for the planning 
of  water use and rational use of  aquifer systems.

TIME SERIES MODELLING

Time series models are a systematic and empirical way 
to estimate and predict the temporal behaviour of  a dynamic 
hydrological process. The initial aim of  a time series analysis 
is the realization of  inferences about the properties or basic 
characteristics of  the generator mechanism of  the stochastic 
process of  the observations of  the series (MANZIONE, 2015). 
After its formulation, the mathematical model is used to test some 
hypothesis or theories related with the process and make prediction 
of  future values of  the time series. The correct representation of  
the hydrological response determines a relevant point of  the study 
to be considered in the management of  these resources. Several 

stochastic methods and modelling schemes have been developed for 
hydrological processes. In temporal stochastic processes, the future 
is determined only partially from past values. Exact predictions 
are impossible to obtain and should be replaced by the idea that 
future values ​​may occur within a given range of  probabilities that 
is conditioned on the knowledge of  past values. The future state 
of  a stochastic process is predicted from a set of  realizations, 
which can be described as the result of  a probabilistic experiment. 
Predicting the future state of  water resources is necessary for the 
application of  water resources policies and decision-making systems 
in real time. The lack of  knowledge about the physical processes 
of  the hydrological cycle has made the application of  statistical 
methods increase in the field of  predictions and synthetic data 
generation in the incorporation and uncertainties and analysis of  
extreme events (KARAMOUZ et al., 2013).

TRANSFER-FUNCTION NOISE (TFN) MODELS

Transfer-function models relate the behaviour of  the series 
under investigation to present and past values of  one or more 
series. If  another variable is affecting the value of  the variable 
under study Zt, the effect of  this variable can be verified using 
a transfer function model. One or more deterministic transfer 
components and a noise component are distinguished, being additive 
parts of  the model. The transfer component describes the part 
of  groundwater level that can be explained by an input consisting 
of  a linear transformation of  a time series of  that input variable. 
The noise model describes the autoregressive structure of  these 
differences between observed values of  the aquifer level and the 
sum of  the transfer components. The input of  the noise model 
is a series of  independent and identically distributed disturbances 
with zero mean and finite and constant variance, which is a white 
noise. The general form of  a noise transfer function model can 
be seen in Figure 1, where 1, 2, 3,, , ,...t t tX X X  are input variables, 

* * *
1, 2, 3,, , ,...t t tZ Z Z  are transfer components, and tε  is the stochastic 

error term with variance 2
εσ  finite and constant. tN  is the noise 

component. tZ  is the output variable.

Figure 1. Schematic representation of  a transfer-function noise 
model with an added noise.
Source: Manzione (2015).
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The basic idea behind this transfer-function noise modelling is 
to divide the observed series (output) into a number of  components 
related to causes (inputs) that influence the phenomenon, and an 
unknown noise component. TFN models are generally applied to 
distinguish natural and anthropic components from groundwater 
series (VAN GEERA; ZUUR, 1997). If  an input series {Xt} is 
considered, the TFN model is defined as:

*
t t tZ Z N= + 	 (1)

where
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is the noise component. The subscript b is a pure delay, which 
corresponds to the number of  time steps after an input action 
causes a reaction at the output of  the system. The extent of  this 
for multiple input series is direct. The transfer component of  
Equation 2 can be rewritten as:
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where ω and δ are the coefficients of  the impulse-response 
function B.

The theoretical impulse-response (IR) function reflects 
the same autoregressive and moving average characteristics of  a 
theoretical autocorrelation function (ACF) (HIPEL; MCLEOD, 
1994). In models that empirically explain the influence of  the 
hydrogeological regime on a phenomenon related to it, the 
number of  explanatory variables (inputs) should be kept as low as 
possible, in order to avoid overestimated behaviors or coincident 
correlations (VON ASMUTH; KNOTTERS, 2004).

MODELLING WATER TABLE DEPTHS USING 
THE PIRFICT MODEL

The behaviour of  a linear input and output system can 
be completely characterized by its IR function (ZIEMER et al., 
1998; VON ASMUTH et  al., 2002). For water table depths, 
physical-mechanistic models of  groundwater flow can explain the 
dynamic relationship between the precipitation incident in an area 
and the response in the groundwater levels. However, predictions 
about water table depths can be provided and obtained by much 
less complex TFN models, being generally as accurate as those 
obtained by deterministic models (KNOTTERS, 2001). In TFN 
models, one or more deterministic transfer components and a noise 
are determined as additive components. The transfer components 
describe the part of  the process of  water levels oscillation that can 

be explained by the input series (precipitation, evapotranspiration, 
pumping, abstractions, river flow, among others) from a linear 
transformation of  these input series. The noise model describes the 
autoregressive structure of  the differences between the observed 
levels and the sum of  the transfer components. The input of  the 
noise model is a series of  independent and identically distributed 
perturbations, with zero mean and finite and constant variance, 
which is white noise. The PIRFICT (Predefined Impulse Response 
Function In Continuous Time) model is an alternative to TFN models 
at discrete time intervals presented by Von Asmuth et al. (2002). 
In the PIRFICT model, the input block pulse is transformed into an 
output series by a continuous-time transfer function. The coefficients 
of  this function do not depend on the frequency of  observation.

Estimating groundwater systems response 
characteristics

Assuming linearity in the system, a series of  water 
table depths is a transformation of  a series of  surplus/deficit 
precipitation. This transformation is completely governed by 
the IR function. For the case of  a simple linear system with no 
phreatic disturbances, which is influenced only by surplus/deficit 
precipitation, the following TFN model (written as an integral 
convolution) can be used to describe the dynamic relationship 
between water table depths and surplus/deficit precipitation 
(VON ASMUTH et al., 2002):

( ) ( ) ( )*h t h t d r t= + + 	 (6)

( ) ( ) ( )t*h t p t dτ θ τ τ−∞= −∫ 	 (7)

( ) ( ) ( )tr t t Wϕ τ τ−∞= − ∂∫ 	 (8)

where:
h(t) is the observed water table depth at time t [T];
h*(t) is the predicted water table depth at time t credited to 
precipitation surplus/deficit, relative to d [L];
d is the h*(t) level without precipitation, or in other words the 
local drainage level, relative to ground surface [L];
r(t) is the residuals series [L];
p(t) is the precipitation surplus/deficit intensity at time t [L/T];
θ(t) is the transfer IR function [-];
φ(t) is the noise IR function [-]; and
W(t) is a continuous white noise (Wiener) process [L], with 
properties E{dW(t)}=0, E[{dW(t)}2]=dt, E[dW(t1)dW(t2)]=0, t1 ≠ t2.

The local drainage level d is obtained from the data as follows:

*

0 0 0
( ) ( ) ( )
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h t h t r t
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with N as the number of  water table depths observations.
TFN models are identified through the choice of  mathematical 

functions that describe the IR relationship and the autoregressive 
structure of  the noise. This identification can be done in two ways:

1.	 Interactively: using correlation structures in the available 
data and model diagnostics;
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2.	 Physically: based on insight into the behaviour of  the 
analysed system.
Following the physical system identification, the IR function 

describes the way in which each water table will respond to a pulse 
caused by precipitation. In this respect, it is possible to make an 
analogy to a unit hydrograph (VON ASMUTH et al., 2002), where 
after a precipitation event there will be changes in the base flow 
and increase in the surface, subsurface and groundwater flow. 
A typical IR function resembles a probability distribution function 
with strong asymmetry (Figure 2).

The area and shape of  the IR function depend heavily on 
in situ hydrological circumstances. Where by chance the resistance 
to flow near the nearest drainage is low, the water table will show a 
rapid drop in the levels after a precipitation event and consequently 
the area of  the IR function will be small. This also reflects the 
memory of  the hydrogeological system at a precipitation event, 
which may be small as in the previous example or large example 
when the porous media is extensive and the levels deeper. 
The parameter θ (t) is a Pearson type III distribution function 
(PIII df) (ABRAMOWITZ; STEGUN, 1965). The option for 
this type of  function is given by its flexible nature, adjusting to 
a wide range of  hydrological responses. Assuming linearity, the 
deterministic component of  the water table dynamics is completely 
described by the moments of  the IR function. In this case, the 
parameters can be defined according to Von Asmuth et al. (2002):
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where A, a, n, are the adjusted curve parameters, Γ(n) is the Gamma 
function, with parameter α controlling the exponential decay rate 
of  φ(t), and σ2

r is the residuals variance.
The PIII df  was able to model oscillations in the water 

tables in a similar and comparable way to Box-Jenkins TFN models, 
but with many more parameters (VON ASMUTH et al., 2002). 

Equation 10 and its parameters present the physical sense embedded 
in the dynamic relationship between precipitation and response 
in the aquifer, as described in Von Asmuth and Knotters (2004). 
Parameter A is related to drainage resistance (the area of  ​​the IR 
function is equal to the ratio of  the mean water table depth to 
the average recharge). The parameter a is determined by the soil 
storage coefficient (porosity) and parameter n by the convection 
time and dispersion of  the precipitation by the unsaturated zone. 
The physical bases are explained by transfer functions of  a series of  
linear reservoirs (NASH, 1958). For proposals where it is intended 
to model the response of  a basin in general, the idealization of  
the basin as a reservoir of  linear storage is the most elementary 
among several levels of  conceptualization that involves (BODO; 
UNNY, 1987). The parameter n shows the number of  reservoirs 
and a is equal to the inverse of  the normally used reservoir 
coefficient. As Knotters and Bierkens (2000) explain, a simple linear 
reservoir (PIII df  with n = 1) is equal to a simple physical model 
of  one-dimensional soil column, discarding lateral flow and the 
functionality of  the unsaturated zone. Von Asmuth and Knotters 
(2004) call attention that care should be taken when interpreting 
the parameters of  the PIII df, in physical sense, because of  their 
lumped and empirical nature. Further details on the identification 
of  IR functions and the physical interpretation of  their parameters 
can be found in Von Asmuth (2012).

Simulating water table dynamics characteristics

According to Knotters and Van Walsum (1997), examples 
of  statistical characteristics describing the groundwater regime are 
the mean groundwater level (MGL), mean highest groundwater 
level (MHGL) and mean lowest groundwater level (MLGL). 
These statistics are called mean groundwater levels (VAN HEESEN, 
1970; VAN DER SLUIJS; GRUIJTER, 1985). These statistics are 
used, for example, to analyze or model the relationship between 
the hydrogeological regime and factors such as crop growth 
(FEDDES  et  al., 1988; VAN DAM, 2000), soil conditions or 
ecological conditions (GROOTJANS, 1985; WITTE et al., 1992; 
VAN EK  et  al., 2000). In addition, they are used to generate 
scenarios about extreme conditions of  groundwater levels for 
rural and urban planning or even public policy formulations (VAN 
HEESEN, 1970; BOUCNEAU et al., 1996; BIERKENS et al., 
2000; MANZIONE et al., 2010).

Within a system identification approach such as that of  the 
PIRFICT model, it is important that the signal between the oscillation 
of  the groundwater levels and the climatological variables is high 
frequency so that the TFN can model the groundwater dynamics. 
Van Heesen (1970) recommends a minimum of  eight years of  
groundwater observations to calculate MGL, while Knotters and 
Van Walsum (1997) show that there is still considerable variation 
in MGLs at scales above eight years. Since series of  groundwater 
levels are not available for long periods of  time, it is possible 
from the dynamic relationship between water table depths and 
climatological variables, such as precipitation, to use this signal 
to extend the series of  observations for the same period of  the 
climatic series. For this procedure, Manzione et al. (2012) proposes 
the following steps:

Figure 2. Examples of  the range of  shapes the Pearson type 
III df  distribution function can take (n = [0.5, 1, 1.3, 1.7, 2.3], 
A = n × 100, a = 0.01).
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1.	 After modelling the relationship between precipitation 
surplus/deficit and water table depths using the PIRFICT-model, 
series of  water table depths are extrapolated to 30 years. It is 
assumed the average weather conditions during the last 30 years 
represent the prevailing climate. As result, deterministic series 
of  predicted water table depths are generated;

2.	 Realizations of  the noise process are generated by stochastic 
simulation and next added to deterministic series resulting 
in realizations of  series of  water table depths. Realizations 
of  the noise process can be generated either by random 
sampling from a normal distribution with zero mean and 
residual variance, or by resampling from the fitted residuals;

3.	 From the previous steps, N realizations of  the stochastic 
simulation are generated. Statistics representing the 
prevailing hydrologic conditions are calculated from the 
water table depths probability density function (PDF) for 
each t instant.

PIRFICT model applications

Groundwater level time series are generally collected manually, 
tend to be non-equidistant and often containing missing data 
(VON ASMUTH et al., 2002). As previously noted, the PIRFICT 
model is capable of  dealing with any data frequency because it is 
continuous over time, with the intervals of  the output series not 
being determined by the frequency of  the input series. In addition, 

the PIRFICT model offers an additional advantage when calibrating 
TFN models in irregular series, compared to autoregressive models 
combined with the Kalman filter (KNOTTERS; BIERKENS, 
2000), since the format of  the transfer function is not restricted 
to an exponential format (VON ASMUTH; BIERKENS, 2005).

Von Asmuth et al. (2008) extend the formulation of  the 
PIRFICT model for multiple input series, such as precipitation, 
evapotranspiration, river base flow, pumping tests, anthropogenic 
interventions, inclusion of  trends, steps and nonlinearities. For a 
complete description of  the PIRFICT model, its formulation, 
applications and case studies it is recommend the work of  Von 
Asmuth (2012) and for more studies with field data Yihdego and 
Webb (2011), Obergfell et al. (2013) and Manzione et al. (2017).

MATHERIALS AND METHODS

Study area - Santa Bárbara Ecological Station 
(EEcSB)

The Santa Bárbara Ecological Station (EEcSB) is a 
conservation area located at Rodovia SP 261 – km 58, coordinates 
22°48’59”S e 49°14’12”W, in the municipality of  Águas de Santa 
Bárbara/SP, Brazil (Figure 3).

The EEcSB was regulated by Decree 22.337 of  June 7, 
1984 (SÃO PAULO, 1984), which instituted its formation with 
an area of  ​​4,371 hectares within the limits of  the Santa Bárbara 
State Forest, of  which 2,712 hectares of  native vegetation (cerrado, 

Figure 3. Location of  the Santa Bárbara Ecological Station (SBES) and State Forrest in the limits of  Águas de Santa Barbara 
municipality, Brazil.
Source: Santarosa (2016).
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marshes and gallery forest) dividing the space with the reforestation 
with pine and eucalyptus trees. The area is under responsibility of  
the Instituto Florestal do Estado de São Paulo (Forrest Institute 
on São Paulo /Brazil).

The geological formations in the region are the sandstones 
of  the Adamantina and Marília Formations, belonging to the Bauru 
Group, with predominance of  the Adamantina formation in the 
EEcSB (MELO; DURIGAN, 2011; CPRM, 2006). According to 
Ross and Moroz (1996), EEcSB is located in the Paraná Sedimentary 
Basin (morphostructure) and in the Western Plateau (morphosculture), 
with relief  forms predominantly of  broad and low hills with altitudes 
between 556 and 705 m (SANTAROSA, 2016).

The climate characteristic of  the region, according to 
Koeppen’s classification, is Cwa or tropical subhumid (hot weather 
with dry winter), presenting average monthly temperatures of  
16 °C in the coldest month and 23 °C in the hottest month 
(CEPAGRI, 2016). The total annual rainfall varies from 1,000 to 
2,086 mm, and can reach 30 mm monthly in winter. The average 
annual temperature is around 18 °C, with maximums in January 
between 22 °C and 30 °C and minimum temperatures of  18 °C 
in the coldest month (MELO; DURIGAN, 2011).

Data set

Water table monitoring series

For water table analysis, 44 wells were distributed in the 
Guarantã (14 wells), Bugre (13 wells), Santana (12 wells) and 
Passarinho (5 wells) sub basins. The wells were monitored on a 
semi-montly frequency from September 5, 2014 until October 29, 
2015, when level measurements were carried out with monthly 
frequency until September 2, 2016. This change was for purposes 

since one year after monitoring the wells, it was noticed that 
there were no large oscillations within 2 weeks. The wells have 
heterogeneous depth, varying from 2.94 to 7.68 m. Figure 4 shows 
the layout of  the wells in the study area.

Climatological series

The climatologic data used in this study were historical 
series of  rainfall registered in a manual rain gauge installed in the 
EEcSB recording data since January 1987. The monthly series 
are the total precipitated in the period, summing up 29 years and 
8 months of  observations until August 2016.

Data modelling and water table depths simulation

The PIRFICT model was used for data modelling. To calculate 
the MGL, MLGL and MHGL, 1,000 model realizations were 
simulated. The analyzes of  the PIRFICT model are performed 
using the Menyanthes software. Further details on input and output 
data as well as the complete resolution of  the PIRFICT model 
can be found in Von Asmuth et al. (2012).

RESULTS AND DISCUSSIONS
In general, Shapoori et al. (2015) point out that TFN models 

simulate an output observed in the model at a given point in time 
as a weighting of  data from recent forces that are influencing levels 
(e. g. the function and transfer) plus a correlation term for simulated 
output not explained by the prevailing forces (e. g. the noise).

With the time series that recorded the monthly precipitations 
in the period between January 1987 and August 2016, the PIRFICT 

Figure 4. Locations of  the monitoring wells at EEcSB.
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model was calibrated using this input variable for all wells, totalling 
44 time series models. The models presented a good fit (Table 1), 
with a mean explained variance percentage (EVP) of  81.69%, with 
the worst adjustment being 64.40% and the best adjustment 92.90%.

The root mean squared error (RMSE) and root mean squared 
innovation (RMSI) values ​​were also considered low, denoting 
acceptable adjustments. The IR functions were examined to verify 
the quality of  these adjustments, ratifying the EVP, RMSE and RMSI 
values ​​found, but are not discussed in this article. In the EEcSB it 
is possible to observe short memory systems with fast responses, 
varying as a function of  the distance to the nearest drainage and 
thickness of  the unsaturated zone, with strong influence of  the 
precipitation and with linear tendencies of  elevation in the levels 
between September 2014 and August 2016.

Figure 5 shows in the upper part the calibration of  the 
PIRFICT model for well S2, considered a good example of  
adjustment since it had an EVP value close to the average of  the 
44 wells (82.50%). The lower part of  Figure 5 shows the oscillation 
of  the precipitation series and how much it was responsible for 
the elevation of  levels from September 2014 to August 2016. 
Precipitation was responsible for an oscillation of  almost 2 meters 
between November 2014 and March of  2016, with an inflection 
in the curve in the winter of  2015.

From these adjustments, 1,000 model realizations were 
simulated for each well and then the MGL, MLGL and MHGL 
were calculated (Table 2).

Table 1. Calibration statistics of  the PIRFICT model to observed 
rainfall series at SBES between January 1987 and August 2016 and 
observed water table depths at the monitoring wells.

EVP RMSE RMSI
Mean 81.69 0.20 0.16
Standard deviation 6.38 0.11 0.08
Minimum value 64.40 0.04 0.04
1st Quartile 76.75 0.12 0.10
Median 82.65 0.18 0.15
3th Quartile 85.33 0.26 0.21
Maximum value 92.90 0.45 0.31
EVP = explained variance percentage (%); RMSE = root mean squared error (m); 
RMSI = root mean squared innovation (m).

Figure 5. PIRFICT model adjustment to observed water table depths with rainfall series as exogenous variable at S2 well between 
January 1987 and August 2006.

Table 2. Mean water levels (MGL) calculated for EEcSB from 
PIRFICT model simulations for monitoring wells at the period 
from January 1987 to August 2016.

MLGL MGL MHGL
Mean -1.94 -1.34 -0.78
Standard deviation 1.13 0.92 0.76
Minimum value -4.93 -4.13 -3.36
1st Quartile -2.68 -1.75 -0.91
Median -1.66 -1.01 -0.59
3th Quartile -1.18 -0.77 -0.26
Maximum value -0.28 -0.13 0.08
MLGL = mean lowest water level; MGL = mean water level; MHGL = mean 
highest water level.



RBRH, Porto Alegre, v. 23, e7, 2018

Physical-based time series model applied on water table depths dynamics characteristics simulation

The simulation presented moments of  more superficial 
levels, others of  deeper levels, agreeing with the precipitation 
patterns. There was a difference of  1.16 m between the mean 
values of  MGL and MHGL. Based on the extreme values, the 
difference between the MLGL and MHGL minimum values 
ranged from 3.08 to 5.01 m. These values can assist planners 
and decision makers in estimating well depths, location of  
water-dependent activities, estimating exploitable volumes, and 
even artificial recharge practices. From such information, water 
systems can become more resilient to extreme events, avoiding 
adverse effects on urban supply, economic activities, agriculture 
and the environment.

Figure 6 shows an example of  the simulation performed 
for well S2. The dots in red are the observations, the green lines 
superimposed on the 1,000 simulated series, bounded by dashed 
lines representing the limits of  the confidence intervals above 
and below 5%. The width of  the intervals was approximately 1 m 
between the maximum and minimum values. In general, the 

simulated series remained within the established intervals, not 
denoting bias of  the simulations.

Since the monitoring period of  the simulated wells comprised 
two periods of  climatic anomalies (end of  the drought 2013-2014 
and ENSO 2015-2016), we compared the values of  MGL only 
calculated for the period of  the series with the simulated values, 
denoting a good relationship as can be seen in Figure 7.

The coefficient of  determination of  the regression line 
(R2) between simulated and observed characteristics was 0.89, 
presenting a Pearson correlation coefficient of  0.94. In addition 
to the MGL calculation, the simulation allows to calculate 
probabilities of  occurrence of  extreme levels from the confidence 
intervals (MANZIONE et al., 2010). This good agreement of  
the data shows that the simulation of  the PIRFICT model from 
the relationship between the precipitation and water table levels 
oscillation reproduced the main characteristics of  the groundwater 
dynamics in the EEcSB during the study period. The uncertain nature 
of  the data also gives rise to errors. There may be uncertainties 
related to the data, groundwater levels observed, sensor accuracy, 

Figure 6. PIRFICT model simulation (1000 realizations) from precipitation series from January 1987 and August 2006 at well S2 with 
5% confidence interval (green lines) and observed water table depths (red dots).

Figure 7. Relationship between MGL calculated from observed and simulated series.
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climatological bases, measurements, approximations and estimates 
in general, other than those associated with the description of  
the phenomenon in question by the model and its calibration. 
To estimate more realistic scenarios, it is recommended to use 
longer series, avoiding periods of  climatic anomalies such as those 
occurring during the monitoring of  the levels in the EEcSB, in 
order to avoid distortions in the output series.

CONCLUSIONS

Based on the analysis performed in this study, it can be 
concluded that:

•	 The transfer-function noise in continuous time PIRFICT 
model presented good adjustments when using monthly 
rainfall series;

•	 The system identification revealed systems with a short 
memory, fast response and with strong seasonal influence 
of  the precipitation;

•	 The water table depths simulation from longer series of  
precipitation made it possible to calculate the statistics on 
groundwater levels in the EEcSB, respecting the established 
confidence intervals, without bias in the estimates;

•	 The patterns found in the simulations are consistent with 
the precipitation input series, presenting moments of  more 
superficial levels, and others of  deeper levels.
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