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Exponential Stabilty for a Timoshenko System with Nonlocal Delay
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ABSTRACT. The purpose of this paper is to study the Timoshenko system with the nonlocal time-delayed
condition. The well-posedness is proved by Hille-Yosida theorem. Exploring the dissipative properties of
the linear operator associated with the full damped model, we obtain the exponential stability by using
Gearhart-Huang-Priiss theorem.
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1 INTRODUCTION

The history of nonlocal problems with integral conditions for partial differential equations is re-
cent and goes back to [4]. In particular, a review of the progress related to the nonlocal models
with integral type was given in [3] with many discussions about physical justifications, advan-
tages, and numerical applications. For a nonlocal hyperbolic equation with integral conditions
of the 1st kind, we cite [20]. Dissipative properties associated with the Timoshenko system have
been studied by several authors by considering the dissipative mechanism of frictional or vis-
coelastic type. An interesting problem was brought out when the dissipation acts in different
ways on the domain. For the case of terms of time-varying delay in the internal feedbacks, the
stability result of the Timoshenko system can be found in [10]. On the other hand, for the case
of delay and boundary feedback, we can see in [24]. The Timoshenko beam system with delay
in the boundary control was studied in [25] where the exponential stabilization result is proved
via a test of exact observability of the system. Distributed delay in the boundary control was
considered in [13]. Distributive delay in a Timoshenko-type system of thermoelasticity of type
IIT was considered in [8] and then, in [9], the same problem was dealt with constant delay. The
Timoshenko system with second sound and the internal distributed delay was investigated in [2].
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The transmission problem with delay in porous-elasticity was considered in [21]. For a nonlinear
Timoshenko system with delay, we cite [S] and reference therein. As far as we know, there is no
result for the Timoshenko system with nonlocal delay.

Let Q = (0,L) be an interval on R. In this paper, ¢ = @(x,¢) describe the small transverse
displacement of the beam and ¥ = y/(x,7) the rotation angle of a filament of the beam in Q,
respectively at the time ¢. For a constant ¢ > 0 and

F,G:(0,c) >R

bounded functions, we define the nonlocal time delayed integral of the 1st kind condition by
C ~C
/ F(s) (x,t —s)ds, / G(s)y;(x,t —s)ds. (1.1)
Jo Jo

These conditions (1.1) are called nonlocal because the integral is not a pointwise relation, so it
provides a problem with distributed delay. Well-posedness and exponential stability for this kind
of nonlocal time-delayed for a wave equation were studied in [17,22] by different techniques.

Let b, k, a, B be positive constants. The Timoshenko system with frictional damping and nonlocal
time-delayed condition is given by

P10 — k(s + W), + 00 +/OCF(S)(pt(x,t ~§)ds =0, inQx (0,00), (12)

Poi — BV (P +¥) 4B+ [ GOt —9)ds =0, nQx (0),  (13)
@(x,0) =@o(x) and y(x,0)=yp(x), x€Q, (1.4)

0 (x,0)=01(x) and y(x,0)=yi(x), x€Q, (1.5)

o (x,—s) = folx,—s), x€Q,se(0,¢), (1.6)

v; (x,—s) = go(x,—s), x€Q,se(0,c). (1.7)

We consider the Dirichlet boundary conditions as follows

0(0,1)=@(L,t)=0 and y(0,t)=y(L,t)=0, t>0. (1.8)

Here the initial data

(‘PO(X)7W0(X)) € H(; (O’ 1) X H(; (O’ 1)’ ((Pl(x)vlm(x)) € Lz(oa 1) XL2(07])>

Jo(x,—s),g0(x, —s) belong to suitable spaces and
c C
/ F(s)ds<a and / G(s)ds < B.
0 0

We use the Sobolev spaces with its properties as in Adams [1] and the semigroup theory ( see
Pazy [18]). In this paper, we apply the semigroup technique for dissipative systems (see Liu and
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Zheng [14]), that is different from some others in the literature, for example, like as the energy
method (see Rivera [23]), the direct method (see Kormonik [11, 12]) and the Nakao’s method
(see [15]). This manuscript is organized as follows. In Section 2, we deal with the semigroup
setting where we prove the well-posedness of the system. In section 3, we show the exponential
stability by using the Gearhart-Huang-Priiss theorem, [6,7, 19].

2 SEMIGROUP SETUP
As in Nicaise and Pignotti [17] we introduce the new variables
Z(x7p7t7s):(pl(x7t_ps)’ (xap7tas)6Q7
y(xapJas):u/l(xat*ps)? (xapatas)EQa
where Q = Q x (0,1) x (0,00) x (0,¢).
The new variables z,y satisfy
5z(x,p,1,8) +zp(x,p,t,5) =0,
Syl(xapatas)—i_yp(x?patas) =u.

Moreover, using the approach as in [16], the equations

Asz(x,p,1,5) +2p(x,p,t,5) = f, with A >0, f € L*(Q), (2.1
Asy(x,p,t,8)+yp(x,p,t,5) =g, withdA >0, g€ L*(0) 2.2)

has unique solution

p
2(x,p,1,5) = 2(x,0,1,5)e P54 AP / o f(x,0,1,5)do, (2.3)
0
p
Y(x,p,1,8) = y(x,0,1,5)e HP* 4 7APS / *%g(x,0,1,5)do, Q2.4)
0

respectively. The problem (1.2)-(1.7) is equivalent to
C
P11t — k(@ + W) + g, +/0 F(5)2(x, 1,1,5)ds = 0, (x,1) €@ x (0,00), (2.5

pgl//[,—bl//xx+k((px+l/1)+ﬁw,+/o G(s)y(x,1,1,5)ds = 0, (x,1) € Qx (0,00),  (2.6)
(

sz(x,p,t,8) +zp(x,p,t,5) =0, (x,p,t,5) €Q, 2.7
syi(x,p,t,8) +yp(x,p,t,5) =0, (x,p,t,5) €0, (2.8)
¢(x,0) =go(x) and y(x,0)=yp(x), xeQ, 2.9

O (x,0)=0;(x) and y(x,0)=y(x), x€Q, (2.10)
2(x,p,0,5) = fo(x,—ps), (x,p,5) €Q2x(0,1)x(0,c), (2.11)
o(x,p,0,5) = go(x,—ps), (x,p,5) €Qx(0,1)x(0,c), (2.12)
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with the Dirichlet boundary condition (1.8) and z(x,p,t,s) = y(x,p,t,s) = 0 on the boundary
x=0,L.

Defining U = (¢, w,u,v,z,y)", u = ¢ and v = y,, we formally get that U satisfies the Cauchy
problem
U=adU, t>0,
U(0) = Up = (¢0. ¥o. @1, V1. fo,80)"
where the operator &7 is defined by

(2.13)

1%
or k(@ +W)x — qu— [§ F(s)z(x, 1,1,5) ds]
PLZ [waxik((p)f{i» "I/) 7[3‘}7 fOCG(S)y(x7 I,I,S)ds]
_silzp(xapﬂﬁs)
_5_1)’13()6»97%5)

AU =

We introduce the energy space
A =H)(Q)? x L2(Q)? x L* (Q % (0,1) x (0,¢))?

equipped with the inner product

(U.0)sr = | 9+ ¥) (4 V) + prui+ pavi+ by d

1 pc 1 pc
+// / sF(s)desdpdx—l—// / sG(s)yydsdp dx,
QJo Jo QJo Jo

for U = (@, y,u,v,z,y)" and U = (¢, W, i1, 7,2, 5)".

The domain of &7 is defined by

D(o/) = [H2(Q) NHY(Q)] x HY(Q)* x L2 (@ x (0, 1): H' ().

Clearly, D(«7) is dense in J# and independent of time ¢ > 0. Next, we will prove that the operator
&/ is dissipative.

Lemma 2.1. For U = (@, y,u,v,z,y) € D(<). Assume that

/CF(s)ds<Oc and /.CG(s)ds<[3 (2.14)
0 Jo

then we have
(AU V) < — <(x—/ F(s)ds>/ luf? dx
0 Q

~ (ﬁ—/OCG(s)ds>/Q|v|2dx

<o0. (2.15)
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Proof.

(SUV)sr =k [ (1) (@ y)d

+/ [k((px—Fl//)x—au—/LF(s)z(x,l,t,s)ds} udx
Q 0
o [ owis kot w) = B [ GOt 0s)ds|vas
Q 0
1 pc
+b/ vxulxdxf// / F(8)zp(x,p,t,8)z(x,p,t,5)dsdp dx
Q eJo Jo

1 c
— [ [ [ G6motxpotss)ytep.tos)dsdpas
QJo JO

Integrating by parts on Q,

(AU, U) :—a/ |u|? dx — // F(s)z(x,1,t,s)udsdx

—ﬁ/ lv|? dx—// y(x,1,¢,s)vdsdx

—// / F(s)zp(x,p,1,5)z(x,p,1,5)dsdp dx
QJo JO
1 rc
~ [ [ [ 6emptpitsiynp.t.)dsdpas. 2.16)
QJo JO

Taking into account z(x,0,¢,5) = @, (x,t) = u, y(x,0,¢,5) = W;(x,¢) = v we have

and

/ / / 5)zp (x p,t,s> (x,p,t,5)dsdpdx

_/// ——|z(x,p,t,5)]>dpdsdx
- 5/Q/O F(s)|z(x,1,t,s)|2dsdx—%/OCF(s)ds/Q|u|2dx 2.17)

1 c
L[ [ G6hptxpotss)ytep.tos)dsdpax
QJo JO

1 ¢ 1 e
= f// G(s)|y(x,1,t,s)|2dsdx—f/ G(s)ds/ [v|* dx. (2.18)

2 Jalo 2 Jo Q
Inserting (2.17) and (2.18) into (2.16), apply Young’s inequality and simplifying the terms, we
obtain

(4
(AU < — ( / Fs ds) / > dx— <ﬁ —/ G(s)ds) / v dx.
Q 0 Q

Finally, by the assumption (2.14) we conclude the proof. d
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The well-posedness of (2.5)-(2.12) is ensured by the following theorem.

Teorema 2.1. For Uy € F€, there exists a unique weak solution U of (2.13) satisfying
U € C((0,00); ). (2.19)
Moreover, if Uy € D(), then

U € C((0,0); D(o7)) NC ((0,00); 5. (2.20)

Proof. We will use the Hille-Yosida theorem. Since ./ is dissipative and D(.%7) is dense in .77, it
is sufficient to show that <7 is maximal; that is, [ — 7 is surjective. Given H = (hy,ha,...,he) €
¢, we must show that there exists U = (@, y,u,v,z,y) € D(«) satisfying (I — </ )U = H which
is equivalent to

O—u=h, .21
V—v=h, (2.22)

pru—k(Qc+ W)+ ou +/O F($)z(x,1,t,5)ds = p1h3, (2.23)
P2V — bWee + k(@s + W) + B+ /0 G(s)y(x, 1,,5) ds = paha, (2.24)
sz(x,p,t,8) +2p(x,p,t,5) = shs, (2.25)

sy(x,p,t,8) +yp(x,p,1,5) = she. (2.26)

Suppose that we have found ¢ and y with the appropriated regularity. Therefore, (2.21) and
(2.22) give

u=¢@—h, (2.27)
v=y—h. (2.28)

It is clear that u,v € H} (Q).
From (2.1),(2.3) it follows that equation (2.25) has a unique solution given by
2(x,p,5) = u(x)e P +se~P* /Op e®’hs(x,0,s)do
and from (2.2),(2.4) it follows that equation (2.26) has a unique solution given by
y(x,p,8) =v(x)e P +seP° /Op €%’ he(x,0,s)do.
So, from (2.27) and (2.28),
2(x,p,5) = @(x)e P —hy(x)e P’ +se P* /Op e®hs(x,0,s)do,

o
y(x,p,8) = y(x)e P —hy(x)e P* —l—se*pS/ e®’h¢(x,0,5)do,
Jo
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and, in particular,
2(x,1,5) = @(x)e" +20(x,5),
y(x 1,s) = y(x)e " +yo(x,s),
where z9(x, 5),y0(x,s) € L2 (Q x (0,¢)) defined by

1
20(x,8) = —hi(x)e”* —|—se_s/0 e®hs(x,0,s)do,

1
yo(x,8) = —hy(x)e™* +se’3/ e he(x,0,5)do.
0

By (2.23), (2.24), (2.27) and (2.28), we see that the functions ¢ and y satisfy the following
system
A9 —k(@c+ W), =31, (2.29)
NY —b¥u + k(@ +y) = g2,

where
A =pi —|—Ot—|—/ocef"F(s)ds, n=p2+p —i—/ocfst(s)ds7
g1 =pithi+ah +pihz — /OCF(S)Zo(x,S)dS,
82 = p2ha + Bhy + pahy — /OC G(s)yo(x,s)ds.
Solving the system (2.29) is equivalent to finding (¢, y) € [H*(Q) NH} (Q)] ? such that

2 [ opdrik [ (v pidi= [ eipax
Q Q Q

(2.30)
n [ vwdxes [ yderk | (o v) pds= [ s
for all (¢, W) € H} (Q) x H} (Q).
Now, we observe that solving the system (2.30) is equivalent to solve the problem
Y((@,¥),(0,%)) =L(¢, ) (2.31)

where the bilinear form
Y [HE(Q) x HY Q)] — (0,00)

and the linear form
L: HY (Q) x H} (@) — (0,00)

are defined by

Y((0.¥).(9.9) =2 | 0@dv-k [ (o+v) (h+ 1) d

+n/ wu?dx+b/ Y Wi dx
Q Q
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and

L) = [ e1pds+ [ gopx

It is easy to verify that Y is continuous and coercive, and L is continuous. So applying the Lax-
Milgram theorem, we deduce that for all (¢, ¥) € HJ (Q) x HJ (Q) the problem (2.31) admits a
unique solution

(9. ¥) € Hy () x Hy ().

Applying the classical elliptic regularity, it follows from (2.30) that
(9. W) € H* (Q) x H?(Q).

Therefore, the operator I — &7 is surjective. As consequence of the Hille-Yosida theorem [14,
Theorem 1.2.2, page 3], we have that <7 generates a Cy-semigroup of contractions S(z) = ¢' “ on
A . From semigroup theory, U (t) = €' Uy is the unique solution of (2.13) satisfying (2.19) and

(2.20). The proof is complete. O

3 EXPONENTIAL STABILITY

The necessary and sufficient conditions for the exponential stability of the Cy-semigroup of con-
tractions on a Hilbert space were obtained by Gearhart [6] and Huang [7] independently, see also
Pruss [19]. We will use the following result due to Gearhart.

Teorema 3.2. Let p(</) be the resolvent set of the operator </ and S(t) = "7 be the Cy-
semigroup of contractions generated by <f. Then, S(t) is exponentially stable if and only

if

iR={i{:{ eR} Cp(«), 3.1
limsup || (i1 —27/) 7| < co. (3.2)
[¢]—e0

The main result of this manuscript is the following theorem.

Teorema 3.3. The semigroup S(t) = e'” generated by < is exponentially stable.

Proof. It is sufficient to verify (3.1) and (3.2). If (3.1) is not true, it means that there isa { € R
such that { # 0, i{ is in the spectrum de 7. From the compact immersion of D(</) in JZ, by
spectral theory, there is a vector function

U= (9,y,u,v,z,y) € D(), with |U||,r =1,

Tend. Mat. Apl. Comput., 21, N. 3 (2020)
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such that &#U = i{U, which is equivalent to

ilo—u=0, (3.3)
iy —v=0, (3.4)
iCu— {k(q;x ) — o — /CF(s)z(x, 1,1,5) ds] —0, (3.5)
p1 0

ifv— i {bq/xx — k(o +y)—Bv— /L G(s)y(x, 1,1,s) ds] =0, (3.6)

p2 0
icsz(x7p7tas)+ZP(x7p7tvs) :Oa (37)
ifsy(x,p,t,s)+yp(x,p,t,5) =0. (3.8)

Using (3.3) we obtain u, = i{¢,. Multiplying by u,, integrating on Q and using Young’s
inequality we have

1 1
/\ux\2dx=i§/ (pxuxdxg—fé’z/ |(px\2dx+f/ a2 dx,
Q Q 2 Q 2 Jo

from where it follows that
1 1
7(22/ |(Px|2dx+*/ uy|*dx < 0. (3.9)
2 Q 2 Ja

Applying Poincaré’s inequality in (3.9) we obtain ¢ = u = 0 a.e. in L>(Q). Note that (2.3) gives
us z = ue %P5 as the unique solution of (3.7), which implies z = 0 a.e. in L2 (Q x (0,1) x (0,¢)).
Similarly, it is proved that y = v =0 a.e. in L?(Q) and y = 0 a.e. in L2 (Q x (0,1) x (0,c¢)). But

¢ =y =u=v=z=y=0is acontradiction with ||U|| » = 1 and then (3.1) holds.

To prove (3.2) we use contradiction argument again. If (3.2) is not true, there exists a real
sequence §,, with §, — o and a sequence of vector functions V,, € J# that satisfies

||(ln1_ﬂ)71VnH<%"
[Vall oo

>n, where A, =i(,.

Hence
(Al = 27) " Vall o = 0| Vil - (3.10)

Since A, € p(«) it follows that there exists a unique sequence

Un = (@n, W, tn, Vi, 2ns ¥n) € D(),

with unit norm in .7# such that
(Al — )"V, = U,.

Denoting &, = 4,U, — &/U, we have from (3.10) that

1
-
n

1G]
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and then &, — 0 strongly in J# as n — .

Taking the inner product of &, with U, we have
M| Unl 5 — (9 Un, Un) s = (&0, Un) -

Using Lemma 2.1, follows that

Al Unll2, + <a—/OCF(s)ds)/Q|un2dx+ <ﬁ—/OCG(s)ds>/Q|vn|2dx

< <§n7Un>%”

and taking the real part we have

(o [ Fas) [l ass (8= [ G61as) [ Il o< Rl Ui

As U, is bounded and &, — 0 we obtain

u, —0 and v, —0 asn—»oo.

Now, for &, = (E}E2... &9), &, = AU, — /U, is equivalent to

lCn(Pn —Up = gnl’
iCan —Vn= r%;

1 C
iCn“n—; [k(¢x,n+wn)x—a“n_/ F(S)Zn(x,l,t,s)ds] = n3’
1 0

1 C
ignvn - F l:bll/xx.,n _k((px,n+ Wrz) _ﬁvn _/ G(S)Yn(xv l,t,s)ds} = jv
2 0

iCnSZn(LPJvS) +Zp,n(X,PJaS) = sérfa
iCnSyn(xvp,hS) +J’p,n(xapaf75) = Sé}’?a

where
&l =0,

for j=1,...,6.
From (3.11), (3.12), (3.13) and (3.18), we obtain that

¢, —0 and vy, >0 asn— oo

By (2.1) and (2.3), we have that

. . p .
Zn(x,0,5) :un(x)e_’g"ps—i-se_’g”ps/o ¢ E3 (x,0,5)do

@3.11)

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)
(3.17)

(3.18)

(3.19)

(3.20)
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NONATO, RAPOSO and NGUYEN 405

is the unique solution of (3.16). Using the Euler formula for complex numbers in (3.20) we obtain

zn(x,p,5) =up(x) [cos(Lups) —isin(Lups)]
+s[cos(&ups) — isin(C,,ps)]/Op[cos(C,,Gs) +isin(§,05)] &3 (x,0,5)do.

Since cos(&,ps) —isin(§,ps) and cos(&,0s) +isin({,0s) limited and by (3.11), (3.18) deducing
that
Zn(x,p,t) >0 asn—oo. 3.21)

Analogously, we conclude that

Yu(x,p,6) =0 asn— oo, (3.22)

Finally, (3.11), (3.19), (3.21) and (3.22) give us a contradiction with ||U,|| ,» = 1. The proof is
complete. U

RESUMO. O objetivo deste artigo € estudar o sistema de Timoshenko com uma condicéo
de retardo de tempo ndo local. A boa colocacdo é provada através do teorema de Hille-
Yosida. Explorando as propriedades dissipativas do operador linear associado ao modelo
totalmente amortecido, obtemos a estabilidade exponencial usando o Teorema de Gearhart-
Huang-Priiss.

Palavras-chave: sistema de Timoshenko, condicdo de retardo ndo local, estabilidade
exponencial.
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