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ABSTRACT 

Shrinkage-reducing admixture (SRA) and expansive admixture (EXA) were used in high performance self-

compacting concrete (HPSCC) to mitigate autogenous shrinkage. In order to evaluate the fresh properties of 

concretes, the rheological parameters were determined in a ICAR rheometer at 10, 25, 40, 60 and 90 min. 

The flow behavior of the mixtures was described by Bingham, Herschel-Bulkley, and modified Bingham 

models. Slump flow test, V-funnel test and J-Ring test were also carried out at 10 min. Slump flow test was 

performed also after 90 min of mixing. The test results showed that, at 10 minutes, all mixtures had similar 

performances, independently of the SRA and EXA contents. However, the slump flow test shows a reduction 

of up to 24% of its diameter at 90 min for mixtures with EXA. Mixtures with EXA revealed a gradual in-

crease in dynamic yield stress with elapsed time. In contrast, concretes with SRA exhibited less variation in 

its rheological properties. Statistical analysis (ANOVA) showed that, regardless of the rheological model 

adopted, the admixture content was not a significant factor for the yield stress, while the type of admixture 

and the time of testing greatly influenced the concretes rheological response. 

Keywords: Shrinkage-reducing admixture (SRA), expansive admixture (EXA), rheological behavior, high 

performance self-compacting concrete. 

1. INTRODUCTION 

High performance self-compacting concrete (HPSCC) is a type of concrete that has been developed to exhibit 

high flowability and mix stability and, at the same time, high strength and durability [1,2]. Higher amounts of 

Portland cement, superplasticizer, and mineral admixtures, together with low water/binder ratios are used to 

produce these concretes. Thus, the HPSCC has low porosity and discontinuous small diameter capillary pore 

structure of the hydrated paste [3,4]. Consequently, HPSCC has potential to present more pronounced autog-

enous shrinkage than normal concrete, mainly at early ages [4,5]. Therefore, cracks due to restrained autoge-

nous shrinkage can compromise the concrete´s performance, despite of HPSCC´s high strength and durability. 

To avoid the aforementioned problems, shrinkage-reducing admixtures (SRA) or expansive admixtures 

(EXA) can be used for shrinkage mitigation. 

Expansive admixtures are agents that produce expansion by the release of gases or by ettringite for-

mation [6,7]. Calcium sulfoaluminate (CSA) based expansive admixtures are mostly used when the focus is 

to compensate for shrinkage of concrete [6–8]. Usually, CSA admixtures comprise an aluminum bearing ma-

terial, hydrated and free lime, and gypsum, carefully proportioned to promote the controlled (timing and 

amount) formation of ettringite acicular crystals (3CaO.A1203.3CaSO4.32H2O) [7,9].  On the other hand, the 

shrinkage-reducing admixture acts by reducing the surface tension of concrete pores solution and, conse-

quently, reducing the capillary stress. This approach is clear when one analyses the Young-Laplace equation 

((1), where the surface tension is directly proportional to the capillary stresses. In this equation cap is the 

capillary tension (Pa), lg is the surface tension of the pore solution (N/m),   is the contact angle between the 

pore solution and the capillary pore walls and r is the meniscus radius (m) [10,11]. The main molecules used 

as shrinkage-reducing admixtures are glycols, polyoxyalkylene glycol alkyl esthers, polymeric surfactants 
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and amino alcohols with various surfactants [12].  

 

     
        

 
 (1) 

Although the action of SRA and EXA in the hardened state of concrete has been investigated, little is 

known about the plastic stage [6,7,11,13–17]. Measurements of workability are essential to guarantee a good 

quality of concrete and the ease with which the mixture is processed [18]. Tests such as the Abrams cone for 

traditional concrete or the slump flow test for self-compacting concrete (SCC) are still the chosen everyday 

tests to quantify the workability of cementitious materials at the building site. Empirical test methods are 

used to give some kind of rheological description of the fresh concrete, such as slump flow,  L-box and  V-

funnel [19]. However, these tests are very often operator-sensitive [20,21]. Viscometers and advanced rhe-

ometers are usually designed to be operatively insensitive and, consequently, retrieve the material´s parame-

ters in terms of fundamental physical quantities independent on the details of the apparatus with which they 

are measured [19]. This way, rheology can be used as a tool to accurately describe the workability of self-

compacting concrete by its flow curves.  

The commonly used rheological models to describe the flow behavior of fresh cementitious material 

are the Bingham model, the Herschel-Bulkley model, and the modified Bingham model [22–26], which have 

been used commonly to described viscoplastic fluids [27]. For viscoplastic fluids, at stresses below the yield 

stress, the shear rate is null, causing the rheological model to intersect the stress axis above the origin [28]. In 

other words, these materials do not show appreciable deformation until the shear stress has reached the limit, 

called the yield stress [27]. Table 1 gives the equations of the rheological models abovementioned. It can be 

observed that Bingham equation is linear. Herschel-Bulkley is a non-liner model and the exponent „n‟ can be 

n < 1, n > 1, or n = 1, signifying a shear thinning behavior, shear thickening behavior or the Bingham model, 

respectively [19]. Analogously, the modified Bingham is also a non-liner model which indicates a shear thin-

ning behavior, shear thickening, or the Bingham model when c/ < 0, c/ > 0, or c/ = 0, respectively [29]. 

Table 1: Rheological models. 

EQUATION NAME  EQUATION 

Bingham          ̇ 

Herschel-Bulkley        ̇
  

modified Bingham        ̇    ̇
  

Variable definitions  

 = Shear stress (Pa) 

0 = Yield stress (Pa) 

P = Plastic viscosity (Pa.s) 

 ̇ = Shear rate (s-1) 

k = Consistency factor (Pa.sn) 

n = Consistency index 

= Linear term (Pa.s) 

c = Second order term (Pa.s2) 

 

Thus, in this paper, fresh state HPSCC mixes with one shrinkage reducing admixture and one expan-

sive admixture were evaluated. For the present study, concrete rheometer ICAR and empirical tests for self-

compacting concrete (slump flow, V-funnel, J-ring) measurements were carried out. The second part of this 

study will be an analysis about the hardened properties of these concretes.  

2. EXPERIMENTAL PROGRAM 

Portland cement CP V (PC), according to Brazilian normalization NBR 5733/91 (similar to type III - ASTM 

C150/16), was used in all the mixtures. A commercially available Type F polycarboxylate superplasticizer 

(SP) was used, conforming to ASTM C 494/16. The solid concentration of the admixture was reported by the 

manufacturer to be 30% and the specific gravity, 0.91. In order to reduce the autogenous deformation, a 

hexylene glycol based shrinkage reducing admixture (SRA) and a calcium sulfoaluminate based expansive 

admixture (EXA) were studied. The specific gravity of the SRA was reported by its manufacturer to be 0.92. 

EXA consists of hauyhe (3CaO.3Al2O3.CaSO4), free lime (CaO), and anhydrite (CaSO4). The physical and 

chemical properties of the solid materials used are reported in Table 2 and  Figure 1. FTIR spectrums of the 

superplasticizer and SRA are shown in Figure 2. 
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Table 2: Physical properties and chemical composition of solid materials. 

MATERIAL 
PHYSICAL PROPERTIES  CHEMICAL COMPOSITION 

Specific gravity    Fineness, m²/kg  SiO2 Al2O3 Fe2O3  CaO  MgO  SO3  LOI  

Cement 3.09 407  18,9 3,7 2,8 62,9 4,2 3,1 3,2 

Silica 2.22 -  94,6 <0,04 0,1 0,2 0,3 0,1 2,7 

EXA 3,01 374  1,8 4,7 1,3 68,5 0,9 18,2 4,4 

 
Figure 1: Laser particle size distribution of Portland cement, silica fume and EXA. 

 

  
Figure 2: FTIR spectrums of SRA and superplasticizer.  

2.1 Concrete mixture proportions 

To evaluate the rheological behavior of HPSCC containing SRA and EXA, 7 mix proportions were designed. 

All the concretes were designed with the same volume of cement paste (455 ± 1 l/m
3
), fine aggregate (195 ± 

1 l/m
3
), and coarse aggregate (350 ± 1 l/m

3
). The binder was a composition, by mass, of 10% silica fume (SF) 

and 90% Portland cement. The mixtures were designed with a water/binder (w/b) ratio of 0.32. Three differ-

ent dosages of SRA (0.5%, 1.0%, and 1.5%) and EXA (5%, 10%, and 15%) were used. The percentage of the 

admixtures are given by Portland cement mass. The SRA was added as a partial replacement of the mixing 

water. The dosage of the EXA was calculated as a partial replacement of the Portland cement. To achieve a 

slump flow between 65 and 70 cm, different superplasticizer contents were added. The summary of mixture 

proportions is listed in Table 3. 
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Table 3: Mixture proportions of the HPSCC. 

Concrete ID w/b  
Cement SF 

Fine 

aggregate 

Coarse 

aggregate 
Water SP EXA SRA 

(kg/m
3
) 

REF 0,32 630 70 511 922 224 4,47 - - 

SRA32-0.5 0,32 630 70 511 922 221 5,22 - 3,1 

SRA32-1.0 0,32 630 70 511 922 218 4,91 - 6,3 

SRA32-1.5 0,32 630 70 511 922 215 4,39 - 9,4 

EXA32-5 0,32 598 70 511 922 224 4,58 31,5  

EXA32-10 0,32 567 70 511 922 224 4,95 63,0  

EXA32-15 0,32 535 70 511 922 224 5,27 94,5  

2.2 Mixing and tests performed 

The solid materials were dry mixed for about 30 s inside of the mixer. Then, after dissolving the SP and SRA 

in water, when present in the mixture, they were added to the mix. All concretes were mixed for 5 min and 

kept 3 min resting, then again mixed for more 1 ½ min. After 10 minutes of the addition of water, the slump 

flow diameter, J-ring diameter and V-funnel flow time tests were conducted simultaneously, regarding 

ASTM C1611 [30] , ASTM C 1621 [31], and EFNARC [32], respectively. The slump flow test was also per-

formed after 90 minutes to check the retention of workability.  

The filling ability and stability of self-compacting concrete in the fresh state can be defined by four 

critical characteristics: flowability, viscosity, passing ability and segregation resistance [32]. The slump flow 

test is used to monitor the consistency of fresh self-compacting concrete and its unconfined flow potential 

[30]. Slump flow value is the primary check that the fresh concrete consistence meets the specification     

[32]. The J-ring is a strong contender for the evaluation of passing ability of self-compacting concrete    

[31]. HPSCC‟s viscosity can be assessed by V-funnel flow time. Although the direct viscosity cannot be 

measured, the time value is related by describing the filling ability [32]. 

An ICAR rheometer with four blades-vane with a diameter, d, of 127 mm and height, h, of 127 mm 

was used to measure the rheological behavior of HPSCC. The container with 300 mm diameter was filled 

with fresh concrete up to a height of 280 mm. The inner wall of the container is equipped with ribs to prevent 

slippage between the concrete and the steel surface [33]. Each concrete sample was pre-conditioned with a 

shear of 0.5 rotation per second (rps) for a breakdown period of 20 s. Torque measurements were recorded 

for seven speeds in descending order every 5 s, ranging from 0.5 to 0.05 rps. Flow curves (torque and rota-

tional velocity) were obtained at 10, 25, 40, 60 and 90 min after mixing begins.  

2.3 Rheological approach  

Three models were used to analyze the rheological response of the fresh concrete: Bingham, Herschel-

Bulkley and modified Bingham. For the Bingham model, the data for each time was fitted to a linear equation 

using ordinary least square regression to determine a slope and an intercept point, according to (2. In this 

equation GB is the point of intersection of the line with the torque axis (N.m), and relates to the yield stress; 

HB represents the slope of the line (N.m/rps), and is related to the plastic viscosity; T is the torque (N.m); N is 

the rotational speed (rev.s
-1

) [29]. The term yield stress, according to the Bingham model, is referred as the 

dynamic yield stress, since this parameter is only correctly characterized when the material is at a steady state 

in the range of the evaluated shear rate interval [34]. 

 In order to study the rheological behavior by the Herschel-Bulkley model ( (3), experimental steady 

state data, for each time, was determined by a nonlinear least square curve fitting, where GHB is flow re-

sistance (N.m); HHB is the viscosity factor (N.m/rps
J
); and J is the flow index factor. In the same way, for the 

modified Bingham model, GmB, HmB, and CmB are respectively the flow resistance (N.m), first order term 

(N.m/rps) and second order term (N.m/rps
2
). 

 

             (2) 

              
   (3) 
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  (4) 

 

Reiner-Riwlin equation for Bingham materials can be used as follows in the equations (5 and (6 to de-

termine the plastic viscosity (Pa.s) and dynamic yield stress (Pa), respectively [26,35,36]. Although it does 

not provide a point-to-point transformation, it expresses the obtained relation in fundamental units [37], 

where h is the height (m) of the cylinder submerged in the concrete, R1 is the vane radius (m) and R0 is the 

outer container radius (m). Similarly, the Herschel-Bulkley and modified Bingham fundamental rheological 

parameters were determined by Equations (7, (8, (9 and (10, (11, (12, respectively [26,35]. 
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The measurements of rheological parameters for fresh concretes were performed without repetition. 

However, complementary studies were performed previously to verify the variation of the measurements. 

The maximum average relative standard deviation for dynamic yield stress was of 6 %. Analysis of variance 

(ANOVA) was used to determine the significance of the factors evaluated to achieve the rheology parameters.  

3. RESULTS AND DISCUSSION 

The HPSCC mixes produced in this study had the slump flow diameter at 10 minutes varying between 650 

mm and 690 mm, as shown in Table 3 and Figure 3. However, to reach these values of slump flow diameter, 

the SRA32-0,5 and EXA32-15 mixes demanded higher amounts of superplasticizer, 5.22 and 5.27 kg/m³, 

respectively. The results of V-Funnel and J-Ring tests of the HPSCC mixtures evaluated are shown in the 

Figure 4. The V-funnel flow time varied between 5 and 6.5 s for all mixtures, which projects good filling 

ability even with congested reinforcement [32]. SRA and EXA contents marginally affects J-ring values and 

V-funnel flow times.  In general, empirical test results showed that all mixtures had similar performances at 

10 minutes, independently of SRA and EXA contents. However, the slump flow test shows a reduction of up 

to 24% of its diameter at 90 min for mixtures with EXA, which is higher than the observed in the reference 

and SRA mixtures. The difference between slump flow and J-Ring flow results were between 5 and 7 cm. 

This can represent noticeable blockage which means a low passing ability of these mixtures. Deference high-

er than 5 cm are considered as extreme blocking [31], although these J-Ring values are reported for HPSCC 

[38–40]. Based on 90-minute slump flow results, all mixtures can be classified as SCC [32].  
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Figure 3: Variation of SP content and Slump flow test with 10 and 90 min of HPSCC with SRA, EXA, and Reference. 

 

 
Figure 4: V-Funnel time and J-Ring blocking of HPSCC with SRA, EXA, and Reference. 

The torque (Nm) and rotational speed (rev/s) obtained from the rheometer for all studied mixtures are 

presented in  

Figure 5.a-g and the rheological properties in fundamental units in Table 4. The results at 10 min show 

the same trend as the empirical tests results, with similar rheological behavior between samples (Figures 6, 7 

and 8). The similarity in rheological behavior at 10 min of mixtures with EXA, SRA, and Reference mix can 

be explained by the lack of time for the chemical reactions to occur between EXA and water, which produce 

ettringite and calcium hydroxide, decreasing free water [7]. However, mixtures with EXA revealed a gradual 

increase of dynamic yield stress and of plastic viscosity (by Bingham model) over time, result of the above-

mentioned chemical reactions involving EXA, as shown in Table 4. In contrast with EXA, SRA does not 

consume water, it only reduces the surface tension of the pores solution [41]. This can be an explanation for 

the lesser variation of rheological properties shown by mixtures with SRA, which showed a plateau for rheo-

logical parameter after 25 minutes. Moreover, in some cases, the use of SRA has shown an increase of initial 

setting time of concrete [14]. The results suggest that the SRA can be added together with EXA for reduced 

slump flow loss. Likewise, a hydration stabilizer agent can be used.  

Although all the mixtures showed a similar behavior to empirical and rheological tests, it has not been 

possible to find a correlation between slump flow diameter and dynamic yield stress for all the rheological 

models. Initially, it was hypothesized that this happened due to the thickness of the sample at flow stoppage, 

which should be at least five times the diameter of the largest aggregate to be able to consider the flow of an 

homogeneous mixture [21], but as Roussel [42] showed, there is no direct correlation between yield stress 

and slump flow diameter. 
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 (a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 

Figure 5: Torque versus rotational speed obtained from the rheometer for the reference concrete (a), mixtures with SRA 

0.5% (b), 1.0% (d) and 1.5% (f); EXA 5% (c), 10% (e) and 15% (g). 
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Table 4: Rheological parameters. 

RHEOLOGICAL  

PARAMETERS  

Time  REF32  SRA32  EXA32 

(min)  
 

 0,5 % 1,0 % 1,5 %  5% 10% 15% 

B
in

g
h

am
 m

o
d

el
 

D
y

n
am

ic
 y

ie
ld

 

st
re

ss
 (

P
a)

 

10  24,5  21,3 19,9 18,9  27,5 31,1 24,1 

25  27,0  31,6 24,2 25,2  29,4 36,7 25,5 

40  29,5  35,4 25,7 26,3  28,6 35,4 30,0 

60  21,4  35,7 28,1 28,0  41,4 35,2 34,4 

90  22,8  32,5 27,5 26,4  42,3 41,6 45,2 

P
la

st
ic

 V
is

co
si

ty
  

 

(P
a.

s)
 

10  20,3  8,0 7,2 12,8  9,8 10,9 14,9 

25  26,9  10,4 12,3 17,6  22,2 23,2 26,9 

40  33,4  12,7 13,8 22,4  16,8 18,4 26,1 

60  47,6  11,6 14,8 21,1  24,1 19,2 25,4 

90  68,1  12,2 15,5 21,8  29,3 26,1 33,4 

H
er

sc
h

el
-B

u
lk

le
y

 m
o

d
el

 D
y

n
am

ic
 y

ie
ld

 

st
re

ss
 (

P
a)

 

10  3,8  14,2 7,6 5,9  4,9 16,9 16,6 

25  12,7  25,1 13,9 16,7  14,0 21,6 23,1 

40  19,1  29,2 17,7 20,5  16,8 26,9 28,3 

60  24,0  30,3 17,4 22,6  26,2 28,5 33,4 

90  32,5  31,3 19,5 23,7  30,0 34,2 40,7 

C
o

n
si

st
en

cy
  

  
  

 

fa
ct

o
r 

(P
a.

sn
) 10  46,2  16,9 22,9 29,0  39,6 28,8 24,1 

25  44,4  18,3 25,0 28,0  41,1 41,7 29,7 

40  45,9  20,2 23,6 29,3  31,3 28,8 28,1 

60  44,5  18,2 27,8 27,6  42,7 27,4 26,6 

90  47,4  13,5 25,2 25,1  44,2 34,9 38,8 

C
o

n
si

st
en

cy
  

  
  

  
 

in
d

ex
 

10  0,59  0,62 0,46 0,59  0,39 0,53 0,74 

25  0,73  0,70 0,63 0,75  0,68 0,69 0,94 

40  0,82  0,75 0,71 0,85  0,67 0,76 0,96 

60  1,04  0,75 0,67 0,85  0,70 0,80 0,97 

90  1,08  0,94 0,74 0,92  0,77 0,84 0,91 

m
o

d
if

ie
d

 B
in

g
h

am
 m

o
d

el
 

D
y

n
am

ic
 y

ie
ld

 

st
re

ss
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P
a)

 

10  16,6  18,7 16,3 13,9  21,7 26,7 21,0 

25  20,4  28,9 20,2 21,3  23,8 30,9 24,5 

40  24,2  32,6 22,3 23,5  23,4 31,3 28,9 

60  22,9  32,8 23,4 25,1  35,3 31,6 33,4 

90  31,7  31,9 24,0 24,9  36,8 38,0 42,9 

L
in

ea
r 

te
rm

  
  
 

(P
a.

s)
 

10  31,8  11,7 12,3 20,1  18,0 17,3 19,3 

25  36,5  14,2 18,1 23,3  30,3 31,5 28,4 

40  41,1  16,6 18,8 26,6  24,3 24,4 27,6 

60  45,5  15,4 21,5 25,3  32,8 24,5 26,9 

90  55,3  13,0 20,6 24,0  37,2 31,2 36,7 

S
ec

o
n

d
 o

rd
er

  
  

te
rm

 (
P

a.
s²

) 

10  -2,7  -0,9 -1,2 -1,7  -2,0 -1,5 -1,1 

25  -2,3  -0,9 -1,4 -1,4  -1,9 -2,0 -0,4 

40  -1,8  -0,9 -1,2 -1,0  -1,8 -1,4 -0,4 

60  0,5  -0,9 -1,6 -1,0  -2,1 -1,2 -0,4 

90  3,0  -0,2 -1,2 -0,5  -1,9 -1,2 -0,8 

 

In general, the dynamic yield stress values obtained by Bingham model were the highest, followed by 

values found for the modified Bingham and Herschel–Bulkley models. This is due to the mixtures adjusted 

by the non-linear models exhibiting a shear thinning behavior, except the reference mixture at 60 and 90 min, 

as shown in Figures 9 and 10.  
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Figure 6: Application of the Bingham model on the rheological data at 10 min for of HPSCC with SRA (0.5%; 1.0%; 

1.5%), EXA (5%; 10%; 15%) and Reference concrete. 

 
 

Figure 7: Application of the Herschel–Bulkley model on the rheological data at 10 min for of HPSCC with SRA (0.5%; 

1.0%; 1.5%), EXA (5%; 10%; 15%) and Reference concrete. 

 
 

Figure 8: Application of modified Bingham model on the rheological data at 10 min for of HPSCC SRA (0.5%; 1.0%; 

1.5%), EXA (5%; 10%; 15%) and Reference concrete. 
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Figure 9: Consistency index for mixtures with SRA (0.5%; 1.0%; 1.5%), EXA (5%; 10%; 15%) and reference concrete. 

 
 

Figure 10: relation c/ for mixtures with SRA (0.5%; 1.0%; 1.5%), EXA (5%; 10%; 15%) and reference concrete. 

 

Analysis of variance (ANOVA) was performed to pinpoint the individual effects of factors (type of 

admixture, admixture content and test time) on the dependent variable. Second order interactions could not 

be verified, since there was no repetition of concrete. The results of ANOVA for rheological results are pre-

sented in Table 5. A factor was considered to have significant effect on the rheological parameters when the 

Probability was more than 95% (confidence level).  
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model). 
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Table 5: ANOVA for rheological results.   

Variable Source SS DF MS Fratio P (%) 

Bingham Model 

 

Yield Stress 

Type of Admixtures 344,76 1 344,76 21,628 99,99% 

Admixture content 86,96 2 43,48 2,728 91,26% 

Time 529,17 4 132,29 8,299 99,97% 

Error 350,69 22 15,94   

       

Bingham Model 

 

Viscosity 

Type of Admixtures 421,875 1 421,875 54,348 100,00% 

Admixture content 266,786 2 133,393 17,184 100,00% 

Time 497,088 4 124,272 16,009 100,00% 

Error 170,774 22 7,762   

       

HB 

 

Yield Stress 

Type of Admixtures 147,41 1 147,41 4,7383 95,95% 

Admixture content 38,41 2 19,21 0,6174 45,16% 

Time 1275,00 4 318,75 10,2460 99,99% 

Error 684,41 22 31,11   

       

HB 

 

Consistency         

Index 

Type of Admixtures 0,00588 1 0,00588 1,139 70,25% 

Admixture content 0,16741 2 0,08370 16,208 100,00% 

Time 0,30889 4 0,07722 14,953 100,00% 

Error 0,11361 22 0,00516   

       

Modified 

Bingham 

 

Yield Stress 

Type of Admixtures 272,41 1 272,41 15,740 99,93% 

Admixture content 39,33 2 19,66 1,136 66,08% 

Time 629,98 4 157,49 9,100 99,98% 

Error 380,75 22 17,31   

       

Modified 

Bingham 

 

c/µ 

Type of Admixtures 0,000348 1 0,000348 1,7716 80,32% 

Admixture content 0,005440 2 0,002720 13,8595 99,99% 

Time 0,008503 4 0,002126 10,8321 99,99% 

Error 0,004317 22 0,000196   

SS: sum of squares; DF: degree of freedom; MS: mean square; Fratio: F-statistic (source/error); P: probabil-

ity.  

4. CONCLUSION 

This paper demonstrated that high performance self-compacting concrete can be designed with SRA and 

EXA without major damage to the rheological properties of the mixtures. All the mixtures studied can be 

classified as SCC even at 90 min after started the mix. This was possible by the high dosage of superplasti-

cizer used to reach the target slump flow diameter between 650 and 690 mm. The mixture with 10% of ex-

pansive admixture required the highest dosages of superplasticizer. Concrete with expansive admixture 

showed a gradual increase of dynamic yield stress and a slump flow loss over time. The addition of SRA in 

HPSCC had little influence in the rheological behavior of the mixtures over time. The results suggest that the 

SRA can be added together with EXA for reduced slump flow loss.  
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