Acessibilidade / Reportar erro

Energy efficiency and physical integrity of maize grains subjected to continuous and intermittent drying1 1 Research developed at Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil

Eficiência energética e integridade física dos grãos de milho submetidos à secagem contínua e intermitente

HIGHLIGHTS:

Tempering time promotes higher drying rate and reduces electrical conductivity.

Intermittent drying reduced the negative effects of continuous drying.

Longer tempering times promoted better energy efficiency and less membrane damage.

ABSTRACT

Grain drying is a common process, due to its need for the maintenance of quality, but it is the activity with the highest energy demand among the postharvest stages. Thus, this study aimed to evaluate the effect of different tempering times on the energy efficiency of drying process and maintenance of cell membrane integrity of maize grains harvested with moisture content at 0.34 ± 0.01 d.b. The grains were dried in an experimental fixed-bed dryer with control of temperature and air flow conditions. The experiment was conducted in a completely randomized design with five tempering times (0, 4, 8, 12 and 16 hours) and four repetitions, where zero corresponds to continuous drying, while the remaining times correspond to the intermittent dryings. The grains were dried at the temperature of 100 ºC and air flow of 15.4 m3 min-1 t-1 until reaching moisture content of 0.16 ± 0.03 d.b. For intermittent drying, the process was interrupted with 0.22 ± 0.02 d.b. and restarted after the tempering time. The increase of tempering time led to reductions in effective drying time, specific energy consumption, electrical conductivity and damage and increase in the drying rate and overall energy efficiency. Intermittent drying reduced the drying time, being 30.25% more efficient than continuous drying.

Key words:
Zea mays L.; drying rate; tempering time; electrical conductivity; iodine reaction

Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com